

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-5707_23-01-03

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS). The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12047-01-00. ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Biotage Sweden AB

Vimpelgatan 5

75318 Uppsala / SWEDEN
Phone: +46 18 56 59 00
Contact: Bahashty Eizuldeen

e-mail: <u>bahashty.eizuldeen@biotage.com</u>

Manufacturer

Biotage Sweden AB

Vimpelgatan 5 75318 Uppsala / SWEDEN

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Liquid level Sensor

Model name: Biotage® Liquid Level Sensor

 FCC ID:
 2BBWS-418536

 Frequency:
 57 GHz - 64 GHz

Antenna: 2 embedded dipole antennas

Power supply: 5.0 V DC by external power supply

Temperature range: +15°C to +32°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

i est report authorized:	rest performed:	
Thomas Vogler	Meheza Walla	
Lab Manager	Lab Manager	
Radio Labs	Radio Labs	

1 Table of contents

1	Table of contents	
2	2 General information	
	Notes and disclaimer Application details Test laboratories sub-contracted	
3	3 Test standard/s, references and accreditations	
4	Reporting statements of conformity – decision rule	4
5	5 Test environment	
6	6 Test item	
	6.1 General description	
7	7 Description of the test setup	(
	 7.1 Shielded semi anechoic chamber 7.3 Radiated measurements, 18 GHz – 50 GHz 7.4 Radiated measurements > 50 GHz 7.5 Radiated measurements > 50 GHz 	
8	3 Sequence of testing	14
	 8.1 Sequence of testing radiated spurious 9 kHz to 30 MH 8.2 Sequence of testing radiated spurious 30 MHz to 1 GH 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz 8.4 Sequence of testing radiated spurious above 18 GHz 8.5 Sequence of testing radiated spurious above 50 GHz w 	z
9	9 Measurement uncertainty	19
10	Far field consideration for measurements above 18 GHz	19
11	11 Summary of measurement results	20
12	12 Measurement results	2
	12.1 Occupied bandwidth (10 dB bandwidth / 20 dB band 12.2 Maximum E.I.R.P. / Peak transmitter conducted out 12.3 Spurious emissions radiated	out power
13	I3 Glossary	40
14	14 Document history	4 ⁻

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

 Date of receipt of order:
 2023-03-02

 Date of receipt of test item:
 2023-05-16

 Start of test:*
 2023-05-22

 End of test:*
 2023-07-24

Person(s) present during the test: -/-

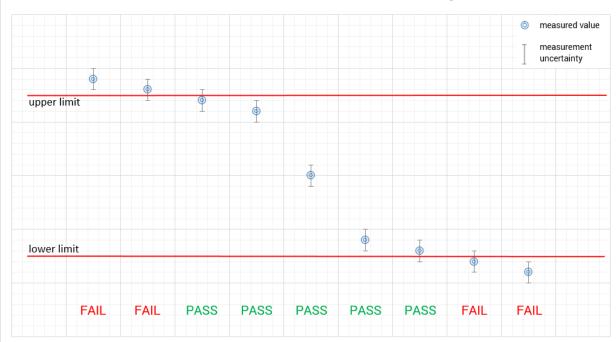
2.3 Test laboratories sub-contracted

None

© cetecom advanced GmbH Page 3 of 47

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations


Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

4 Reporting statements of conformity - decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 4 of 47

5 Test environment

Temperature		T_{nom} T_{max}	+22 °C during room temperature tests + 50 °C during high temperature tests
remperature	•	T _{min}	-20 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure :			1021 hpa
		V_{nom}	5.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme voltage conditions required
		V_{min}	No tests under extreme voltage conditions required

6 Test item

6.1 General description

Kind of test item	:	Liquid level Sensor
Model name	:	Biotage® Liquid Level Sensor
S/N serial number	:	LLS-BETA-02 and LLS-BETA-09
Hardware status	:	418536
Software status	:	V2.01.27 (Hub), V2.00.37 (Sensor)
Frequency band	:	57 GHz – 64 GHz
Type of modulation	:	Pulse modulation
Number of channels	:	1
Antenna	:	2 embedded dipole antennas
Power supply	:	5.0 DC by external power supply
Temperature range	:	+15°C to +32°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-5707_23-01-01_AnnexA

1-5707_23-01-01_AnnexB 1-5707_23-01-01_AnnexD

Reference documents: Antenna gain declared by customer, referenced document:

A111 + lens Block diagram v1.1.pdf

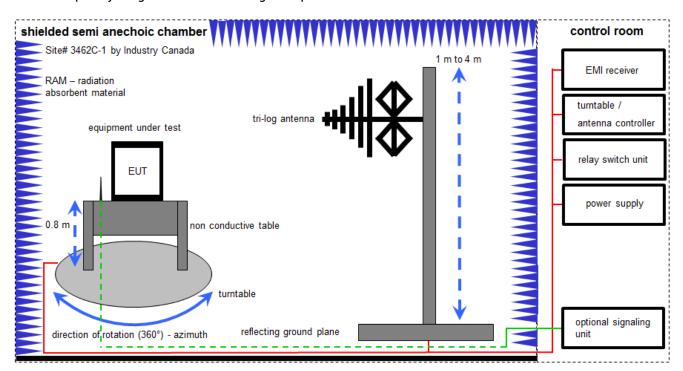
© cetecom advanced GmbH Page 5 of 47

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated		EK	limited calibration
ne	not required (k, ev, izw, zw not required)		zw	cyclical maintenance (external cyclical
				maintenance)
ev	periodic self verification		izw	internal cyclical maintenance
Ve	long-term stability recognized		g	blocked for accredited testing
vlk!	Attention: extended calibration interval			
NK!	Attention: not calibrated		*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 6 of 47

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.30.0

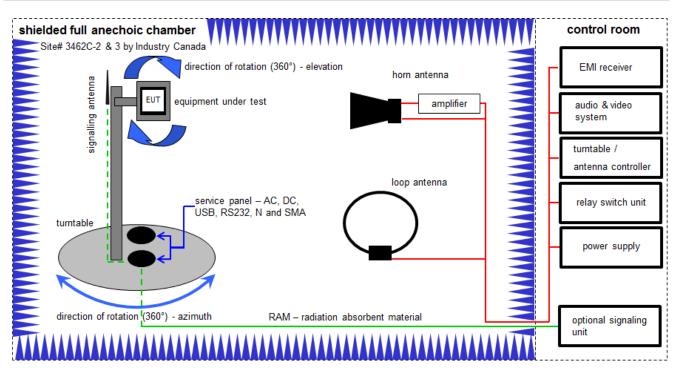
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

© cetecom advanced GmbH Page 7 of 47


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2019	29.09.2023
8	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
9	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023

© cetecom advanced GmbH Page 8 of 47

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

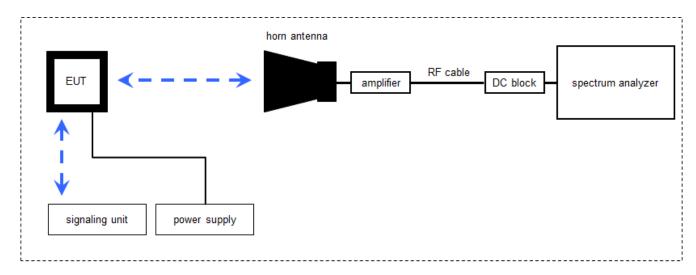
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

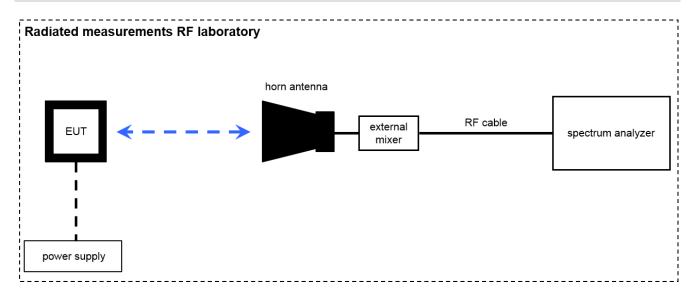
Example calculation:

FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

© cetecom advanced GmbH Page 9 of 47


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	НР	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	31.07.2023
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021	29.09.2023
5	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vlKI!	26.07.2022	25.07.2024
6	n. a.	Switch / Control Unit	3488A	НР	*	300000199	ne	-/-	-/-
7	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	07.12.2022	31.12.2023
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
14	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-


© cetecom advanced GmbH Page 10 of 47

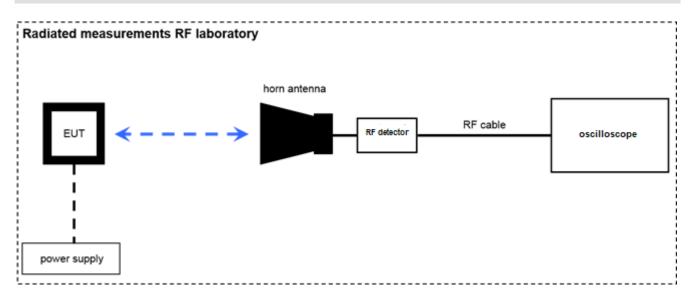
7.3 Radiated measurements, 18 GHz – 50 GHz

7.4 Radiated measurements > 50 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:


OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μ W)

Note: conversion loss of mixer is already included in analyzer value.

© cetecom advanced GmbH Page 11 of 47

7.5 Radiated measurements > 50 GHz

Note: EUT is replaced by reference source for substitution measurement

© cetecom advanced GmbH Page 12 of 47

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18.0-40.0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKI!	17.01.2022	31.01.2024
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vlKI!	17.01.2022	31.01.2024
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	17.01.2022	31.01.2024
4	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
8	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
10	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
11	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2022	08.03.2024
12	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	07.07.2022	31.07.2023
13	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	Rohde & Schwarz	102152	300006202	k	21.07.2022	31.07.2023
14	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	Rohde & Schwarz	101411	300004959	k	07.07.2022	31.07.2023
15	n.a.	Harmonic Mixer 3-port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	20.07.2022	31.07.2023
16	n.a.	Harmonic Mixer 3-port, 110-170 GHz	FS-Z170	Rohde & Schwarz	100014	300004156	k	20.07.2022	31.07.2023
17	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	01.07.2022	31.07.2023
18	n.a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	21.07.2022	31.07.2023
19	n. a.	Temperature Test Chamber	VT4002	Heraeus Voetsch	521/83761	300002326	ev	12.05.2022	31.05.2024
20	n.a.	Waveguide amplifier 50 to 75 GHz 30 dB Gain	AFB-V30LN-02	Ducommun	2K1701116	300005899	ev	-/-	-/-
21	n.a.	Thermal Power Sensor, DC-110GHz, 300nW-100mW	NRP-Z58	Rohde & Schwarz	100913	300004808	k	04.01.2022	31.01.2024
22	n.a.	SG Extension Module 50 – 75 GHz	E8257DV15	VDI	US54250124	300005541	ev	-/-	-/-
23	n.a.	Std. Gain Horn Antenna 50-75 GHz	COR 50_75	Thomson CSF		300000813	ev	-/-	-/-
24	n.a.	Std. Gain Horn Antenna 50-75 GHz	COR 50_75	Thomson CSF		300000813 -0001	ev	-/-	-/-
25	n.a.	RF Detector	SFD-503753- 15SF-P1	Eravant	07353-1	300006118	ev	-/-	-/-
26	n.a.	Oscilloscope	DP05054	Tektronix	C010174	300004169	k	07.12.2021	31.12.2023
27	n.a.	Signal Generator	83640A	HP	3119A00458	300002266	vlKI!	10.12.2021	31.12.2023

© cetecom advanced GmbH Page 13 of 47

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*) Note: The sequence will be repeated three times with different EUT orientations.

© cetecom advanced GmbH Page 14 of 47

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 15 of 47

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 16 of 47

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 17 of 47

8.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by
 the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum
 analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic
 falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 18 of 47

9 Measurement uncertainty

Test case	Uncertainty
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1°C
Humidity	± 3 %

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2 / \lambda$

with

Dff Far field distanceD Antenna dimension

 λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λin cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
110-170	170	0.85	0.18	8.19
170-220	220	0.68	0.14	6.78

In band measurement (EIRP, OBW):

Antenna frequency range in GHz	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	far field distance in cm
50-75	64	1.85	0.47	14.6

© cetecom advanced GmbH Page 19 of 47

11 Summary of measurement results

×	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC 47 CFR Part 15	see below	2023-09-07	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Results (max.)
§15.215 (c)	Occupied bandwidth (20 dB bandwidth)	Nominal	Nominal	\boxtimes				complies
§15.255 (c)(3)	Maximum E.I.R.P.	Nominal	Nominal	\boxtimes				complies
§15.255 (d)	Spurious Emissions	Nominal	Nominal	\boxtimes				complies
§15.255 (f)	Frequency stability	Extreme Nominal	Extreme Nominal	\boxtimes				complies

Note: NA = Not applicable; NP = Not performed

© cetecom advanced GmbH Page 20 of 47

12 Measurement results

12.1 Occupied bandwidth (10 dB bandwidth / 20 dB bandwidth / 99% bandwidth)

Description:

Measurement of the bandwidth of the wanted signal.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Resolution bandwidth:	50 MHz	
Video bandwidth:	80 MHz	
Trace-Mode:	Max Hold	

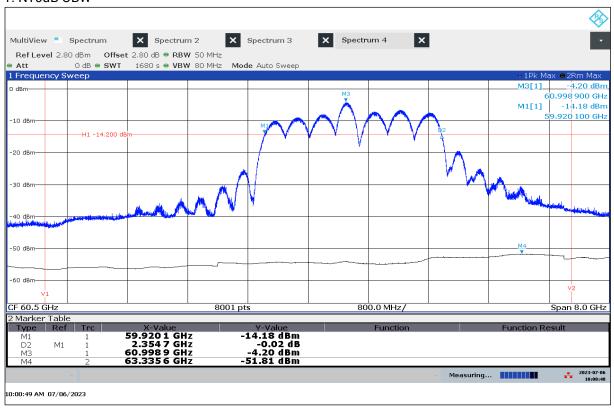
Limits:

FCC
CFR Part 15.255 / 15.215(c)
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:
Frequency range
57 GHz – 71 GHz

§15.215 (c):

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

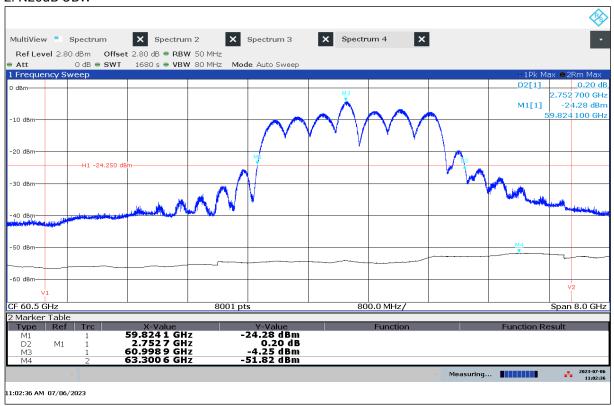
© cetecom advanced GmbH Page 21 of 47



Measurement results:

Test condition Tnom / Vnom	F∟ in GHz	F _H in GHz	Occupied bandwidth in GHz
10 dB OBW	59.920 100	62.274 800	2.35
20 dB OBW	59.824 100	62.576 800	2.75
99% OBW (only for information)	59.881 306	62.539 291	2.66

Verdict: Complies


Plot 1: N10dB OBW

© cetecom advanced GmbH Page 22 of 47

Plot 2: N20dB OBW

Plot 3: 99% OBW

© cetecom advanced GmbH Page 23 of 47

12.2 Maximum E.I.R.P. / Peak transmitter conducted output power

Description:

Measurement of the maximum radiated e.i.r.p. of the wanted signal.

Limits: FCC Part 15.255

The requirements of Part 15.255 (c) (3) for pulsed field disturbance sensors are as follows:

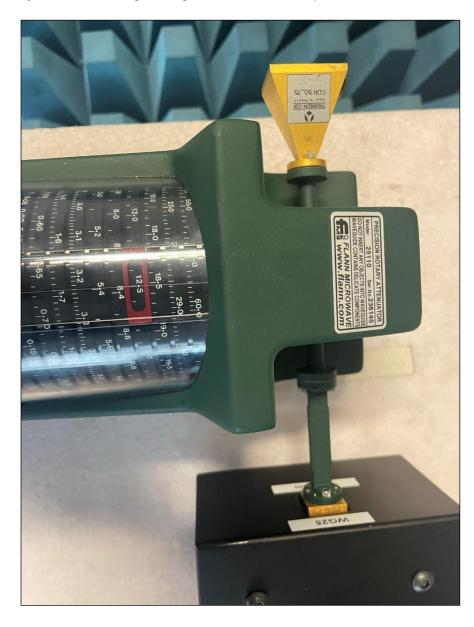
- Pulse duration not to exceed 6 ns
- Duty factor ≤ 10% within any 0.3 µs time window
- Averaged EIRP ≤ 13 dBm
- Peak EIRP ≤ 33 dBm
- Averaged integrated EIRP <= 5 dBm in any 0.3 μs time window within 61.5 and 64 GHz

Measurement:

Measurement parameter			
Detector: Pos-Peak (RF-Detector)			
Video bandwidth:	10 MHz		
Trace-Mode: Max Hold			

© cetecom advanced GmbH Page 24 of 47

Setup of the Substitution:

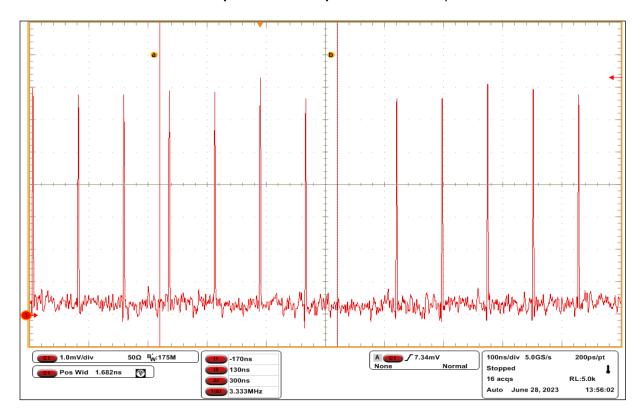


- 1) Synthesized Sweeper 10 MHz 40 GHz
- 2) CW reference source: SG Extension Module 50 75 GHz & Rotary Attenuator & Std. Gain Horn Antenna 49.9-75.8 GHz
- 3) Low Noise Amplifier Waveguide; Std. Gain Horn Antenna 50-75 GHz and RF-Detector (V-Band Amplitude Detector)

© cetecom advanced GmbH Page 25 of 47

Attenuation of rotary attenuator to align voltage levels at oscilloscope:

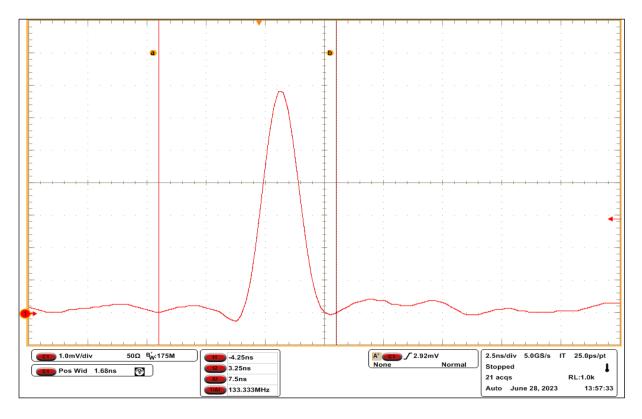
© cetecom advanced GmbH Page 26 of 47



Measurement results:

Measurement:	EUT	Limit
Average E.I.R.P. 10 MHz VBW	1.6 dBm	13 dBm
Peak E.I.R.P. 10 MHz VBW	18.0 dBm	33 dBm
Maximum Pulse duration	1.7 ns	6 ns
Duty factor within 0.3µs time window	2.3 %	10%
Averaged integrated E.I.R.P. within 61.5 – 64 GHz within 0.3µs	-1.39 dBm	5 dBm
Measurement uncertainty	± 3 dB	

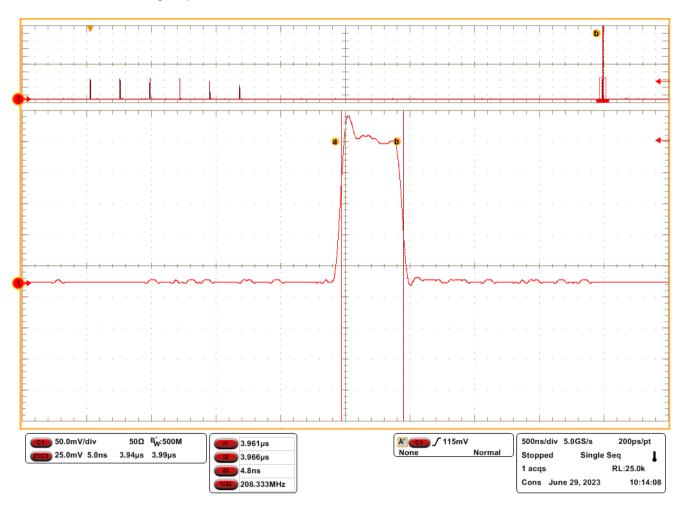
Verdict: Complies


Determination of maximum number of pulses within 0.3μs: Worst case of 4 pulses

© cetecom advanced GmbH Page 27 of 47

Determination of pulse duration of one of the 4 pulses: 1.7 ns

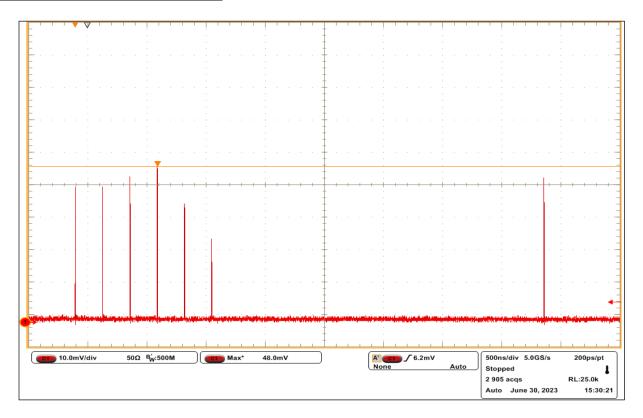
Result:


Pulse duration: 1.7 ns (Limit: < 6 ns)

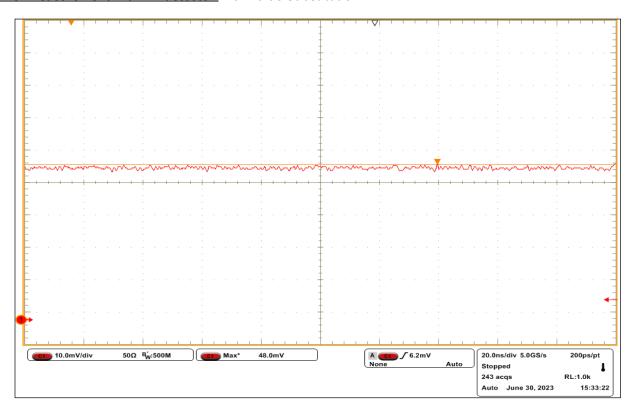
Duty factor within 300 ns (0.3 μ s): 4x 1.7 ns/300 ns = 2.3% (Limit: 10%)

© cetecom advanced GmbH Page 28 of 47

Determination of the longest pulse duration: 4.8 ns


Longest pulse duration: 4.8 ns (Limit: < 6 ns)

Duty factor within 300 ns (0.3 µs): 4.8 ns/300 ns = 1.6% (Limit: 10%)


© cetecom advanced GmbH Page 29 of 47

Power measurement with RF-detector: Max value

Power measurement with RF-detector: Max value Substitution

© cetecom advanced GmbH Page 30 of 47

EIRP substitution measurement for determining average EIRP:

Measurement:	EUT	Note:
Readout peak value of oscilloscope at 1 m with EUT	48 mV	
EIRP of reference source at 1 m	40.5 dBm	Multiplier: ~20 dB; Horn 20.4 dBi Readout value of power sensor adjusted by far field attenuation
fix attenuation added	-10 dB	
rotary attenuator setting to reach peak voltage value of EUT with detector	-12.5 dB	adjusted to oscilloscope readout value of EUT
Peak EIRP of EUT	18.0 dBm	
Average EIRP of EUT within 0.3µs	1.60 dBm	2.3 % duty cycle within 0.3µs

Calculation of Averaged integrated EIRP within 61.5 - 64 GHz and within 0.3µs:

Measurement:	EUT	Note:
Channel Power Full Band	-32.22 dBm	
Channel Power 61.5 – 64 GHz	-35.21 dBm	
Difference	2.99 dBm	
Average EIRP of EUT within 0.3µs	1.60 dBm	from detector measurement
Average EIRP of EUT within 0.3µs	1 20 dDm	Limit E dDm
and within 61.5 – 64 GHz	-1.39 dBm	Limit: 5 dBm

© cetecom advanced GmbH Page 31 of 47

Plot 4: Channel Power within 57 GHz to 64 GHz

Plot 5: Channel Power within 61.5 GHz to 64 GHz

© cetecom advanced GmbH Page 32 of 47

12.3 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in transmit mode.

Limits: FCC Part 15.255

- (c) Limits on spurious emissions:
- (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.
- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm² (-10dBm) at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

FCC						
	CFR Part 15.209(a)					
	Radiated Spurious Emissions					
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance				
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 – 30.0	30	30				
30 88	30.0	10				
88 – 216	33.5	10				
216 – 960	36.0	10				
Above 960	54.0	3				

© cetecom advanced GmbH Page 33 of 47

Limit conversion (ANSI C63.10-2013 9.6):

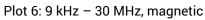
 $EIRP[dBm] = 10 \times log(4 \times \pi \times d^2 \times PD[W/m^2])$

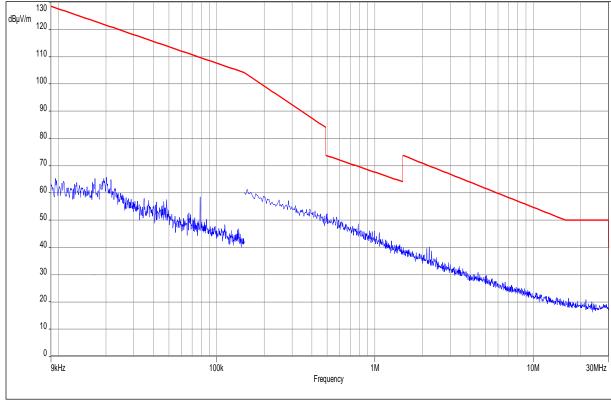
- Power density at the distance specified by the limit: PD [W/m²]
- Equivalent isotropically radiated power: EIRP [dBm]
- Distance at which the power density limit is specified: d [m]

According to this formula, an emission limit of PD = 90 pW/cm^2 at a distance of d = 3 m corresponds to an equivalent isotropically radiated power of EIRP = -10 dBm.

Measurement:

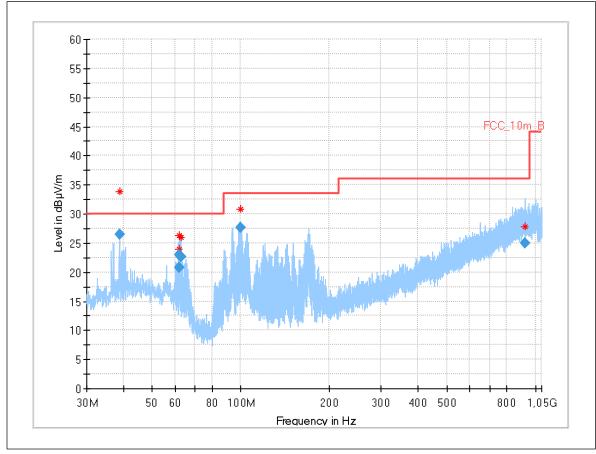
Measurement parameter			
Detector:	Quasi Peak / Pos-Peak / RMS		
Resolution bandwidth:	F < 1 GHz: 100 kHz		
Resolution bandwidth.	F > 1 GHz: 1 MHz		
Video bandwidth:	F < 1 GHz: 300 kHz		
video bandwidth.	F > 1 GHz: 3 MHz		
Trace-Mode:	Max Hold		


Measurement results:


Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
No peaks detected!					
Please refer to the following plots for more information on the level of spurious emissions					

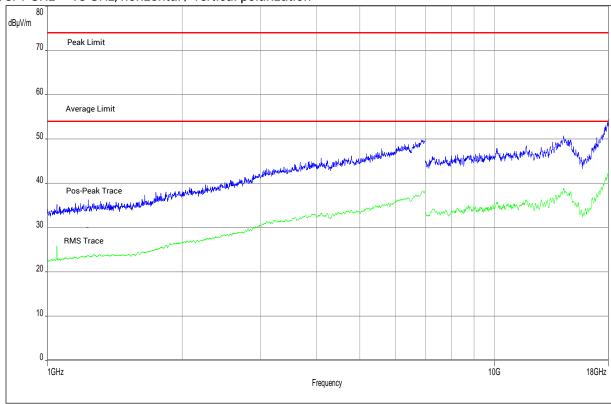
Verdict: Complies

© cetecom advanced GmbH Page 34 of 47

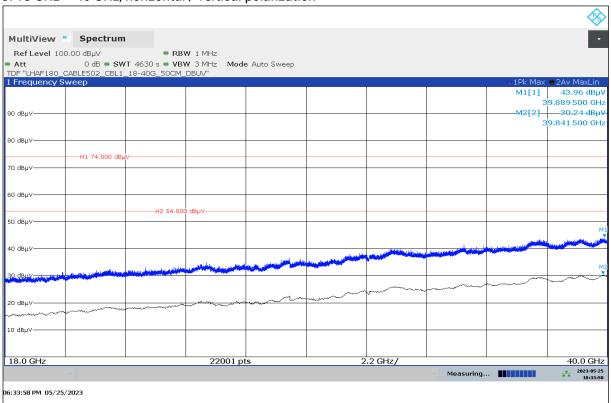


© cetecom advanced GmbH Page 35 of 47

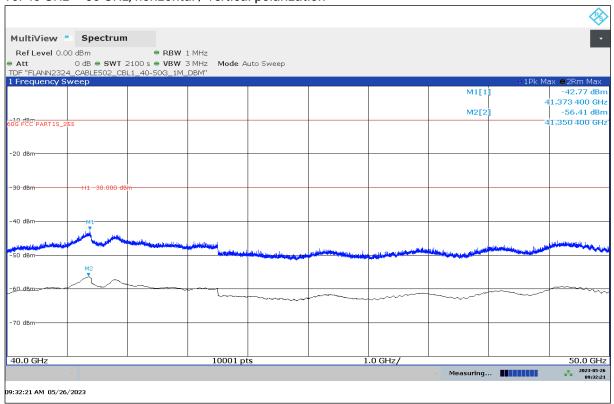
Plot 7: 30 MHz – 1 GHz, horizontal / vertical polarization


Red stars are with peak detector and only informative. Blue diamonds are the right and quasi-peak values.

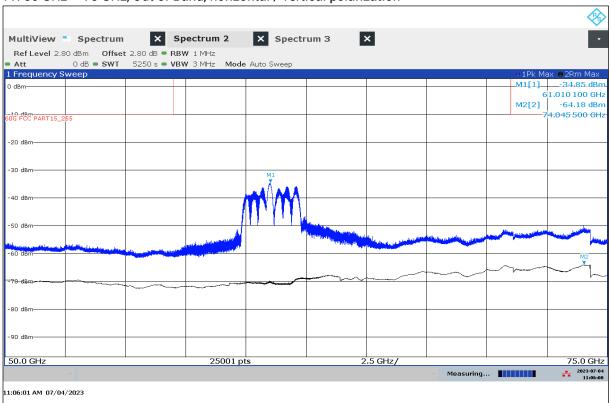
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
38.761	26.51	30.0	3.5	1000	120.0	195.0	٧	127	15
62.014	20.80	30.0	9.2	1000	120.0	195.0	V	209	13
62.016	22.96	30.0	7.0	1000	120.0	124.0	V	182	13
62.627	22.63	30.0	7.4	1000	120.0	195.0	V	208	13
99.601	27.72	33.5	5.8	1000	120.0	122.0	V	-1	13
923.014	25.00	36.0	11.0	1000	120.0	110.0	V	142	26


© cetecom advanced GmbH Page 36 of 47

Plot 8: 1 GHz - 18 GHz, horizontal / vertical polarization


Plot 9: 18 GHz - 40 GHz, horizontal / vertical polarization

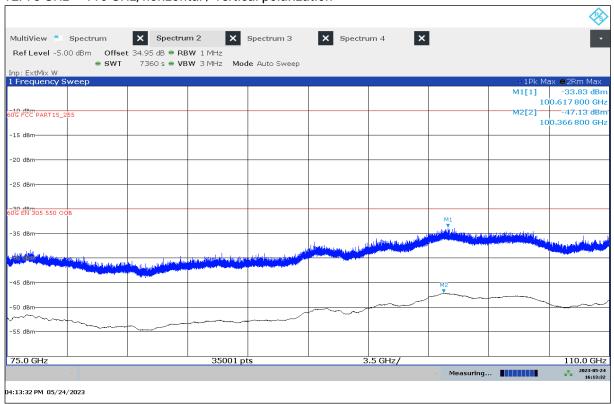
© cetecom advanced GmbH Page 37 of 47



Plot 10: 40 GHz - 50 GHz, horizontal / vertical polarization

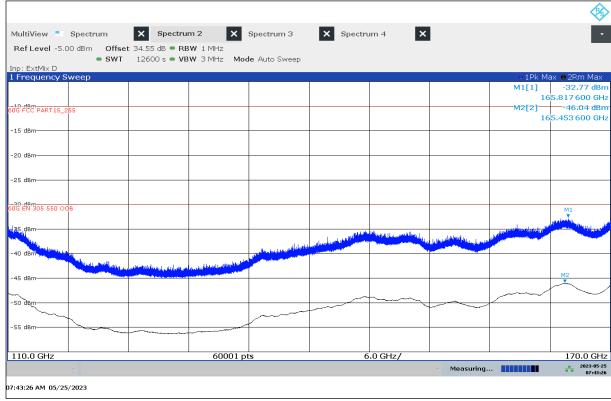
Blue Trace is with Pos.-Peak detector and just informative

Plot 11: 50 GHz – 75 GHz, Out of Band, horizontal / vertical polarization



Blue Trace is with Pos.-Peak detector and just informative

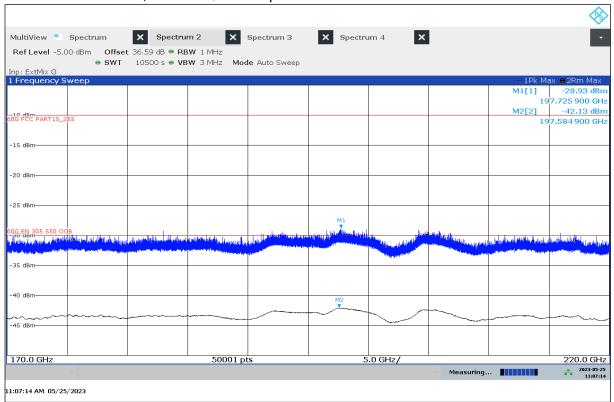
© cetecom advanced GmbH Page 38 of 47



Plot 12: 75 GHz - 110 GHz, horizontal / vertical polarization

Blue Trace is with Pos.-Peak detector and just informative

Plot 13: 110 GHz - 170 GHz, horizontal / vertical polarization



Blue Trace is with Pos.-Peak detector and just informative

© cetecom advanced GmbH Page 39 of 47

Plot 14: 170 GHz - 220 GHz, horizontal / vertical polarization

Blue Trace is with Pos.-Peak detector and just informative

© cetecom advanced GmbH Page 40 of 47

12.4 Frequency Stability

Description:

§15.255 (f)

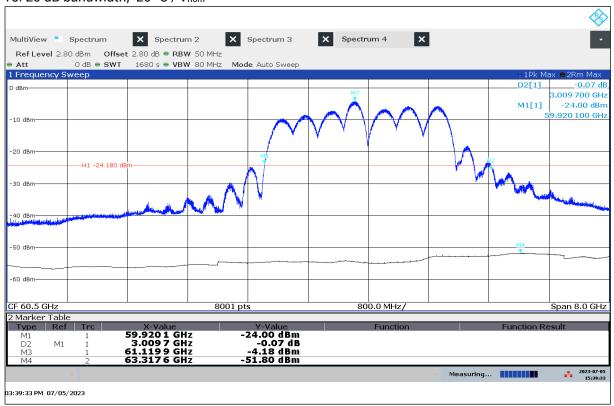
Frequency stability. Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Limits:

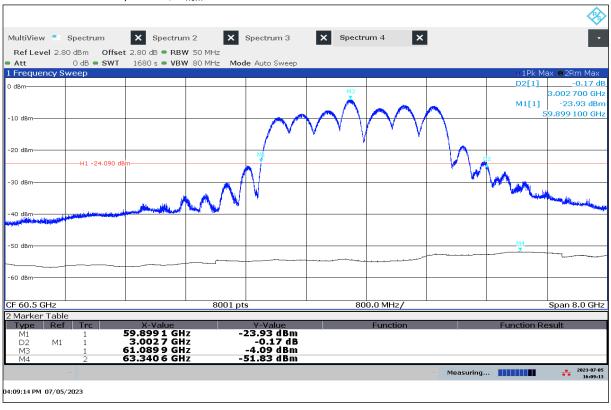
FCC				
CFR Part 15.255 (f)				
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:				
Frequency range				
57 GHz – 64 GHz				

Measurement:

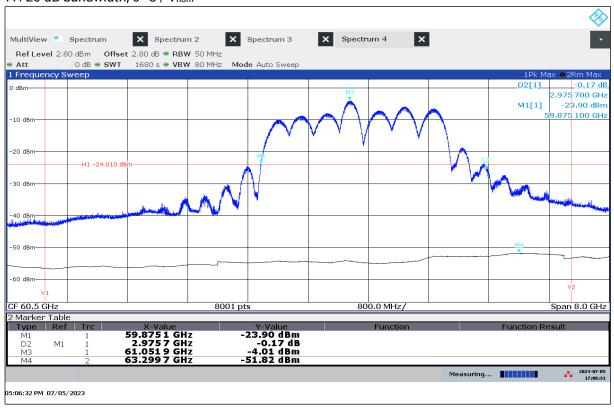
Measurement parameter				
Detector:	Pos-Peak			
Resolution bandwidth:	50 MHz			
Video bandwidth:	80 MHz			
Trace-Mode:	Max Hold			

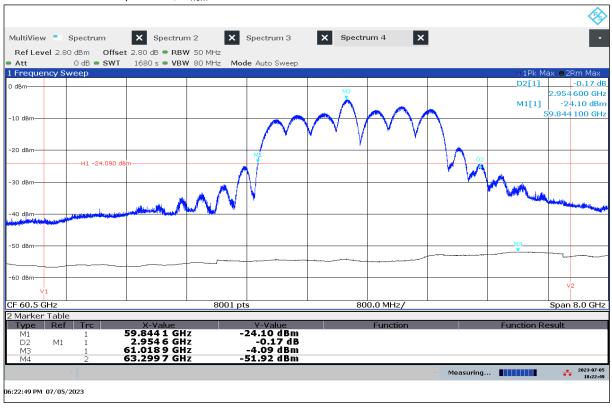

Measurement results:

Test condition	Frequency f∟ [GHz]	Frequency f _H [GHz]	Bandwidth [GHz]
-20 °C / V _{nom}	59.920 100	62.929 800	3.01
-10 °C / V _{nom}	59.899 100	62.901 800	3.00
0 °C / V _{nom}	59.875 100	62.850 800	2.98
10 °C / V _{nom}	59.844 100	62.798 700	2.95
20 °C / V _{nom}	59.824 100	62.576 800	2.75
30 °C / V _{nom}	59.803 100	62.552 800	2.75
40 °C / V _{nom}	59.783 100	62.523 800	2.74
50 °C / V _{nom}	59.757 100	62.691 800	2.93

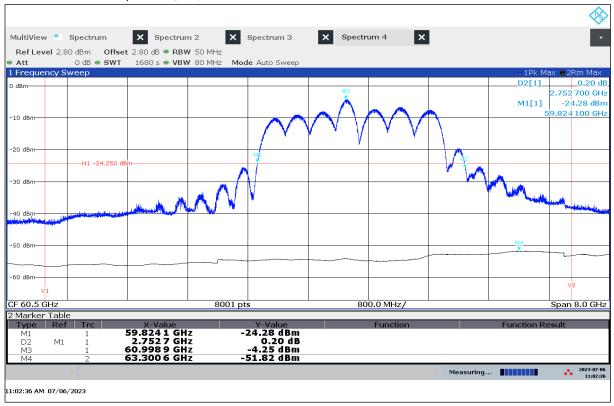

© cetecom advanced GmbH Page 41 of 47

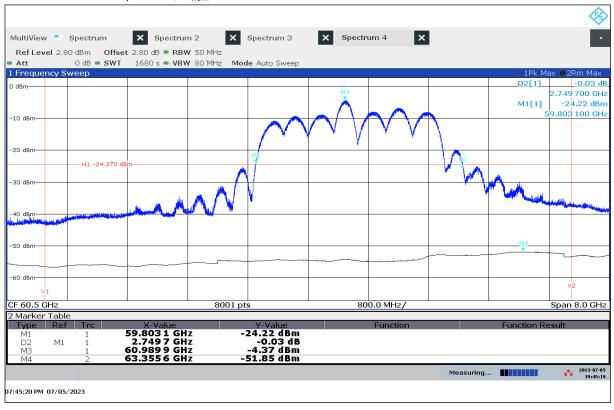
Plot 15: 20 dB bandwidth, -20 °C / V_{nom}


Plot 16: 20 dB bandwidth, -10 °C / V_{nom}

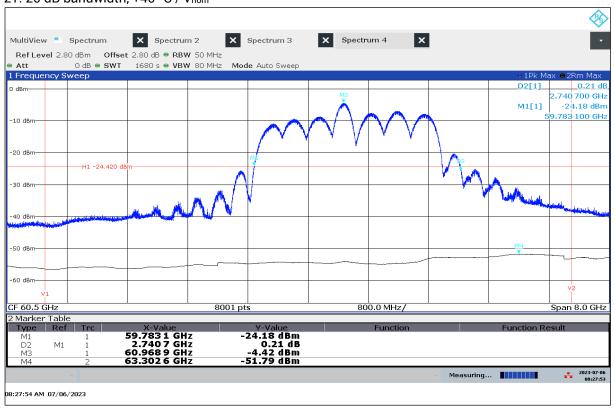

© cetecom advanced GmbH Page 42 of 47

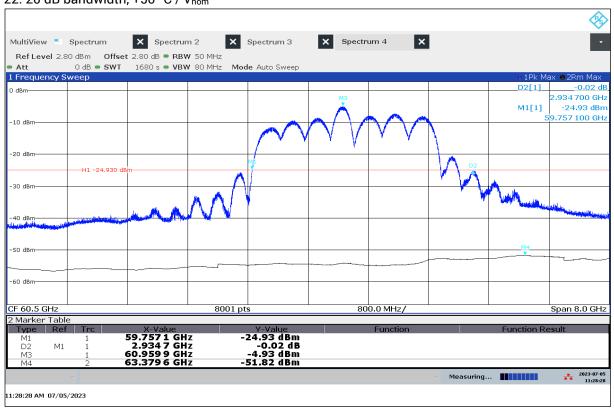
Plot 17: 20 dB bandwidth, 0 °C / V_{nom}


Plot 18: 20 dB bandwidth, +10 °C / V_{nom}


© cetecom advanced GmbH Page 43 of 47

Plot 19: 20 dB bandwidth, +20 °C / V_{nom}


Plot 20: 20 dB bandwidth, +30 °C / V_{nom}


© cetecom advanced GmbH Page 44 of 47

Plot 21: 20 dB bandwidth, +40 °C / V_{nom}

Plot 22: 20 dB bandwidth, +50 °C / V_{nom}

© cetecom advanced GmbH Page 45 of 47

13 Glossary

EUT	Equipment under test				
DUT	Device under test				
UUT	Unit under test				
GUE	GNSS User Equipment				
ETSI	European Telecommunications Standards Institute				
EN	European Standard				
FCC	Federal Communications Commission				
FCC ID	Company Identifier at FCC				
IC	Industry Canada				
PMN	Product marketing name				
HMN	Host marketing name				
HVIN	Hardware version identification number				
FVIN	Firmware version identification number				
EMC	Electromagnetic Compatibility				
HW	Hardware				
SW	Software				
Inv. No.	Inventory number				
S/N or SN	Serial number				
С	Compliant				
NC	Not compliant				
NA	Not applicable				
NP	Not performed				
PP	Positive peak				
QP	Quasi peak				
AVG	Average				
OC	Operating channel				
OCW	Operating channel bandwidth				
OBW	Occupied bandwidth				
ООВ	Out of band				
DFS	Dynamic frequency selection				
CAC	Channel availability check				
OP	Occupancy period				
NOP	Non occupancy period				
DC	Duty cycle				
PER	Packet error rate				
CW	Clean wave				
MC	Modulated carrier				
WLAN	Wireless local area network				
RLAN	Radio local area network				
DSSS	Dynamic sequence spread spectrum				
OFDM	Orthogonal frequency division multiplexing				
FHSS	Frequency hopping spread spectrum				
GNSS	Global Navigation Satellite System				
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz				

© cetecom advanced GmbH Page 46 of 47

14 Document history

Version	Applied changes	Date of release	
-/-	Initial release - DRAFT	2023-07-31	
-/-	Minor changes	2023-09-07	

© cetecom advanced GmbH Page 47 of 47