

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.16.20.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2020	02/2023		
Calipers	Carrera	CALIPER-01	01/2020	01/2023		
Reference Probe	MVG	EPG122 SN 18/11	06/2022	06/2023		
Multimeter	Keithley 2000	1188656	01/2020	01/2023		
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2020	01/2023		
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	11/2019	11/2022		

SAR Reference Dipole Calibration Report

Ref: ACR.53.37.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 4200 MHZ SERIAL NO.: SN 03/21DIP4G200-363

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 05/18/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.53.37.24.BES.A

¥	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	5/18/2024	feduraling
Checked & approved by:	Jérôme Luc	Technical Manager	5/18/2024	JS
Authorized by:	Yann Toutain	Laboratory Director	5/19/2024	Yann TOUTAAN

Signature numérique de Yann Toutain ID Date: 2024.05.19 08:56:12 +01'00'

Customer Name SHENZHEN NTEK **TESTING** Distribution:TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications	
A	Pedro Ruiz	5/19/2024	Initial release	
				-

Ref : ACR.53.37.24.BES.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	ice Under Test	
3	Proc	luct Description4	
	3.1	General Information	
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	
5	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Mechanical Dimensions	7
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	8
	7.2	SAR Measurement Result With Head Liquid	
3	List	of Equipment 11	

Ref : ACR.53.37.24.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 4200 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID4200	
Serial Number	SN 03/21 DIP 4G200-363	
Product Condition (new / used)	Used	

3 PRODUCT DESCRIPTION

GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref : ACR.53.37.24.BES.A

Report No.: S24080507318001

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

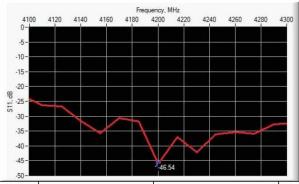
Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

Ref : ACR.53.37.24.BES.A


5.3 <u>VALIDATION MEASUREMENT</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

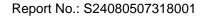
Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
4200	-46.54	-20	$49.3 \Omega - 0.0 j\Omega$

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref : ACR.53.37.24.BES.A

6.2 <u>MECHANICAL DIMENSIONS</u>

Frequency MHz	Ln	nm	h m	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	2		92		定	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3900	12		12		12	
4200		30.24	E.	22.49	. 45	3.65
4600	-		-		E	
4900	н		н		-	

VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Ref : ACR.53.37.24.BES.A

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s _r ')	Conductivi	ty (σ) S/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	
1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %		1.80 ±10 %	
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3300	38.2 ±10 %		2.71 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	
3700	37.7 ±10 %		3.12 ±10 %	
3900	37.5 ±10 %		3.32 ±10 %	
4200	37.1 ±10 %	37.5	3.63 ±10 %	3.54
4600	36.7 ±10 %		4.04 ±10 %	
4900	36.3 ±10 %		4.35 ±10 %	

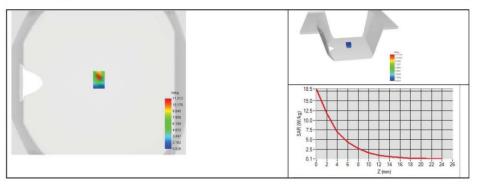
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

SAR REFERENCE DIPOLE CALIBRATION REPORT

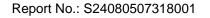
Ref : ACR.53.37.24.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps': 37.5 sigma: 3.54
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=4mm
Frequency	4200 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %


Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3300	=		2	
3500	67.1		25	
3700	67.4		24.2	
3900			e e	
4200	U	66.85 (6.69)	15	22.84 (2.28
4600				
4900		-	н	

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.53.37.24.BES.A

Page: 10/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref : ACR.53.37.24.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024		
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025		
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025		
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024		
Multimeter	Keithley 2000	4013982	02/2023	02/2026		
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025		
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	NI-USB 5680	170100013	06/2021	06/2024		
Power Meter	Keysight U2000A	SN: MY62340002	10/2022 10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024		

SAR Reference Waveguide Calibration Report

Ref: ACR.53.31.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG **COMOSAR REFERENCE WAVEGUIDE**

FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 13/14 WGA 33

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

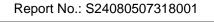
Ref : ACR.53.31.24.BES.A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	2/22/2024	fedunfling
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	Jis
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gann TOUTAAN

Signature Yann numérique de Yann Toutain ID Toutain ID Date: 2024.02.27 08:58:45 +01'00'

	Customer Name
	SHENZHEN NTEK
D: 4:14	TESTING
Distribution:	TECHNOLOGY
	CO., LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	2/22/2024	Initial release
25 25			
M2			
26			



SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR.53.31.24.BES.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	ce Under Test	
3	Proc	luct Description4	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Mechanical Requirements	4
	4.2	S11 parameter Requirements	
	4.3	SAR Requirements	
5	Mea	surement Uncertainty5	
	5.1	Mechanical dimensions_	5
	5.2	S11 Parameter	
	5.3	SAR	
6	Cali	bration Results5	
	6.1	Mechanical Dimensions	5
	6.2	S11 parameter	6
	6.3	SAR	
7	List	of Equipment9	

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR 53 31 24 BES A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 13/14 WGA 33
Product Condition (new / used)	Used

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

MEASUREMENT METHOD

4.1 <u>MECHANICAL REQUIREMENTS</u>

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -8 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

Ref: ACR.53.31.24.BES.A

Report No.: S24080507318001

SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

MEASUREMENT UNCERTAINTY

MECHANICAL DIMENSIONS

The estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

6 CALIBRATION RESULTS

6.1 <u>MECHANICAL DIMENSIONS</u>

Frequency	L (I	nm)	W (mm)	L _f (mm)	W _f ((mm)
(MHz)	Required	M easured	Required	Measured	Required	Measured	Required	Measured
5800	40.39 ±	181	20.19 ± 0.13	(35)	81.03 ± 0.13	1.51	61.98 ±	-:

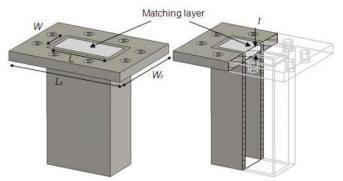
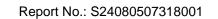
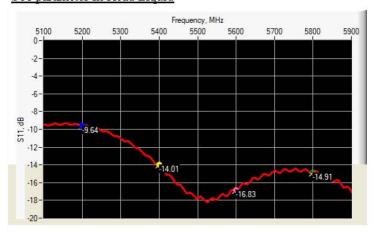



Figure 1: Validation Waveguide Dimensions

Page: 5/9



SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.53.31.24.BES.A

6.2 S11 PARAMETER

6.2.1 S11 parameter In Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
5200	-9.64	-8	25.80 Ω - 6.58 jΩ
5400	-14.01	-8	$51.53 \Omega + 20.60 j\Omega$
5600	-16.83	-8	44.12 Ω - 12.35 jΩ
5800	-14.91	-8	$38.53 \Omega + 11.21 j\Omega$

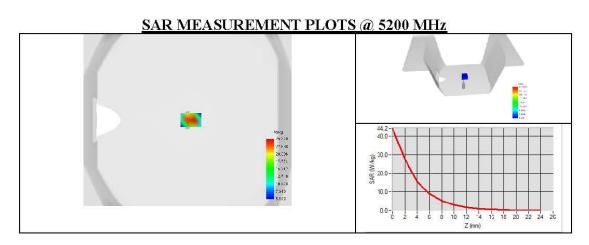
6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

6.3.1 SAR With Head Liquid

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

mvg

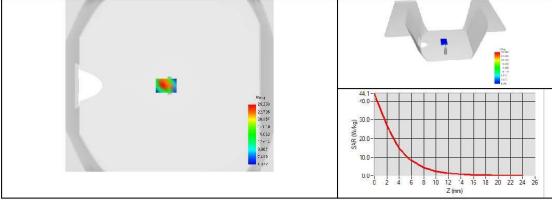

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

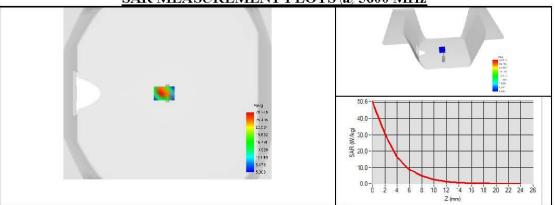
Report No.: S24080507318001

Ref : ACR.53.31.24.BES.A

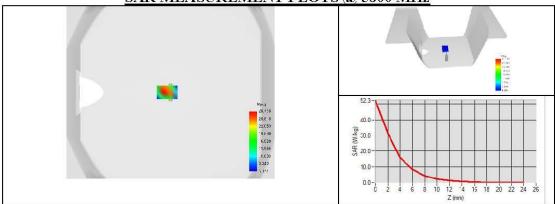
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values 5200 MHz: eps':34.16 sigma: 4.42 Head Liquid Values 5400 MHz: eps':33.63 sigma: 4.64 Head Liquid Values 5600 MHz: eps':33.12 sigma: 4.87 Head Liquid Values 5800 MHz: eps':32.57 sigma: 5.12
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency (MHz)	1	l g SAR (W/kg	g)	10 g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
5200	16.26	162.59	159.00	5.62	56.21	56.90
5400	15.98	159.81	166.40	5.50	55.00	58.43
5600	17.91	179.15	173.80	6.10	61.01	59.97
5800	18.22	182.20	181.20	6.13	61.32	61.50


Page: 7/9


SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR.53.31.24.BES.A



SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 8/9

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR.53.31.24.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	I SN 13700 SAMBR	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	3623-EPGO-431	11/2023	11/2024			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to Characterized prior test. No cal required. test. No cal requi				
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

Page: 9/9