

SAR evaluation
FCC ID: 2BBNT-3WWWDZ-U25A

MPE Calculation Method

$$E \text{ (V/m)} = (30 \cdot P \cdot G)^{0.5} / d$$

$$\text{Power Density: } P_d \text{ (W/m}^2\text{)} = E^2 / 377$$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$P_d = (30 \cdot P \cdot G) / (377 \cdot d^2)$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well

as the gain of the used antenna, the RF power density can be obtained.

Calculated Image Transmissions Result and Limit (WORSE CASE IS AS BELOW)

Antenna Gain (Numeric)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3.46 dBi (2.218)	49.55 (16.95dBm)	0.0219	1	Compiles

Note:

Antenna Gain: 3.46dBi (2.4G Band)

Assembly Antenna Gain (Numeric): 2.218dBi

$$\text{ERP} = 16.95 + 2.218 - 2.15 = 17.02 \text{ dBm} (50.35 \text{ mW})$$

2.4G band and 5G band cannot transmit simultaneously

Calculated WIFI Result and Limit (WORSE CASE IS AS BELOW)

Antenna Gain (Numeric)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3.34 dBi (2.158)	523.6 (27.19dBm)	0.2248	1	Compiles

Note:

Antenna Gain: 3.34dBi (2.4G Band)

Antenna Gain (Numeric): 2.158dBi

$$\text{ERP} = 27.19 + 2.158 - 2.15 = 27.20 \text{ dBm} (524.8 \text{ mW})$$

$$\sum_{i=1}^a \frac{P_i}{P_{\text{th},i}} = 49.55/3060 + 523.6/3060 = 0.1873$$

$$\sum_{j=1}^b \frac{\text{ERP}_j}{\text{ERP}_{\text{th},j}} = (50.35 + 524.8)/3060 = 0.1880$$

$$\cdot \sum_{k=1}^c \frac{\text{Evaluated}_k}{\text{Exposure Limit}_k} = (0.0219 + 0.2248) / 1 = 0.2467$$

$$\sum_{i=1}^a \frac{P_i}{P_{\text{th},i}} + \sum_{j=1}^b \frac{\text{ERP}_j}{\text{ERP}_{\text{th},j}} + \sum_{k=1}^c \frac{\text{Evaluated}_k}{\text{Exposure Limit}_k} \leq 1$$

$$0.1873 + 0.1880 + 0.2467 = 0.6220 < 1$$