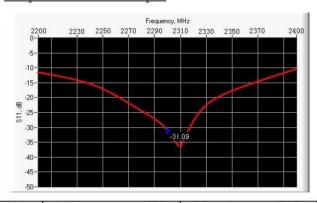
Report No.: S24080507318001

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR, 53.32.24 BES A


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
<u></u>	55.50 +/- 2%		32.60 +/- 2%	8	3.60 +/- 2%

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2300	-31.09	-20	56.3Ω - 2.9jΩ

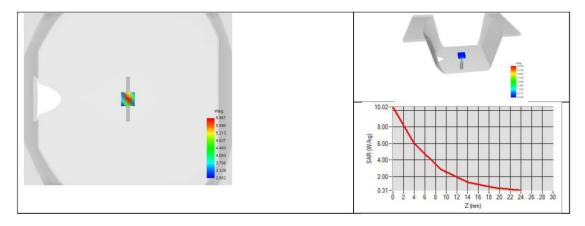
6.3 SAR

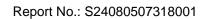
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Report No.: S24080507318001




SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR.53.32.24.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps': 42.0 sigma: 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2300 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2300 MHz	5.06	50.63	48.70	2.35	23.51	23.30

Ref : ACR. 53.32.24.BES.A

7 LIST OF EQUIPMENT

	Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

Ref : ACR. 53.28.24.BES.A

7 LIST OF EQUIPMENT

	Equipment Summary Sheet						
Equipment Description	TIAONINGATION NO I		Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	I SN 13700 SAMBR	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

SAR Reference Dipole Calibration Report

Ref: ACR.53.29.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 2450 MHZ SERIAL NO.: SN 03/15DIP2G450-352

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

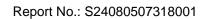
The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Report No.: S24080507318001

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref : ACR.53.29.24.BES.A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	2/22/2024	fedurfling
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JS
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gann TOUTAAN

Signature Yann numérique de Yann Toutain ID Toutain ID Date: 2024.02.27 08:57:39 +01'00'

W	Customer Name
	SHENZHEN NTEK
Distribution:	TESTING
Distribution:	TECHNOLOGY
	CO., LTD.

Name	Date	Modifications
Pedro Ruiz	2/22/2024	Initial release

Ref : ACR.53.29.24.BES.A

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under Test	
3	Pro	luct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	
	4.3	SAR Requirements	
5	Mea	surement Uncertainty	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cali	bration Results6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	List	of Equipment8	

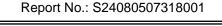
Ref: ACR.53.29.24.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID2450				
Serial Number	SN 03/15DIP2G450-352				
Product Condition (new / used)	Used				


PRODUCT DESCRIPTION

GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Ref : ACR 53 29 24 BES A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is \pm 0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 <u>SAR</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

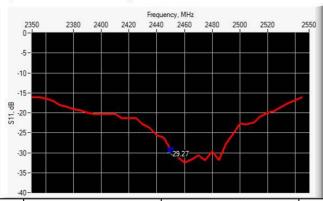
The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Report No.: S24080507318001

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.53.29.24.BES.A


CALIBRATION RESULTS

MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
<u> </u>	51.50 +/- 2%		30.40 +/- 2%	######################################	3.60 +/- 2%

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter in Head Liquid

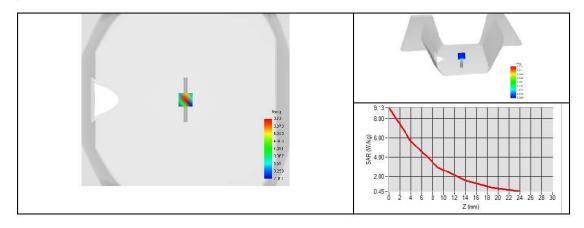
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2450	-29.27	-20	$53.6\Omega + 0.1j\Omega$

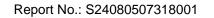
6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.





Ref : ACR. 53.29.24.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps': 42.1 sigma: 1.83
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)		10g SAR (W/kg)			
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2450 MHz	5.00	50.05	52.40	2.38	23.80	24.00

Ref : ACR. 53.29.24.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Identification No.		Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	L SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022 03/2025				
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to Characterized prio test. No cal required. test. No cal requir				
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

SAR Reference Dipole Calibration Report

Ref: ACR.53.30.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 2600 MHZ SERIAL NO.: SN 03/15DIP2G600-356

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref : ACR.53.30.24.BES.A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	2/22/2024	fedunding
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JS
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gann TOUTANN

Yann Toutain

Signature numérique de Yann Toutain ID Date: 2024.02.27 08:58:12 +01'00'

~	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Name	Date	Modifications
Pedro Ruiz	2/22/2024	Initial release

Ref : ACR.53.30.24.BES.A

TABLE OF CONTENTS

1	Intro	Oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	
	4.3	SAR Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Mechanical dimensions_	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cali	bration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	
	6.3	SAR	
7	List	of Equipment8	

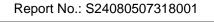
Ref : ACR 53.30.24.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID2600			
Serial Number	SN 03/15DIP2G600-356			
Product Condition (new / used)	Used			


PRODUCT DESCRIPTION

GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Ref : ACR 53 30 24 BES A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is \pm 0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

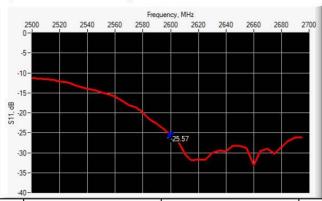
5.3 <u>SAR</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Ref : ACR 53.30.24 BES A


CALIBRATION RESULTS

MECHANICAL DIMENSIONS

L	L mm h mm		h mm		h mm d mm		mm
Measured	Required	Measured	Required	Measured	Required		
(25) (30)	48.50 +/- 2%	8	28.80 +/- 2%	20000. 	3.60 +/- 2%		

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2600	-25.57	-20	54.5Ω - $3.2j\Omega$

6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

SAR Reference Dipole Calibration Report

Ref: ACR.53.33.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 3300 MHZ SERIAL NO.: SN 03/21DIP3G300-359

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 5/18/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/11

Ref: ACR.53.33.24.BES.A

Report No.: S24080507318001

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	5/18/2024	federafing
Checked & approved by:	Jérôme Luc	Technical Manager	5/18/2024	JES
Authorized by:	Yann Toutain	Laboratory Director	5/19/2024	Gann TOUTANN

Yann Signature numérique de Yann Toutain ID Date : 2024.05.19 08:51:11 +01'00'

Customer Name SHENZHEN NTEK **TESTING** Distribution: TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	5/19/2024	Initial release
-			

Ref: ACR.53.33.24.BES.A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test	
3	Pro	oduct Description4	
	3.1	General Information	
4	Мє	easurement Method	
	4.1	Return Loss Requirements	
	4.2	Mechanical Requirements	:
5	Мє	easurement Uncertainty	
	5.1	Return Loss	:
	5.2	Dimension Measurement	
	5.3	Validation Measurement	
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	(
	6.2	Mechanical Dimensions	
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	
	7.2	SAR Measurement Result With Head Liquid	
8	Lis	st of Equipment11	

Page: 3/11

Ref: ACR.53.33.24.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 3300 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID3300			
Serial Number	SN 03/21 DIP 3G300-359			
Product Condition (new / used)	Used			

3 PRODUCT DESCRIPTION

GENERAL INFORMATION 3.1

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.I

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR 53.33.24 BES A

Report No.: S24080507318001

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

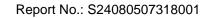
4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>


The following uncertainties apply to the return loss measurement:

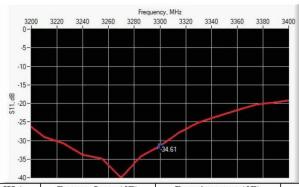
Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.08 LIN		

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
0 - 300	0.20 mm		
300 - 450	0.44 mm		

Ref: ACR.53.33.24.BES.A


5.3 <u>VALIDATION MEASUREMENT</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance	
3300	-34.61	-20	$50.7 \Omega + 2.6 j\Omega$	

Ref: ACR.53.33.24.BES.A

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	3	30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	9	39.65	22	25.41	62	3.63
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3900	9		9		25	
4200						
4600	a		e		E	
4900	В		8		28	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.