

Hangzhou sunhope electric Technology Co.,LTD.

TEST REPORT

Report Type:

FCC Part 15B EMC report

Model:

JHAP-24032A, JHAP-12016A

REPORT NUMBER:

230402666SHA-001

ISSUE DATE:

May 29, 2023

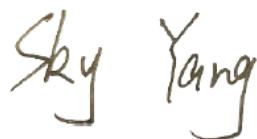
DOCUMENT CONTROL NUMBER:

TTRF15b_V2 © 2021 Intertek

Applicant: Hangzhou sunhope electric Technology Co.,LTD.
Building 4, No.1099 Cangxing Road, Cangqian Street, Yuhang District, Hangzhou,
Zhejiang, China

Manufacturer: Hangzhou sunhope electric Technology Co.,LTD.
Building 4, No.1099 Cangxing Road, Cangqian Street, Yuhang District, Hangzhou,
Zhejiang, China

Factory: Hangzhou sunhope electric Technology Co.,LTD.
Building 4, No.1099 Cangxing Road, Cangqian Street, Yuhang District, Hangzhou,
Zhejiang, China


FCC ID: 2BBHZJHAP

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2020): Radio Frequency Devices (Subpart B)

ANSI C63.4 (2014): American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

PREPARED BY:

Project Engineer
Sky Yang**REVIEWED BY:**

Reviewer
Wakeyou Wang

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TEST REPORT**Content**

REVISION HISTORY.....	4
MEASUREMENT RESULT SUMMARY	5
1 GENERAL INFORMATION	6
1.1 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST FACILITY	7
2 TEST SPECIFICATIONS.....	8
2.1 STANDARDS OR SPECIFICATION	8
2.2 MODE OF OPERATION DURING THE TEST.....	8
2.3 TEST SOFTWARE LIST	8
2.4 TEST PERIPHERALS LIST	8
2.5 TEST ENVIRONMENT CONDITION:.....	8
2.6 INSTRUMENT LIST	9
2.7 MEASUREMENT UNCERTAINTY	9
3 RADIATED EMISSIONS	10
3.1 LIMIT	10
3.1.1 <i>Limits for radiated disturbance of class A device</i>	10
3.1.2 <i>Limits for radiated disturbance of class B device</i>	11
3.2 BLOCK DIAGRAM AND TEST SET UP	12
3.3 MEASUREMENT PROCEDURE	13
3.4 TEST RESULTS OF RADIATED EMISSIONS	14
4 POWER LINE CONDUCTED EMISSION.....	18
4.1 LIMIT	18
4.1.1 <i>Limits for conducted disturbance voltage at the mains ports of class A device</i>	18
4.1.2 <i>Limits for conducted disturbance voltage at the mains ports of class B device</i>	18
4.2 BLOCK DIAGRAM AND TEST SET UP	19
4.3 MEASUREMENT PROCEDURE	20
4.4 TEST RESULTS OF POWER LINE CONDUCTED EMISSION.....	21
APPENDIX I : PHOTOGRAPH OF EQUIPMENT UNDER TEST	25

TEST REPORT**Revision History**

Report No.	Version	Description	Issued Date
230402666SHA-001	Rev. 01	Initial issue of report	May 29, 2023

TEST REPORT**Measurement result summary**

TEST ITEM	FCC REFERENCE	RESULT
Power line conducted emission	15.107	Pass
Radiated emission	15.109	Pass

Notes: 1: NA =Not Applicable

2: *Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.*

3: *Additions, Deviations and Exclusions from Standards: None.*

TEST REPORT**1 GENERAL INFORMATION****1.1 Description of Equipment Under Test (EUT)**

Product name:	Portable EV Charger
Type/Model:	JHAP-24032A, JHAP-12016A
Description of EUT:	The EUT is a portable EV charger, there are two models. We test them and list the results in the report.
Rating:	JHAP-24032A: 240VAC, 60Hz, Max 32A JHAP-12016A: 120VAC, 60Hz, Max 16A
Category of EUT:	Class B
EUT type:	<input checked="" type="checkbox"/> Table top <input type="checkbox"/> Floor standing
Software Version:	/
Hardware Version:	/
Highest operating frequency:	<108MHz
Sample received date:	April 28, 2023
Date of test:	May 5, 2023 ~ May 12, 2023

TEST REPORT**1.2 Description of Test Facility**

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized, certified, or accredited by these organizations:	CNAS Accreditation Lab Registration No. CNAS L0139
	FCC Accredited Lab Designation Number: CN0175
	IC Registration Lab CAB identifier: CN0014
	VCCI Registration Lab Member No.: 3598 (Registration No.: R-14243, G-10845, C-14723, T-12252)
	A2LA Accreditation Lab Certificate Number: 3309.02

TEST REPORT**2 TEST SPECIFICATIONS****2.1 Standards or specification**

47CFR Part 15 (2020)

ANSI C63.4 (2014)

2.2 Mode of operation during the test

Within this test report, EUT was tested under all available operation modes and tested under its rating voltage and frequency. Other voltage and frequency are specified if used.

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	SKET Auto EMC Test Software	Keleto	V3.0
Radiated emission	SKET Auto EMC Test Software	Keleto	V3.0

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	AC Load	Qunling/AC-R-70A	-

2.5 Test environment condition:

Test items	Temperature	Humidity
Power line conducted emission	22°C	53% RH
Radiated Emissions	22°C	55% RH

TEST REPORT
2.6 Instrument list

Conducted Emission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Test Receiver	R&S	ESCS 30	EC 2107	2023-07-18
<input checked="" type="checkbox"/>	A.M.N.	R&S	ESH2-Z5	EC 3119	2023-11-09
<input checked="" type="checkbox"/>	Shielded room	Zhongyu	-	EC 2838	2024-01-11
Radiated Emission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Test Receiver	R&S	ESIB 26	EC 3045	2023-07-18
<input checked="" type="checkbox"/>	Bilog Antenna	TESEQ	CBL 6112B	EC 6411	2023-08-23
<input checked="" type="checkbox"/>	Horn antenna	Tonscend	bha9120d	EC 6432-2	2024-02-15
<input checked="" type="checkbox"/>	Pre-amplifier	Tonscend	tap01018050	EC 6432-1	2023-12-07
<input checked="" type="checkbox"/>	Horn antenna	TOYO	HAP18-26W	EC 4792-3	2023-07-29
<input type="checkbox"/>	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2023-06-15
<input checked="" type="checkbox"/>	Semi-anechoic chamber	Albatross project	-	EC 3048	2023-07-08
Additional instrument					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3783	2024-03-24
<input checked="" type="checkbox"/>	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 5199	2024-03-13
<input checked="" type="checkbox"/>	Pressure meter	YM3	Shanghai Mengde	EC 4620	2023-09-13

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Power line conducted emission	± 3.19dB

TEST REPORT**3 Radiated Emissions****Test result:** **Pass****3.1 Limit****3.1.1 Limits for radiated disturbance of class A device**

FCC

Frequency (MHz)	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 10m	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 3m
30 – 88	39	49.5
88 – 216	43.5	54.0
216 – 960	46.4	56.9
Above 960	49.5	60.0

Note: for the measurement distance other than 3m and 10m, the limit is varied according to 20dB/10 decades.

IC

Frequency (MHz)	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 10m	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 3m
30 ~ 88	40.0	50.5
88 ~ 216	43.5	54.0
216 ~ 230	46.4	56.9
230 ~ 960	47.0	57.5
960 ~ 1000	49.5	60.0

Note: The more stringent limit applies at transition frequencies.

Frequency (GHz)	Permitted limit in dB μ V/m (Peak) of Measurement Distance 3m	Permitted limit in dB μ V/m (Average) of Measurement Distance 3m
1 ~ F_M	80.0	60.0

Note: These limit levels apply for a measurement distance of 3 m. If using a different measurement distance, the measured levels shall be extrapolated to the 3 m limit distance using a factor of 20 dB per decade of distance. The measurement distance shall place the measurement antenna in the far field of the ITE or digital apparatus under test.

TEST REPORT

3.1.2 Limits for radiated disturbance of class B device

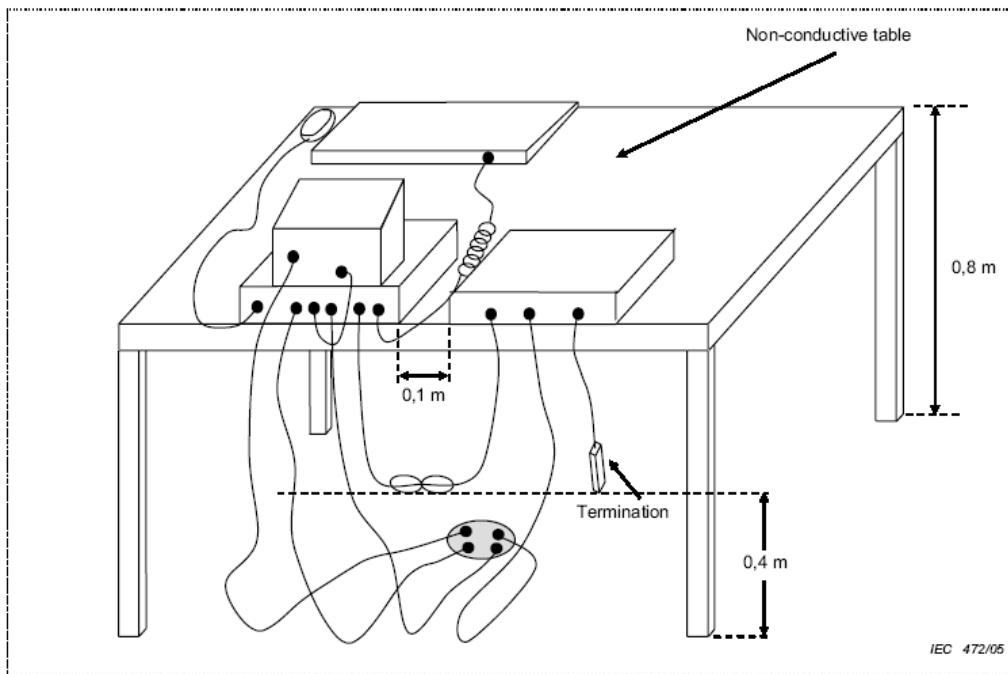
FCC

Frequency (MHz)	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 10m	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 3m
30 – 88	29.5	40.0
88 – 216	33.0	43.5
216 – 960	35.5	46.0
Above 960	43.5	54.0

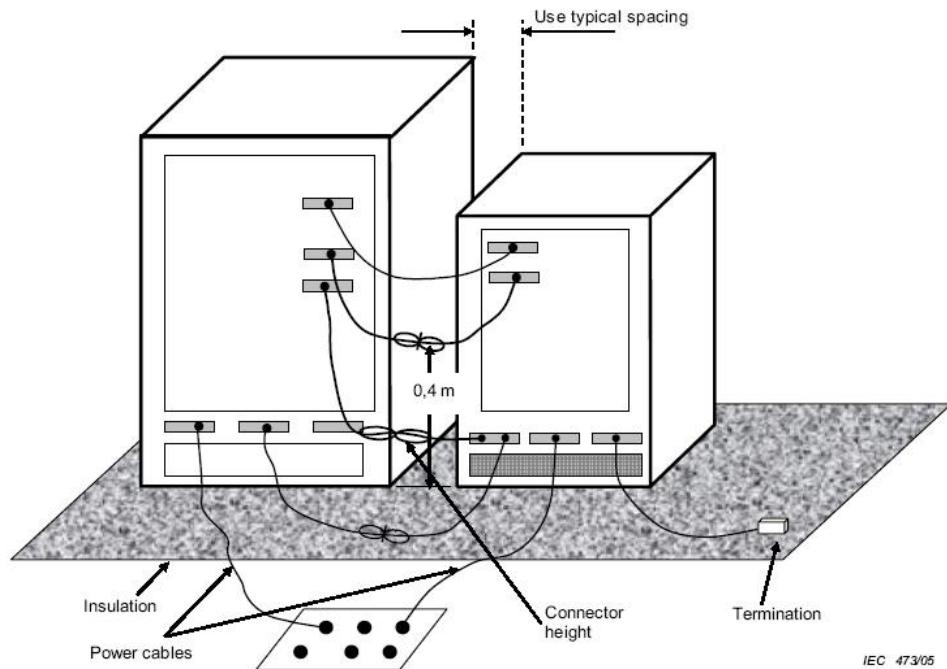
Note: for the measurement distance other than 3m and 10m, the limit is varied according to 20dB/10 decades.

IC

Frequency (MHz)	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 10m	Permitted limit in dB μ V/m (Quasi-peak) of Measurement Distance 3m
30 ~ 88	29.5	40.0
88 ~ 216	33.0	43.5
216 ~ 230	35.5	46.0
230 ~ 960	36.5	47.0
960 ~ 1000	43.5	54.0


Note: The more stringent limit applies at transition frequencies.

Frequency (GHz)	Permitted limit in dB μ V/m (Peak) of Measurement Distance 3m	Permitted limit in dB μ V/m (Average) of Measurement Distance 3m
1 ~ F _M	74.0	54.0


Note: These limit levels apply for a measurement distance of 3 m. If using a different measurement distance, the measured levels shall be extrapolated to the 3 m limit distance using a factor of 20 dB per decade of distance. The measurement distance shall place the measurement antenna in the far field of the ITE or digital apparatus under test.

TEST REPORT**3.2 Block diagram and test set up**

For table top equipment

For floor standing equipment

TEST REPORT**3.3 Measurement Procedure**

The measurement was performed in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, the pre-amplifier (and high pass filter if necessary) is equipped just at the output terminal of the antenna.

The distance from EUT to receiving antenna is 3 meters.

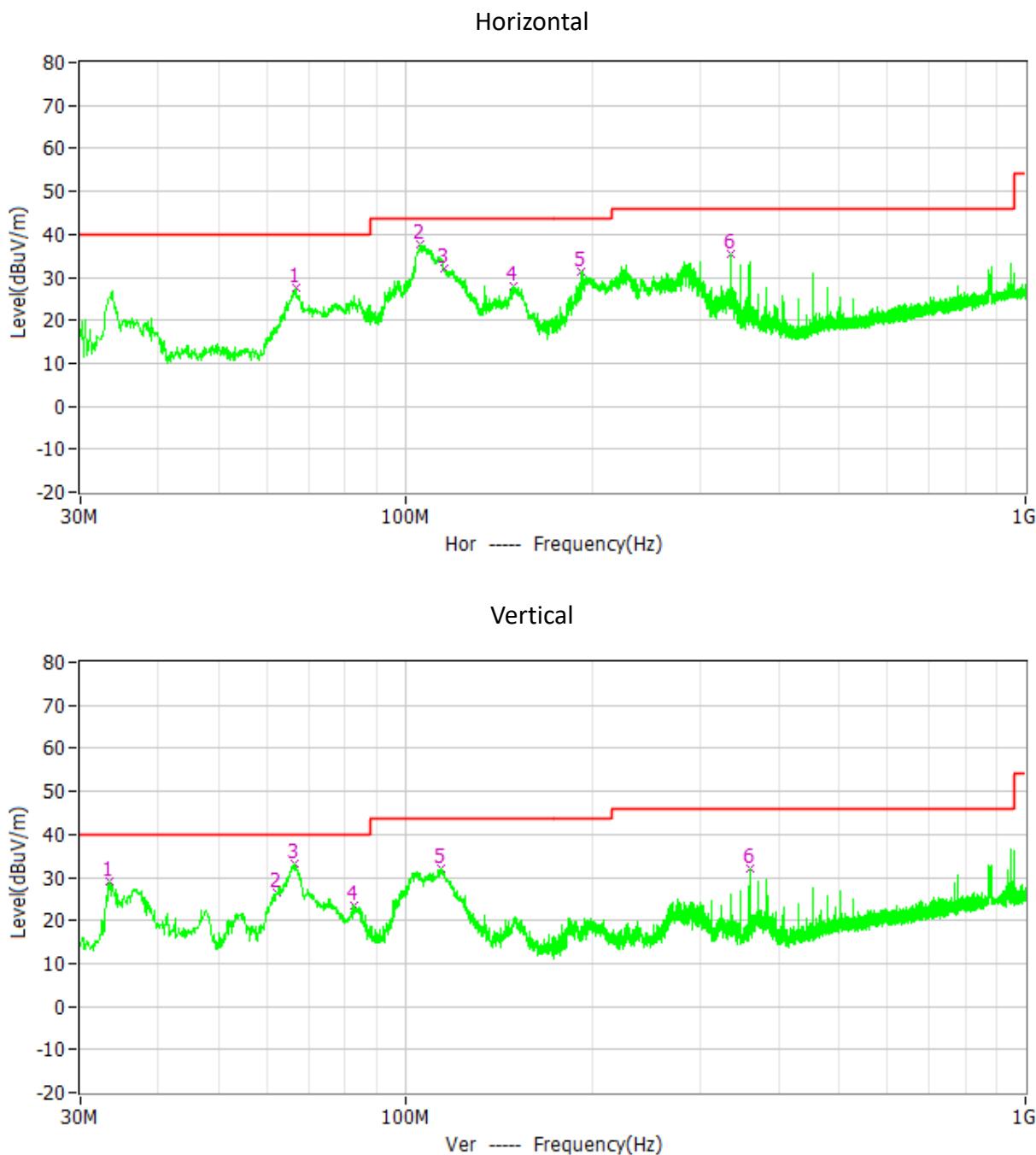
Measurement was performed according to clause 4 and clause 5 of ANSI 63.4.

Test procedure was according to clause 8.3 of ANSI 63.4.

EUT arrangement and operate condition were according to clause 6 and clause 8 of ANSI 63.4.

The radiated emission was measured using the test receiver with the resolutions bandwidth set as:

RBW = 100kHz, VBW = 300kHz (30MHz~1GHz)


RBW = 1MHz, VBW = 3MHz (>1GHz for PK)

Highest internal frequency (Fx)	Highest measured frequency F_M for radiated measurement	Measured Bandwidth
$F_x \leq 108 \text{ MHz}$	1 GHz	120kHz
$108 \text{ MHz} < F_x \leq 500 \text{ MHz}$	2 GHz	1MHz
$500 \text{ MHz} < F_x \leq 1 \text{ GHz}$	5 GHz	1MHz
$F_x > 1 \text{ GHz}$	$5 \times F_x$ up to a maximum of 40 GHz	1MHz

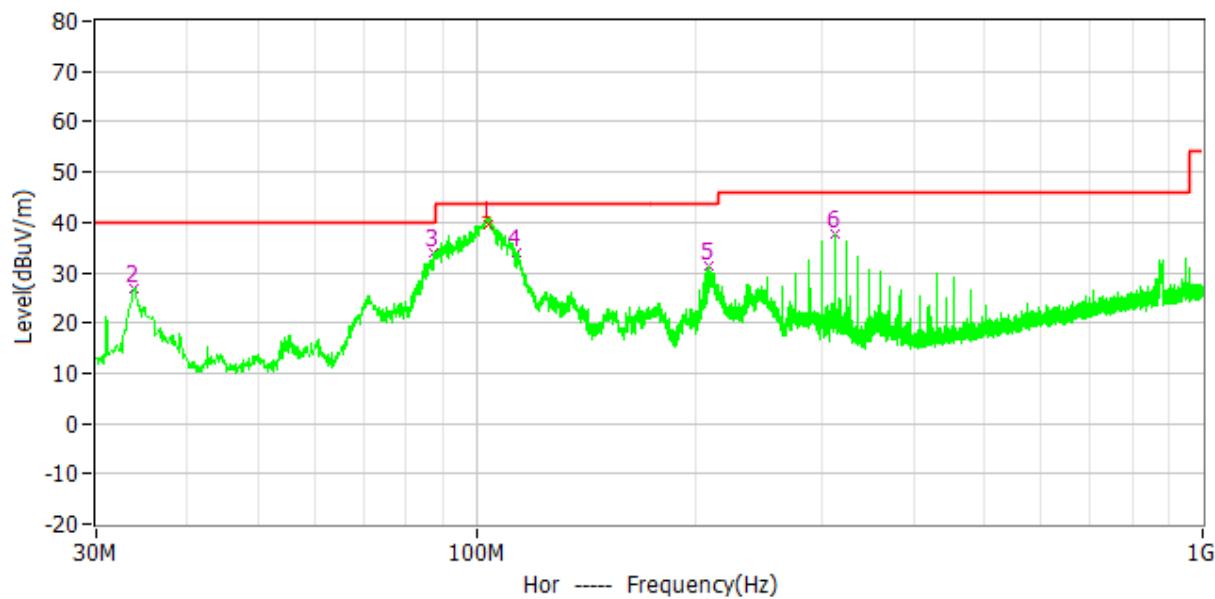
Note: 1. Fx is the highest fundamental frequency generated and/or used in the ITE or digital apparatus under test.

TEST REPORT**3.4 Test Results of Radiated Emissions****JHAP-12016A**

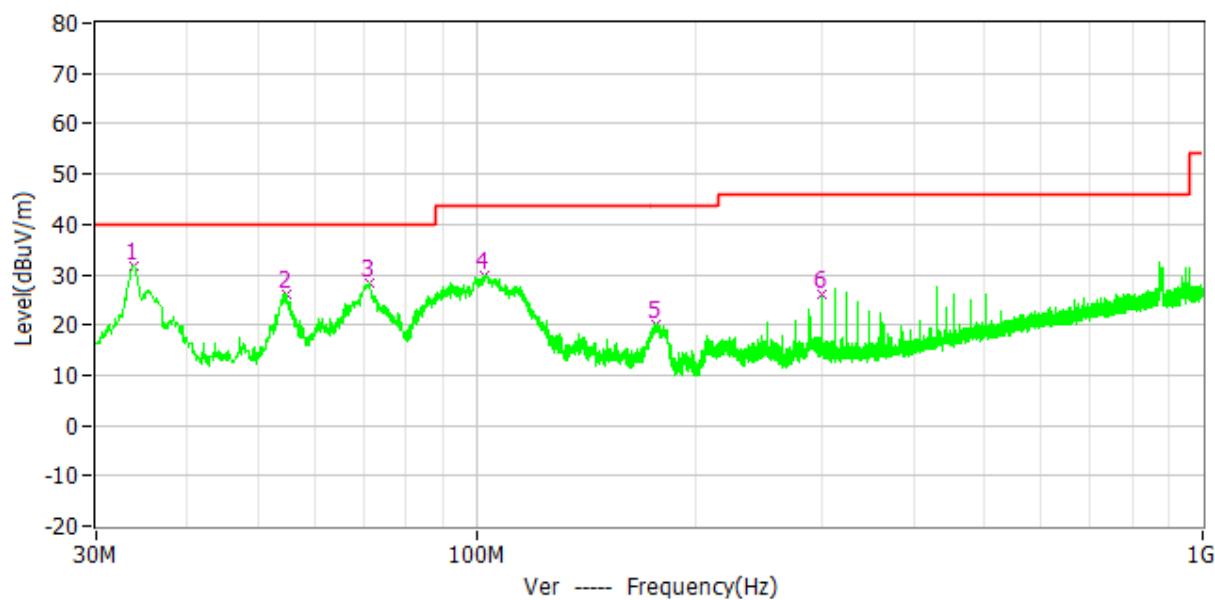
Test Curve:

TEST REPORT
Test data:

Polarization	Frequency (MHz)	Limit (dBuV/m)	Corrected Reading (dBuV/m)	Margin (dBuV/m)	Detector
Horizontal	66.76	40.0	27.4	12.6	PK
	106.04	43.5	37.6	5.9	PK
	115.65	43.5	31.9	11.6	PK
	149.98	43.5	27.8	15.7	PK
	192.86	43.5	31.3	12.2	PK
	335.06	46.0	35.6	10.4	PK
Vertical	33.39	40.0	28.9	11.1	PK
	62.20	40.0	26.5	13.5	PK
	66.37	40.0	33.0	7.0	PK
	82.67	40.0	23.5	16.5	PK
	114.39	43.5	31.9	11.6	PK
	359.12	46.0	32.2	13.8	PK


Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
 2. Corrected Reading = Original Receiver Reading + Correct Factor
 3. Margin = Limit - Corrected Reading
 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,
 Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,
 Limit = 40.00dBuV/m.
 Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20$ dB/m;
 Corrected Reading = 10 dBuV + 0.20 dB/m = 10.20 dBuV/m;
 Margin = 40.00 dBuV/m - 10.20 dBuV/m = 29.80 dB.


TEST REPORT**JHAP-24032A**

Test Curve:

Horizontal

Vertical

TEST REPORT
Test data:

Polarization	Frequency (MHz)	Limit (dBuV/m)	Corrected Reading (dBuV/m)	Margin (dBuV/m)	Detector
Horizontal	103.93	43.5	39.5	4.0	QP
	33.78	40.0	27.0	13.0	PK
	87.52	40.0	34.0	6.0	PK
	113.42	43.5	34.1	9.4	PK
	209.15	43.5	31.2	12.3	PK
	311.49	46.0	37.6	8.4	PK
Vertical	33.88	40.0	31.8	8.2	PK
	54.83	40.0	26.1	13.9	PK
	71.12	40.0	28.4	11.6	PK
	102.55	43.5	29.9	13.6	PK
	176.66	43.5	20.1	23.4	PK
	299.56	46.0	25.9	20.1	PK

Remark:

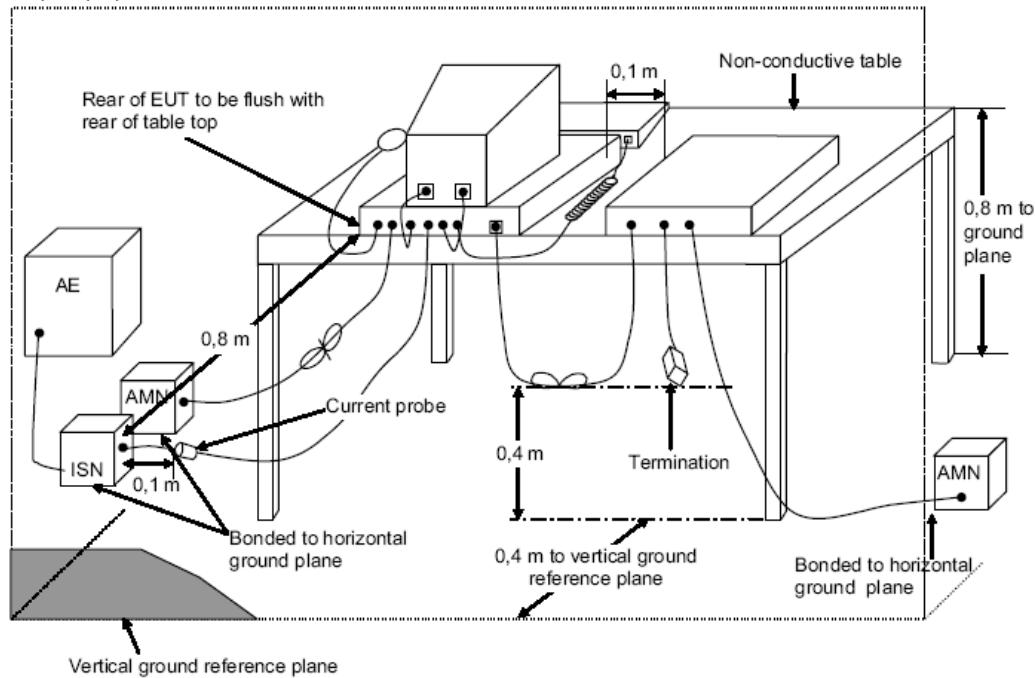
1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
2. Corrected Reading = Original Receiver Reading + Correct Factor
3. Margin = Corrected Reading - Limit
4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,
 Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,
 Limit = 40.00dBuV/m.
 Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20$ dB/m;
 Corrected Reading = $10\text{dBuV} + 0.20\text{dB/m} = 10.20\text{dBuV/m}$;
 Margin = $10.20\text{dBuV/m} - 40.00\text{dBuV/m} = -29.80\text{dB}$.

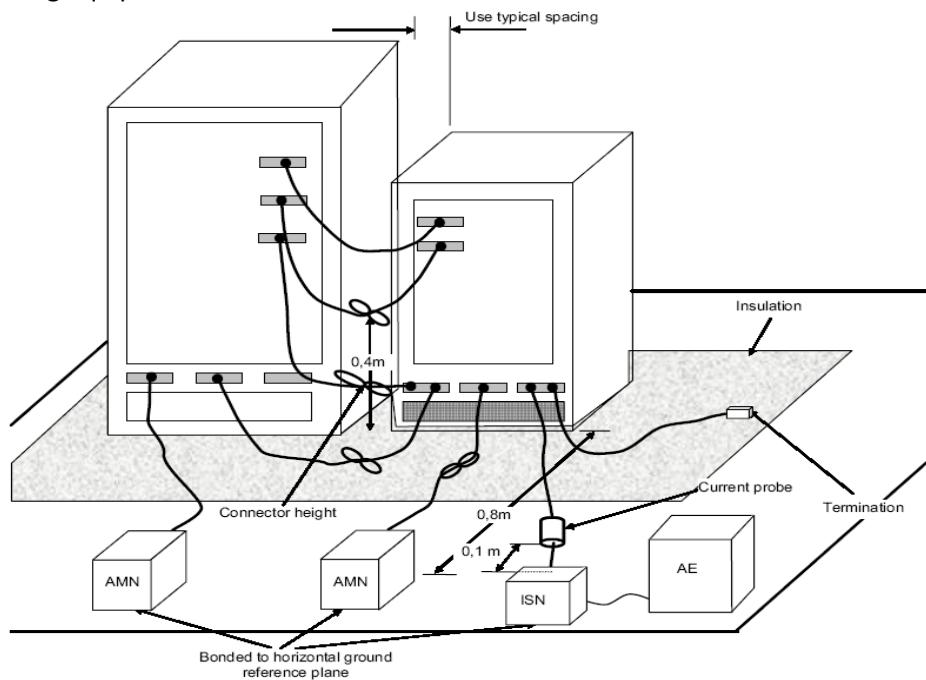
TEST REPORT**4 Power line conducted emission****Test result:** Pass**4.1 Limit****4.1.1 Limits for conducted disturbance voltage at the mains ports of class A device**

Frequency range (MHz)	Limits dB(μV)	
	Quasi-peak	Average
0.15 ~ 0.5	79	66
0.5 ~ 30	73	60

Note: If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.


4.1.2 Limits for conducted disturbance voltage at the mains ports of class B device

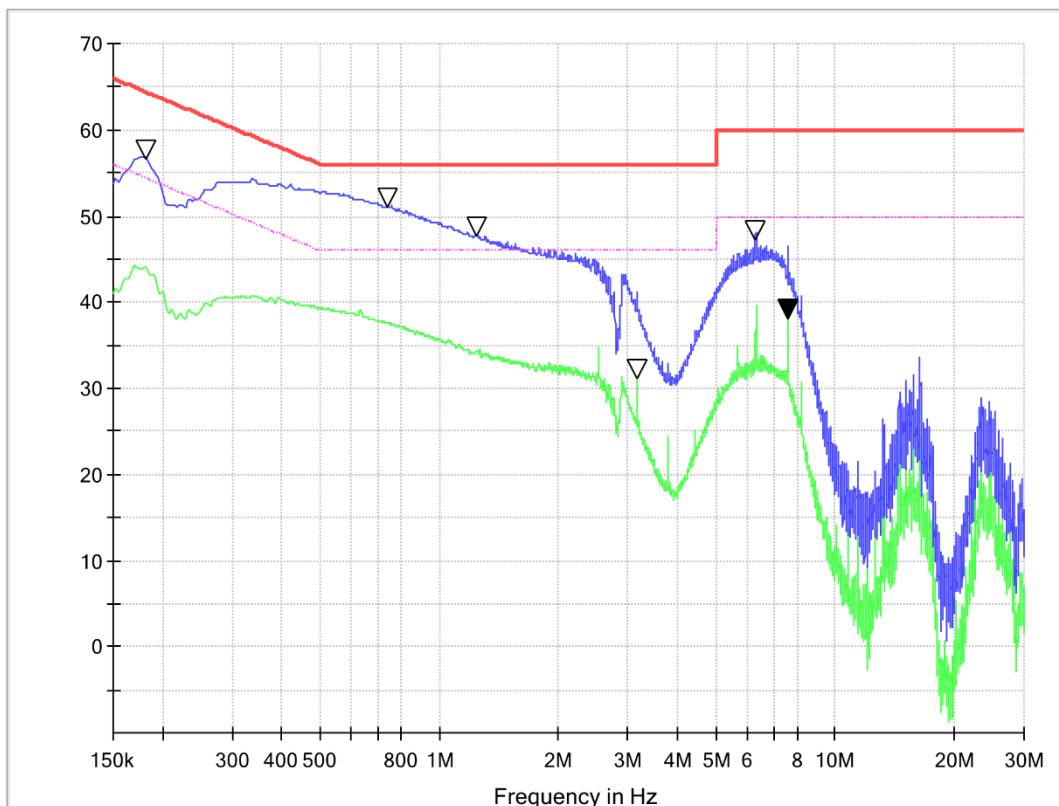
Frequency range (MHz)	Limits dB(μV)	
	Quasi-peak	Average
0.15 ~ 0.5	66 ~ 56 *	56 ~ 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50


Note: 1. * Means the limit decreasing linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz
2. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.

TEST REPORT
4.2 Block diagram and test set up

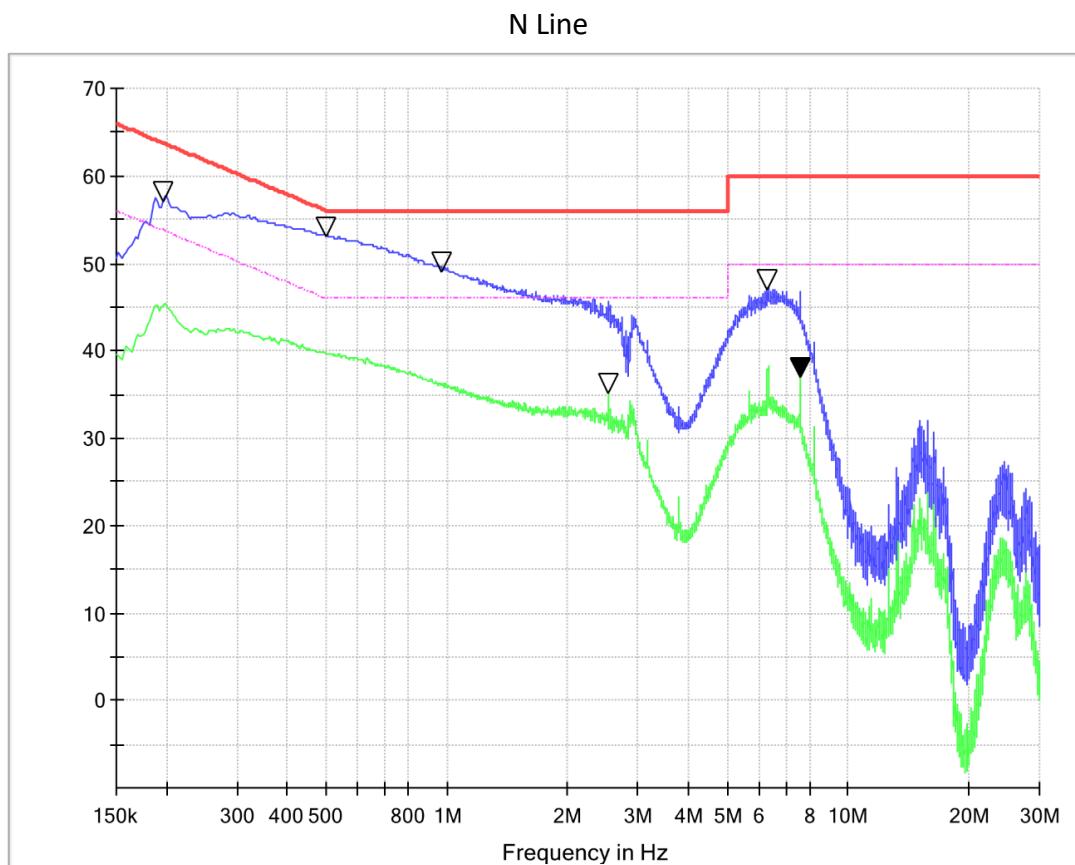
For table top equipment

For floor standing equipment



TEST REPORT**4.3 Measurement Procedure**

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.


Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground Plane. The vertical conducting Plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-Plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

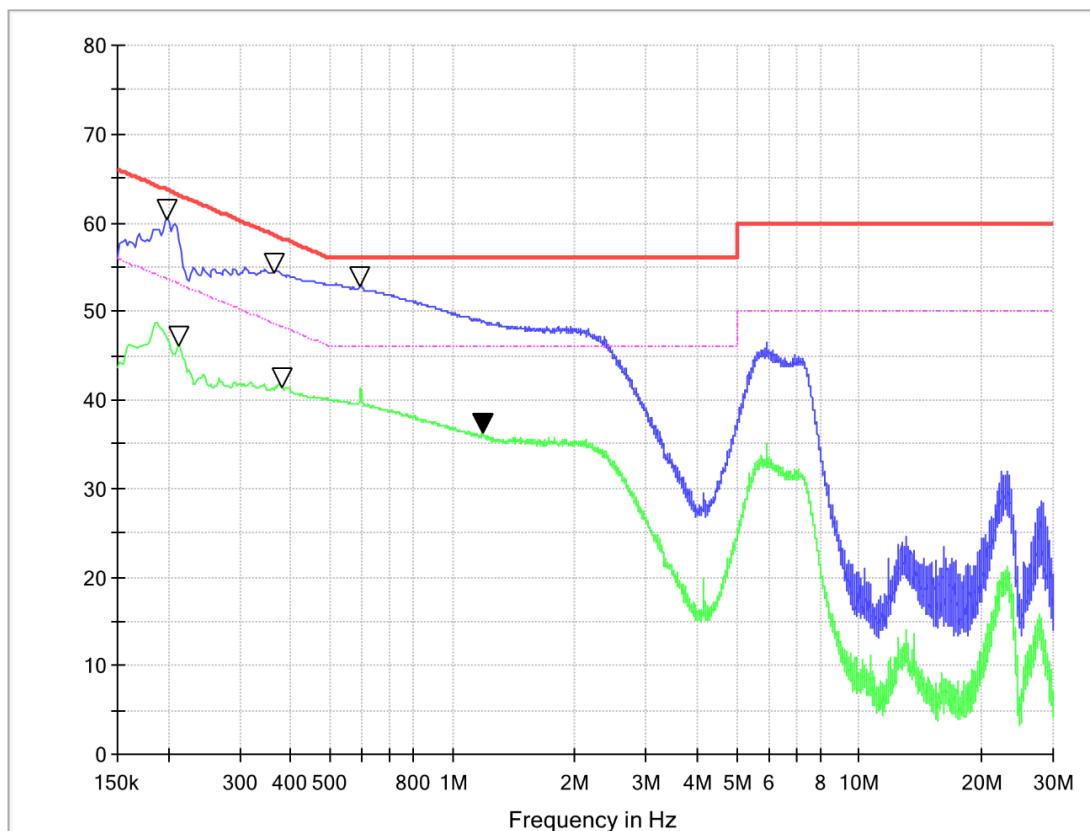
TEST REPORT
4.4 Test Results of Power line conducted emission
JHAP-12016A
Test Curve:
L Line

Frequency (MHz)	Quasi-peak			Average		
	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Level (dB μ V)	Limit (dB μ V)	Margin (dB)
0.181	56.4	65.1	8.7	44.8	55.1	10.3
0.739	49.6	56.0	6.4	37.9	46.0	8.1
1.237	46.1	56.0	9.9	35.1	46.0	10.9
3.163	38.3	56.0	17.7	30.7	46.0	15.3
6.313	44.5	60.0	15.5	36.7	50.0	13.3
7.591	43.8	60.0	16.2	38.3	50.0	11.7

TEST REPORT

Frequency (MHz)	Quasi-peak			Average		
	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Level (dB μ V)	Limit (dB μ V)	Margin (dB)
0.197	55.8	64.7	8.9	44.3	54.7	10.4
0.499	51.6	56.0	4.4	40.3	46.0	5.7
0.976	47.8	56.0	8.2	36.3	46.0	9.7
2.528	42.3	56.0	13.7	34.2	46.0	11.8
6.313	44.5	60.0	15.5	36.8	50.0	13.2
7.579	43.3	60.0	16.7	36.7	50.0	13.3

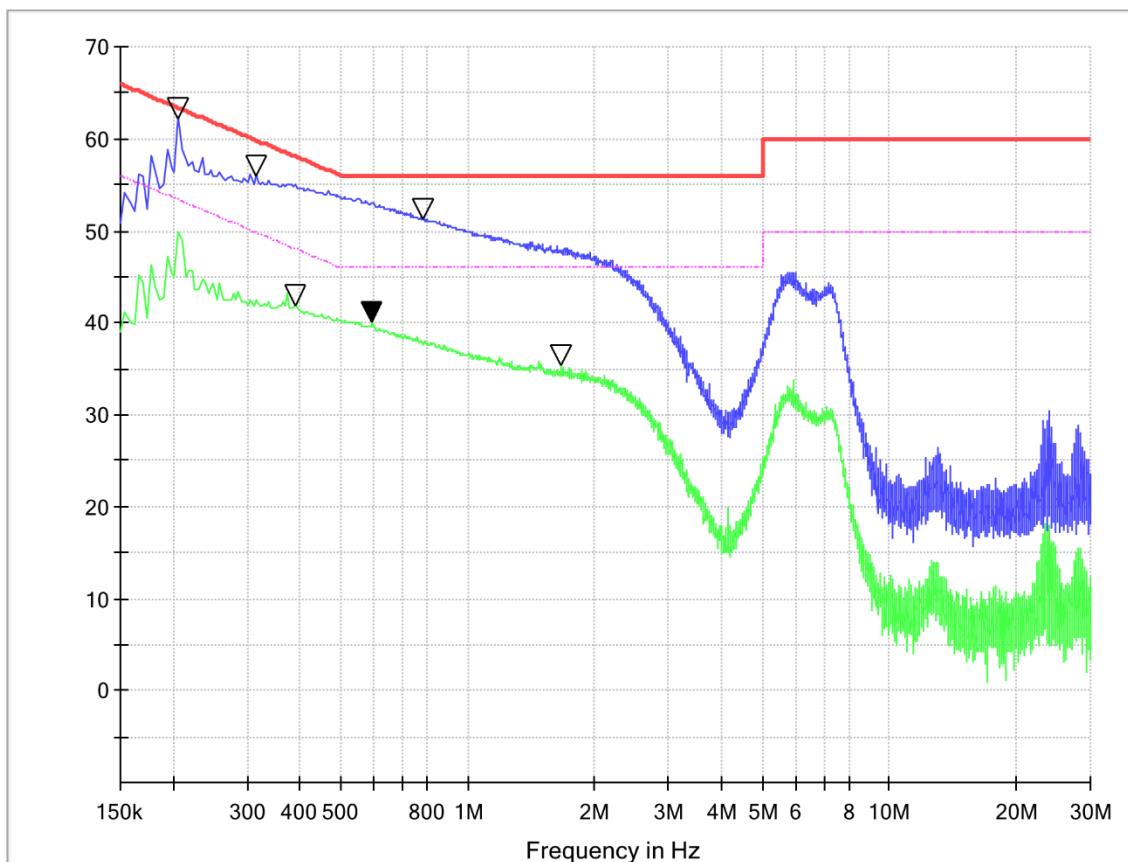
Remark: 1. Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.


2. Level = Original Receiver Reading + Factor

3. Margin = Limit - Level

Example: Assuming LISN Factor = 10.00dB, Cable Loss = 2.00dB,
 Original Receiver Reading = 10.00dB μ V, Limit = 66.00dB μ V.
 Then Factor = 10.00 + 2.00 = 12.00dB;
 Level = 10dB μ V + 12.00dB = 22.00dB μ V;
 Margin = 66.00dB μ V - 22.00dB μ V = 44.00dB.

TEST REPORT
JHAP-24032A
Test Curve:


L1 Line

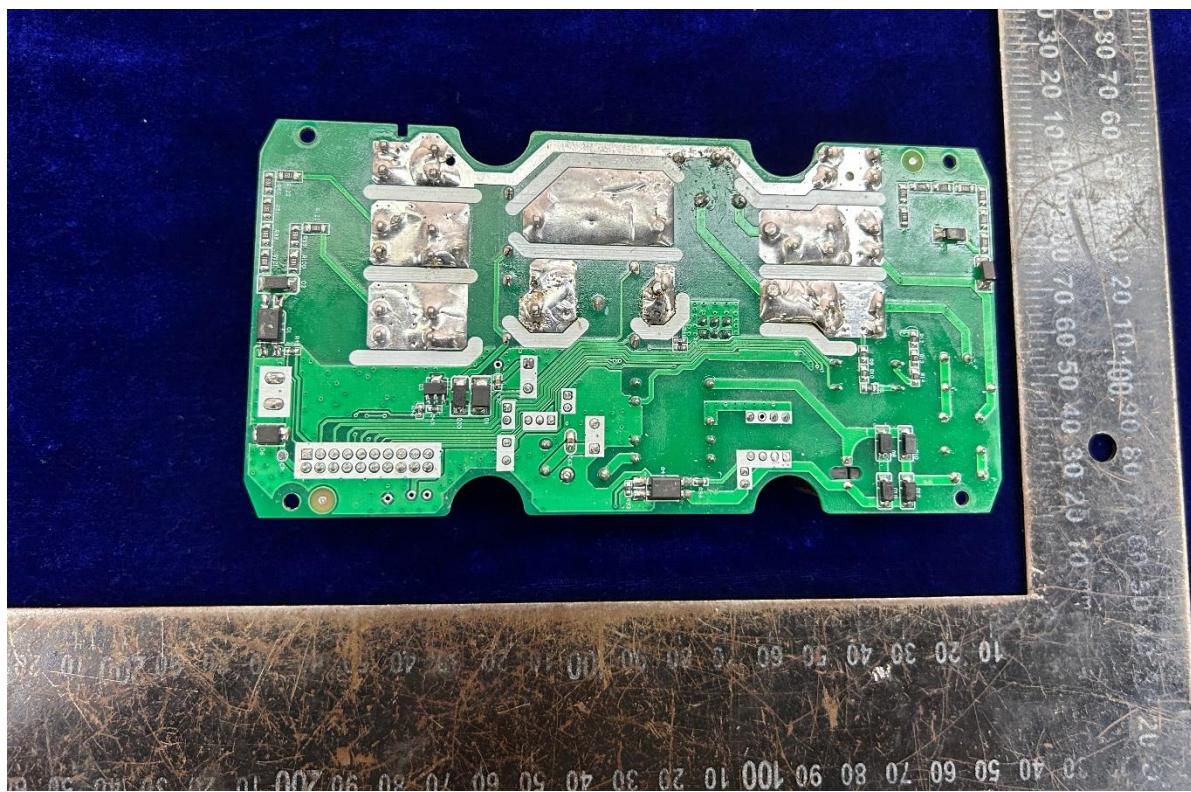
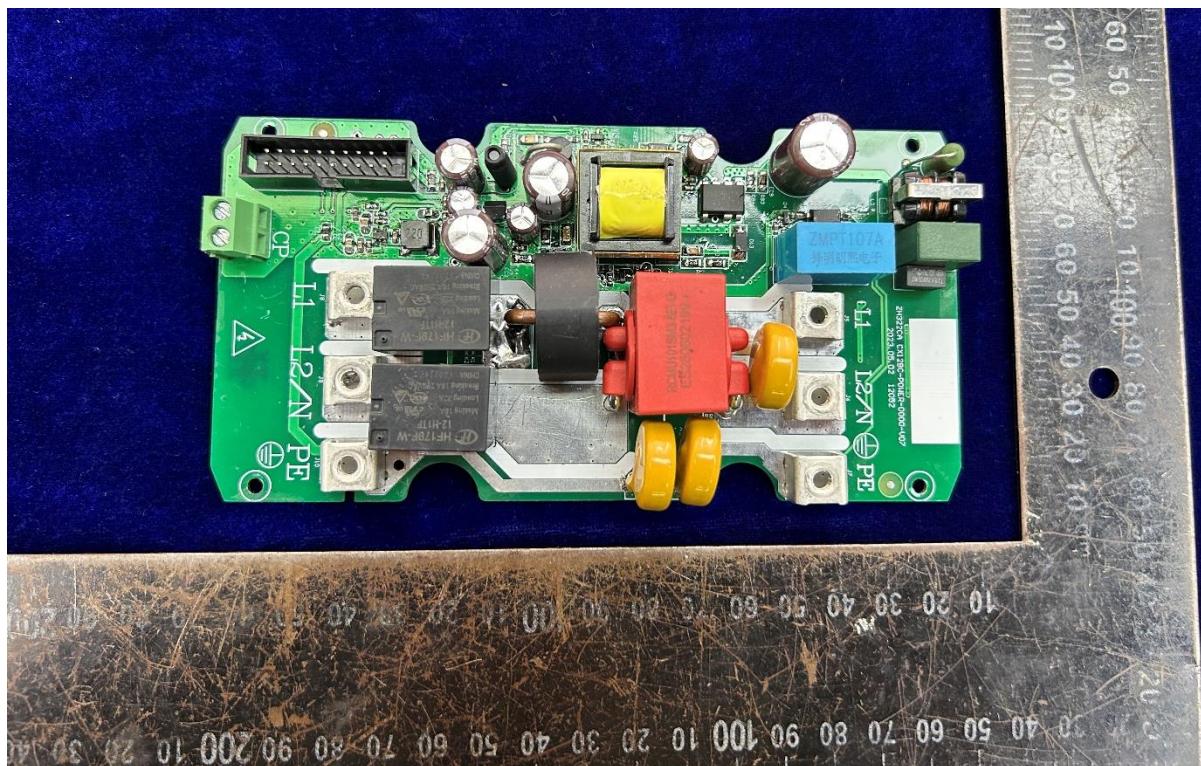
Frequency (MHz)	Quasi-peak			Average		
	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Level (dB μ V)	Limit (dB μ V)	Margin (dB)
0.199	53.5	64.6	11.1	45.8	54.6	8.8
0.213	51.1	64.2	13.1	41.8	54.2	12.4
0.363	52.3	59.9	7.6	40.8	49.9	9.1
0.379	52.2	59.5	7.3	41.2	49.5	8.3
0.593	50.9	56.0	5.1	40.7	46.0	5.3
1.187	47.1	56.0	8.9	36.3	46.0	9.7

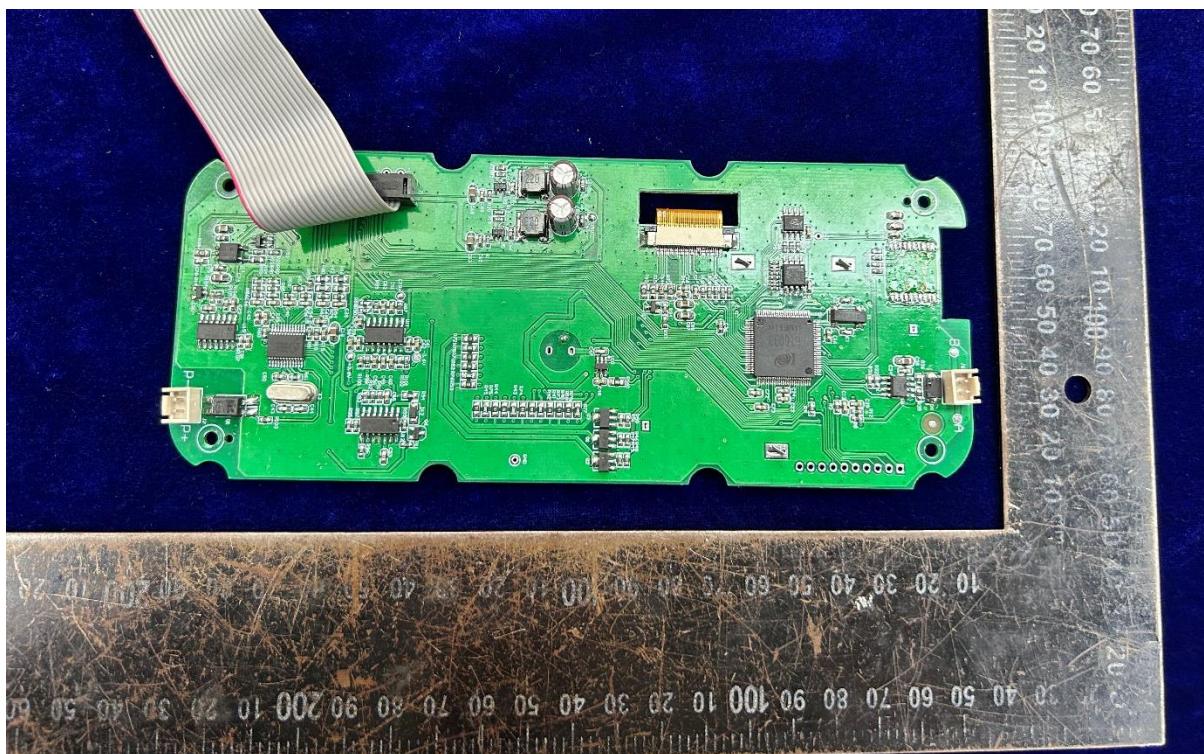
TEST REPORT

L2 Line

Frequency (MHz)	Quasi-peak			Average		
	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Level (dB μ V)	Limit (dB μ V)	Margin (dB)
0.206	56.6	64.4	7.8	48.6	54.4	5.8
0.314	53.5	61.3	7.8	43.4	51.3	7.9
0.390	53.0	59.1	6.1	41.9	49.1	7.2
0.594	51.1	56.0	4.9	40.2	46.0	5.8
0.768	49.5	56.0	6.5	37.8	46.0	8.2
1.670	45.6	56.0	10.4	34.3	46.0	11.7

Remark: 1. Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.



2. Level = Original Receiver Reading + Factor


3. Margin = Limit - Level

Example: Assuming LISN Factor = 10.00dB, Cable Loss = 2.00dB,
 Original Receiver Reading = 10.00dB μ V, Limit = 66.00dB μ V.
 Then Factor = 10.00 + 2.00 = 12.00dB;
 Level = 10dB μ V + 12.00dB = 22.00dB μ V;
 Margin = 66.00dB μ V - 22.00dB μ V = 44.00dB.

Appendix I: Photograph of equipment under test

TEST REPORT

TEST REPORT

TEST REPORT

***** END *****