Report on the FCC and IC Testing of the Bormann EDV+Zubehör GmbH

Model: Bormann BMKD Flex Mouse In accordance with FCC 47 CFR Part 15 C and ISED RSS-210 and ISED RSS-GEN

Prepared for: Bormann EDV+Zubehör GmbH

Lohwaldstrasse 53 86356 Neusaess

Germany

FCC ID: 2BBHS-BMKD IC: 30681-BMKD

COMMERCIAL-IN-CONFIDENCE

Date: 2023-10-20

Document Number: TR-713300455-04 | Revision 1

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Martin Steindl	2023-11-21	Skinell Martin SIGN-ID 855210
Authorised Signatory	Matthias Stumpe	2023-11-22	Huyp SIGN-ID 855521

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

Engineering Statement:

This measurement shown in this report were made in accordance with the procedures described on test pages. All reporded testing was carried out on a sample equipment to demonstrate limited compilance with with FCC 47 CFR Part 15 C and ISED RSS-210 and RSS-GEN.

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE		SIGNATURE	
Testing	Martin Steindl		2023-11-21		Skindl	Martin
					SIGN-ID	855211
Laboratory Accreditation		Laboratory recognition		Industr	ry Canada test site i	egistration
DAkkS Reg. No. D-PL-11321-11-02		Registration No. BNetzA-CAE	3-16/21-15	3050A	-2	
DAkkS Reg. No. D-PL-113	321-11-03	-				

Executive Statement:

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15 C:2021 and ISED RSS-210:2019 + AMD:2020 and RSS-GEN:2019

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2023 TÜV SÜD Product Service.

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuvsud.com/imprint Managing Directors: Walter Reitmaier (Sprecher / CEO) Patrick van Welij Phone: +49 (0) 9421 56 82-0 Fax: +49 (0) 9421 56 82-199 www.tuvsud.com TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

Content

1 Rep	Report Summary			
1.1	Modification Report	9		
1.2	Introduction	2		
1.3	Brief Summary of Results			
1.4	Product Information			
1.5	Test Configuration			
1.6	Modes of Operation			
1.7	EUT Modifications Record			
1.8	Test Location			
2 Tes	st Details			
2 res	t Details	c		
2.1	Emission Bandwidth	6		
2.2	Radiated emissions			
2.3	Temperature Stability			
3 Mea	asurement Uncertainty			
Annex A	·			
Annex B	External photographs of EUT	3 pages		

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Revision	Description of changes	Date of Issue
0	First Issue	2023-10-23
1	Correction to §15.249 and RSS-210 on title page and page 3	2023-11-21

Table 1: Report of Modifications

1.2 Introduction

Applicant Bormann EDV + Zubehör GmbH

Lohwaldstrasse 53 86356 Neusaess

Germany

Manufacturer Bormann EDV + Zubehör GmbH Model Number(s) Bormann BMKD Flex Mouse

Serial Number(s) N/A
Hardware Version(s) --Software Version(s) --Number of Samples Tested 2

Test Specification(s) / FCC 47 CFR Part 15 C : 2019 Issue / Date ISED RSS-210, Issue 10 : 2019

ISED RSS-GEN, Issue 5, Amendment 1: 2019

Test Plan/Issue/Date ---

Order Number 42004281 Date 2023-05-05

Date of Receipt of EUT 2023-06-12, 2023-08-23

Start of Test 2023-06-13
Finish of Test 2023-08-24
Name of Engineer(s) M. Steindl

Related Document(s) ANSI C63.4: 2014 ANSI C63.10: 2013

F00 47 0FD D + 0 1 0

FCC 47 CFR Part 2 J: 2019

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Parts 2 and 15 C is shown below.

Section	Specification	Test Description	Result
	Clause		
2.1	2.202(a)	Emission Bandwidth	Pass
2.2	15.205(b),	Radiated Emissions	Pass
	15.215, 15.249		

Table 2: Results according to FCC 47 CFR Part 15 C

A brief summary of the tests carried out in accordance with ISED RSS-210 and ISED RSS-GEN is shown below.

Section	Specification Clause	Test Description	Result
2.2	B.10	Spurious Emissions	Pass

Table 3: Results according to ISED RSS-210

Section	Specification Clause	Test Description	Result
2.1	6.7	Emission Bandwidth	Pass
2.2	8.9, 8.10	Spurious Emissions	Pass
2.3	8.11	Frequency Stability	Pass

Table 4: Results according to RSS-Gen

1.4 Product Information

1.4.1 Technical Description

Frequency Band: 2400.0 MHz – 2483.5 MHz

Antenna Gain: 5.3 dBi (declared)

FCC ID: 2BBHS-BMKD IC: 30681-BMKD

Supply Voltage: N/A

Supply Frequency: DC (0 Hz)

BORMANN[®]

BORMANN BMKD Flex Mouse

FCC ID: 2BBHS-BMKD IC: 30681-BMKD

Input: DC 5V/0,5A/2,5W

Build year: 2023 P/N: B0000027

1.4.2 EUT Ports / Cables identification

Port	Max Cable Length specified	Usage	Туре	Screened
N/A				

Table 5

1.5 Test Configuration

The applicant provided a conducted test sample for frequency parameter tests and a normal test sample.

1.6 Modes of Operation

Conducted tests were performed on lowest, a middle and the highest frequency channel.

1.7 EUT Modifications Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	Not Applicable	Not Applicable

Table 6

1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
Emission Bandwidth	M. Steindl
Radiated emissions	M. Steindl
Temperature Stability	M. Steindl

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Details

2.1 Emission Bandwidth

2.1.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.249 ISED RSS-Gen, Clause 6.7

2.1.2 Equipment under Test and Modification State

Bormann BMKD Flex Mouse; Conducted sample; Modification State 0

2.1.3 Date of Test

2024-08-24

2.1.4 Environmental Conditions

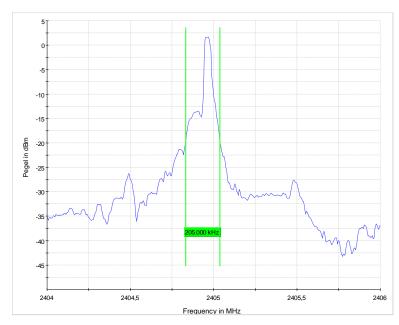
Ambient Temperature 25 °C Relative Humidity 43 %

2.1.5 Specification Limits

The occupied bandwidth shall be reported for all equipment and be within the designated band.

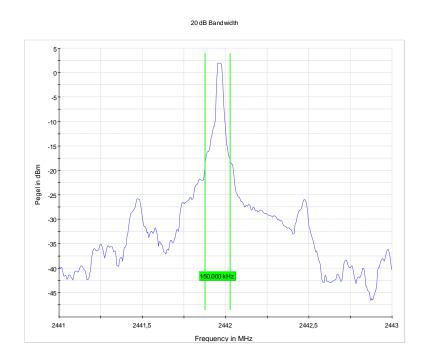
2.1.6 Test Method

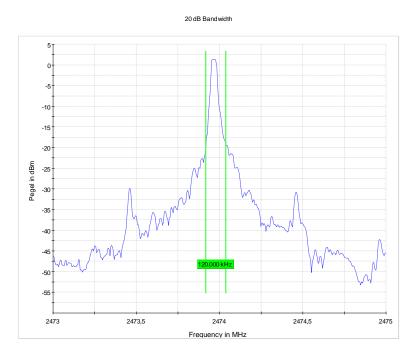
The test was performed according to ANSI C63.10, clauses 6.9.3 and 11.8.1


2.1.7 Test Results

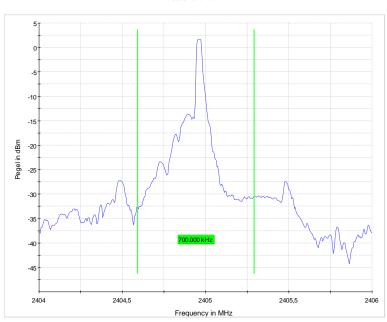
All emission bandwidths are within the designated emission bandwidth.

Frequency Channel	20 dB Bandwidth	Band Edge Left	Band Edge Right	Designated Band
2405 MHz	225 kHz	2404.8125 MHz	2405.0375 MHz	2400.0 – 2483.5 MHz
2442 MHz	150 kHz	2441.8775 MHz	2442.0275 MHz	2400.0 – 2483.5 MHz
2474 MHz	120 kHz	2473.9175 MHz	2474.0375 MHz	2400.0 – 2483.5 MHz


Table 7: 20 dB bandwidth



Troduct oct vice



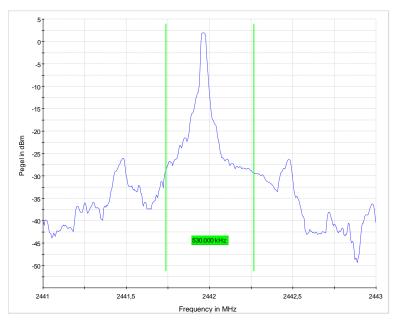
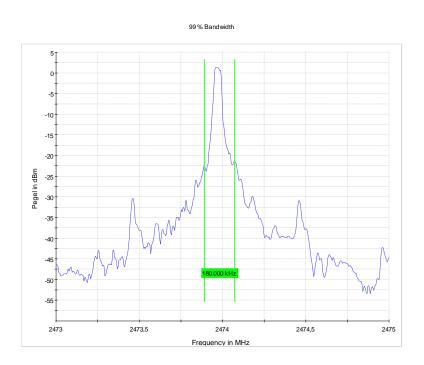

Frequency Channel	99 % Bandwidth	Band Edge Left	Band Edge Right	Designated Band
2405 MHz	845 kHz	2404.4975 MHz	2405.3425 MHz	2400.0 – 2483.5 MHz
2442 MHz	525 kHz	2441.7325 MHz	2442.2575 MHz	2400.0 – 2483.5 MHz
2474 MHz	180 kHz	2473.8975 MHz	2474.0775 MHz	2400.0 – 2483.5 MHz

Table 8: 99% bandwidth


99 % Bandwidth

99 % Bandwidth

2.1.8 Test Location and Test Equipment

The test was carried out in radio test laboratory.

Instrument	Manufacturer	Type No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Signal andspectrum analyzer	Rohde & Schwarz	FSV40	20219	24	2024-02-29
EMC measurement software	Rohde & Schwarz	EMC32 TS8997 V10.60.00	44381		

Table 9

2.2 Radiated emissions

2.2.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.205, 15.209, 15.249 ISED RSS-210, Clause Annex B.10 ISED RSS-Gen, Clauses 8.9 and 8.10

2.2.2 Equipment under Test and Modification State

Bormann BMKD Flex Mouse; Conducted sample; Modification State 0

2.2.3 Date of Test

2024-08-24

2.2.4 Environmental Conditions

Ambient Temperature 25 °C Relative Humidity 43 %

2.2.5 Specification Limits

Frequency Range	Test distance	Field	strength	Field strength		
(MHz)	(m)	(μA/m)	(dBμA/m)	(μV/m)	(dBμV/m)	
0.009 - 0.49	300	6.37 / f	20*lg(6.37 / f)	2400 / f	20*lg(2400 / f)	
0.49 – 1.705	30	63.7 / f	20*lg(63.7 / f)	24000 / f	20*lg(24000 / f)	
1.705 - 30	30	0.08	20*lg(0.08 / f)	30	20*lg(30 / f)	
30 – 88	3			100	40	
88 – 216	3			150	43.5	
126 – 960	3			200	46	
above 960	3			500	54	

Table 10 General radiated emission limits

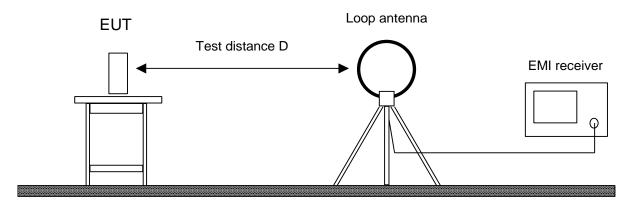
	(General radiated emissi	on limits (Field strength):			
Frequency Bands	Test distance Fundamental Emissions Harmonic Emissions						
(MHz)	(m)	mV/m	dBμV/m	mV/m	dBμV/m		
902 – 928	3	50	94.0	0.5	54.0		
2440 – 2483.5	3	50	94.0	0.5	54.0		
5725 – 5875	3	50	94.0	0.5	54.0		
24000 – 24250	3	250	108.0	2.5	68.0		

The field strength shall be measured using an average detector, except for the fundamental emission in the frequency band 902 – 928 MHz, which is based on measurements using a CISPR quasi-peak detector

Table 11 Field strength limits at various frequencies

2.2.6 Test Method

The test was performed according to ANSI C63.10, sections 11.11 and 11.12

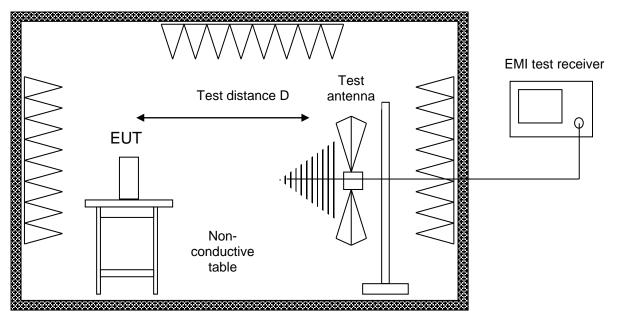

Prescans are performed in six positions of the EUT to get the full spectrum of emission caused by the EUT with the measuring antenna raised and lowered from 1 m to 4 m with vertical and horizontal polarisation to find the combination of table position, antenna height and antenna polarisation for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB or exceeding the limit using subranges and limited number of maximums.

Further maximisation for adjusting the maximum position is following.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

2.2.6.1 Frequency range 9 kHz – 30 MHz

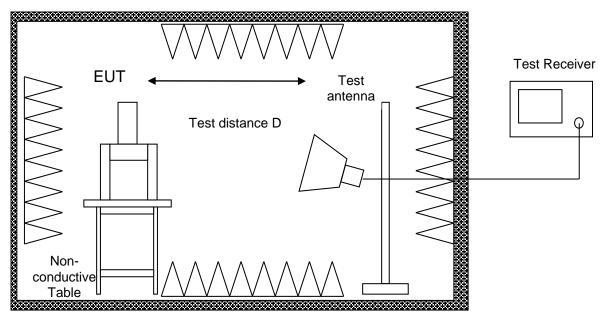

The EUT was placed on a non-conductive table, 0.8 m above the ground.

Radiated emissions in the frequency 9 kHz - 30 MHz is measured within a semi-anechoic room with an active loop antenna with the measurement detector set to peak. In addition in the frequency range 9 kHz to 490 kHz also an average detector was used. The measurement bandwidth of the receiver was set to 300 Hz in the frequency range 9 kHz to 150 kHz and 10 kHz in the frequency range 150 kHz to 30 MHz. Prescans were performed in six positions of the EUT.

For final measurements the detector was set to CISPR quasi-peak and in addition to CISPR average in the frequency range 9 kHz to 490 kHz with a resolution bandwidth 200 Hz in the frequency range 9 kHz to 150 kHz and 9 kHz in the frequency range 150 kHz to 30 MHz. Final tests were performed immediately after a final frequency and zoom (for drifting disturbances) and maximum adjustment.

2.2.6.2 Frequency range 30 MHz - 1 GHz

Alternate test site (semi anechoic room)


The EUT was placed on a non-conductive table, 0.8 m above the ground plane Radiated emissions in the frequency range 30 MHz – 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4. for alternative test sites. A linear polarised logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used.

For prescan tests the test receiver is set to peak-detector with a bandwidth of 120 kHz.

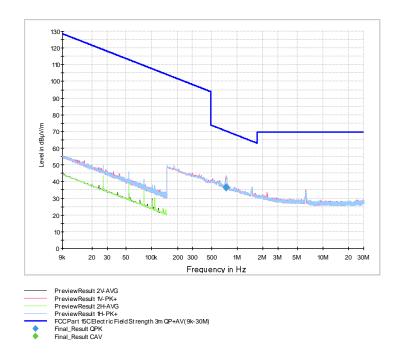
With the measurement bandwidth of the test receiver set to 120 kHz CISPR quasi-peak detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

2.2.6.3 Frequency range above 1 GHz

Fully anechoic room

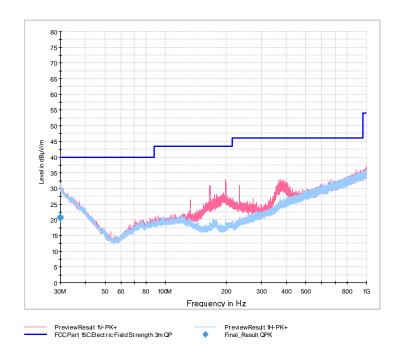
The EUT was placed on a non-conductive table, 1.5 m above the ground plane Radiated emission tests above 1 GHz are performed in a fully anechoic room with the S_{VSWR} requirements of ANSI C63.4. Measurements are performed both in the horizontal and vertical planes of polarisation using a test receiver with the detector function set to peak and average and the resolution bandwidth set to 1 MHz. Testing above 1 GHz is performed with horn antennas with the EUT in boresight of the antenna.

For prescan tests the test receiver is set to peak- and average-detector with a bandwidth of 1 MHz. With the measurement bandwidth of the test receiver set to 1 MHz and peak- and CISPR average-detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

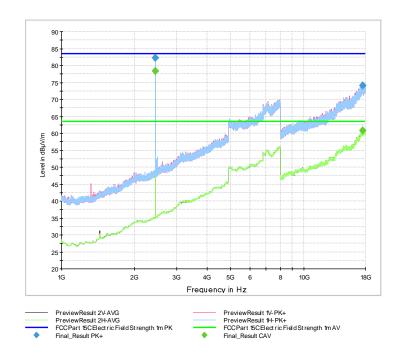

2.2.7 Test Results

Frequency range	Limit applied	Test distance
9 kHz – 1 GHz	15.209, 15.249	3 m
1 – 25 GHz		1 m

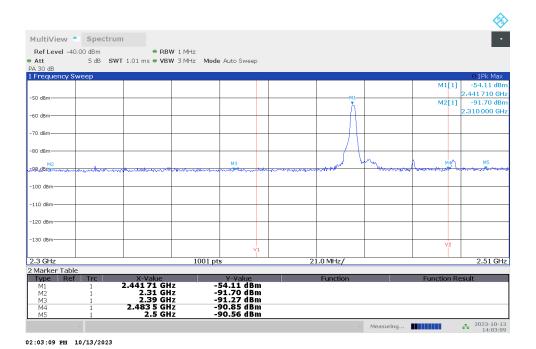
Table 12


Sample calculation:

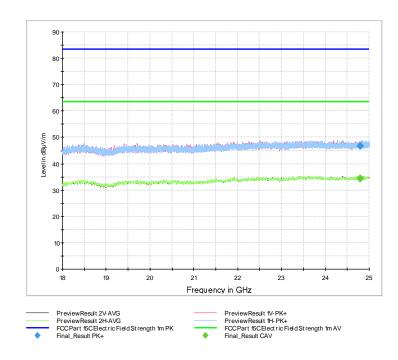
Final Value (dB μ V/m) = Reading Value (dB μ V) + (Cable attenuation (dB) + Antenna Transducer (dB(1/m)))


Fre-	Qua-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
quency	siPeak	age		gin	Time	width			muth	
MHz	dBμV/m	dBμV/m	dBμV/m	dΒ	ms	kHz	cm		deg	dB/m
0.741750	36.41		70.20	33.79	1000	9	100.0	V	-60.0	19.4

Frequency	Qua-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	siPeak		gin	Time	width			muth	
MHz	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg	dB/m
30.000000	20.70	40.00	19.30	1000	120	319.0	Η	-63.0	25.2

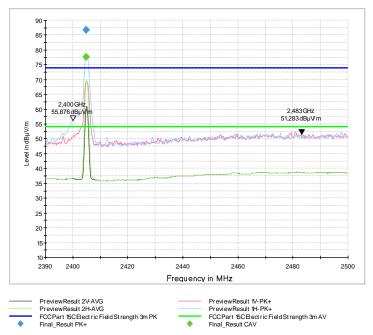


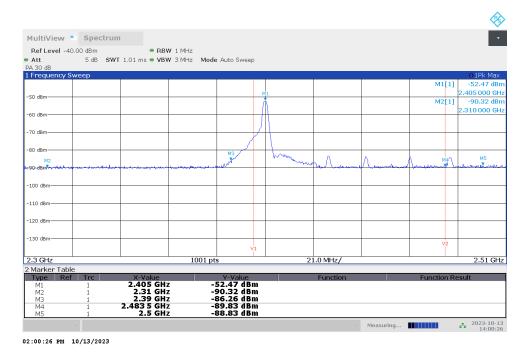
Frequency	Max-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	Peak	age		gin	Time	width			muth	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg	dB/m
2441.750000	82.17		114.0	31.83	1000.0	1000.000	109.0	Н	16.0	34.0
2441.750000		78.41	94.0	15.59	1000.0	1000.000	109.0	Н	16.0	34.0
17554.500000	74.00		83.50	9.50	1000.0	1000.000	100.0	V	130.0	58.4
17554.500000		60.74	63.50	2.76	1000.0	1000.000	100.0	V	130.0	58.4



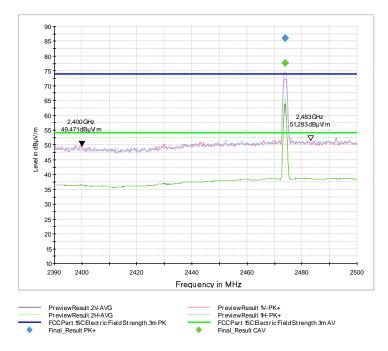
Product Service

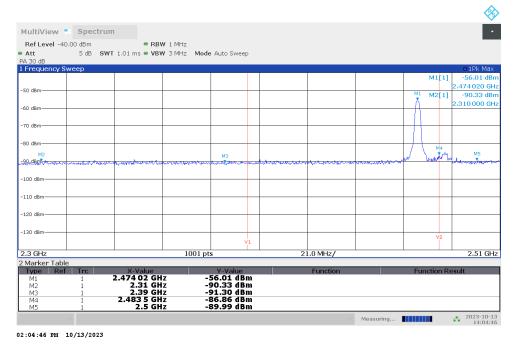
Restricted Bands, OK




Frequency	Max-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	Peak	age		gin	Time	width			muth	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg	dB/m
24790.000000		34.28	63.50	29.22	1000	1000	170.0	V	-109.0	29.2
24790.000000	46.67		83.50	36.83	1000	1000	170.0	V	-109.0	29.2

2.2.7.1 Tests on lowest and highest channel


Frequency	Max-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	Peak	age		gin	Time	width			muth	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg	dB/m
2404.750000		77.70	94.0	16.30	1000	1000	100.0	Ι	97.0	33.9
2404.750000	86.62		114.0	27.34	1000	1000	100.0	Н	97.0	33.9


Restricted Bands, OK

Frequency	Max-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	Peak	age		gin	Time	width			muth	
MHz	dBμV/m	dBμV/m	dBμV/m	dB	ms	kHz	cm		deg	dB
2474.000000		77.57	94.0	16.43	1000	1000	125.0	Η	90.0	34.2
2474.000000	86.05		114.0	27.95	1000	1000	125.0	Η	90.0	34.2

Restricted Bands, OK

2.2.8 Test Location and Test Equipment

The test was carried out in semi anechoic room, Cabin No. 11

Instrument	Manufacturer	Type No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Loop antenna	Rohde & Schwarz	FMZB 1519 B	44334	36	2026-06-30
ULTRALOG antenna	Rohde & Schwarz	HL562E	61486	36	2026-04-30
Fixed attenuator	Weinschel	Model 1: 6 dB	39632	36	2026-01-31
Double ridged horn antenna	Rohde & Schwarz	HF907	40089	24	2024-10-31
Horn antenna with preamplifier	Rohde & Schwarz	LB-180400H-KF + TS-LNA1840	43661	24	2025-01-17
EMI test receiver	Rohde & Schwarz	ESW44	39897	12	2024-04-30
EMC measurement software	Rohde & Schwarz	EMC32 Emission V11.50	42986		

Table 13

2.3 Temperature Stability

2.3.1 Specification Reference

ISED RSS-Gen, Clause 6.11, 8.11

2.3.2 Equipment under Test and Modification State

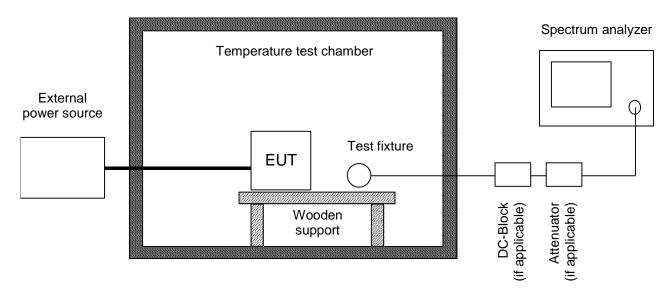
Bormann BMKD Flex Mouse; Conducted sample; Modification State 0

2.3.3 Date of Test

2024-08-24

2.3.4 Environmental Conditions

Ambient Temperature 25 °C Relative Humidity 43 %


2.3.5 Specification Limits

If the stability of the license-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80 % of its permitted operating frequency band in order to minimize the possibility of out-of-band operation. In additions, its occupied bandwidth shall be entirely outside the resitricted bands and the prohibited TV bands of $85 \, \text{MHz} - 72 \, \text{MHz}$, $76 \, \text{MHz} - 88 \, \text{MHz}$, $174 \, \text{MHz} - 216 \, \text{MHz}$, and $470 \, \text{MHz} - 602 \, \text{MHz}$, unless otherwise indicated.

2.3.6 Test Method

The test was performed according to ANSI C63.10, section 6.8.

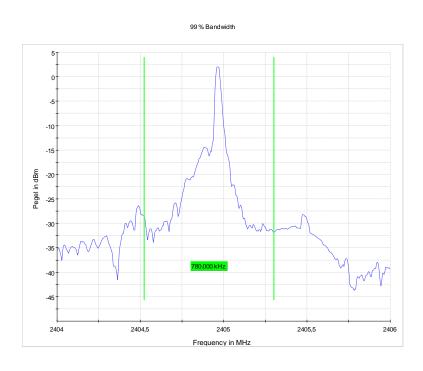
The frequency tolerance of the carrier signal is measured over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rates supply voltage at a temperature of 20 °C. Temperature and voltage range may vary if the manufacturer states another temperature or voltage range.

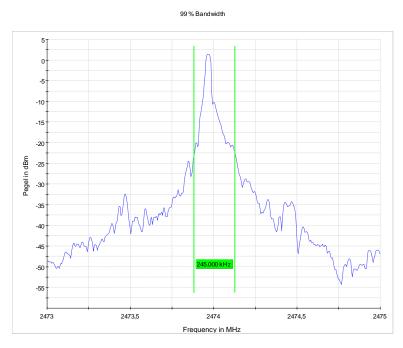
If the EUT provides an antenna connector the spectrum analyzer is connected to this port. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as a DC block and appropriate (50 Ω) attenuators. In case where the EUT does not provide an antenna connector or a test fixture is used.

For battery operated equipment, the test is performed using a new battery. Alternatively, an external supply voltage can be used and is at least set to:

- The maximum battery voltage as delivered by a new battery or 115 % of the battery nominal voltage;
- · The battery nominal voltage
- 85 % of the battery nominal voltage
- The battery operating end point voltage which shall be specified by the equipment manufacturer. The EUT is operating providing an unmodulated carrier for frequency error tests. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point of the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1 % of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance is larger than the uncertainty of the measured frequency tolerance.

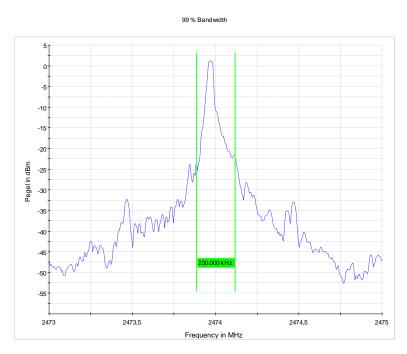

The test was performed with a new battery in the temperature range 0 °C to 40 °C.

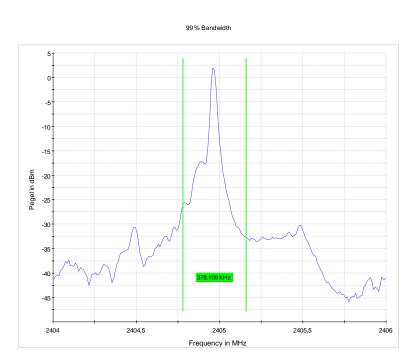


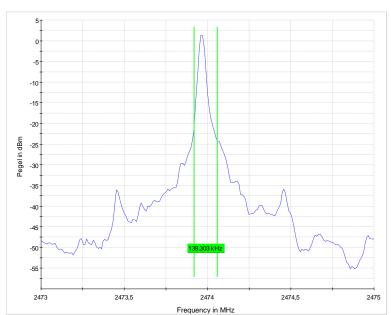
2.3.7 Test Results

All 99 % emissions are within the designated frequency band 2400.0 - 2483.5 MHz. See plots for details.

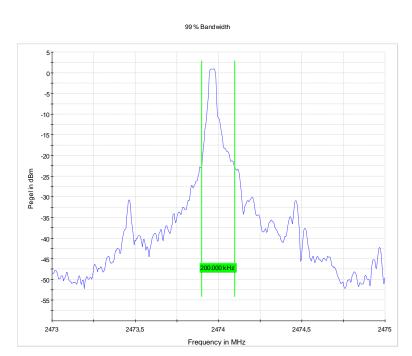

2.3.7.1 Temperature 0 °C

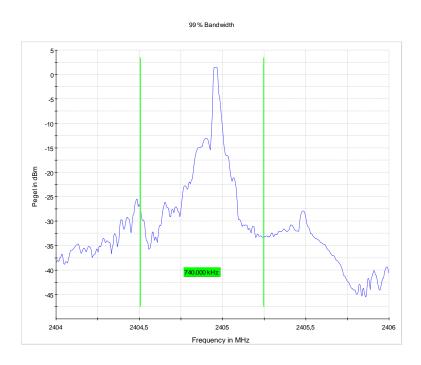


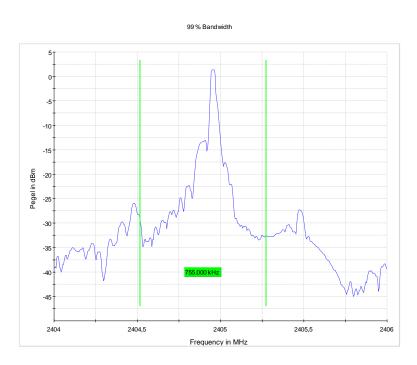

2.3.7.2 Temperature 10 °C

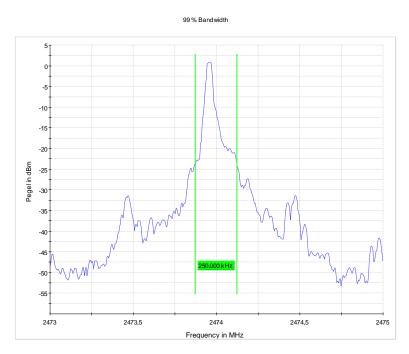


2.3.7.3 Temperature 20 °C




99 % Bandwidth


2.3.7.4 Temperature 30 °C



2.3.7.5 Temperature 40 °C

2.3.8 Test Location and Test Equipment

The test was carried out in radio test laboratory.

Instrument	Manufacturer	Type No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Signal andspectrum analyzer	Rohde & Schwarz	FSV40	20219	24	2024-02-29
EMC measurement software	Rohde & Schwarz	EMC32 TS8997 V10.60.00	44381		

Table 14

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

	•
kp	Expanded Uncertainty
2	± 3.8 dB
2	± 3.4 dB
2	± 3.6 dB
2	± 3.8 dB
2	± 3.4 dB
2	± 3.5 dB
2	± 3.9 dB
2	± 3.5 dB
2	± 4.9 dB
2	± 5.0 dB
2	± 4.6 dB
2	± 4.9 dB
2	± 4.9 dB
	2 2 2 2 2 2 2 2 2 2 2 2 2

The expanded uncertainty reported according to to CISPR16-4-2: 2011 + A1 + A2 + Cor1 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Table 15 Measurement uncertainty based on CISPR 16-4-2

Product Service

Test Name	kp	Expanded Uncertainty
Occupied Bandwdith	2	± 5 %
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	± 5 %
Power Spectral Density	2	± 3.0 dB
Radiated Power		
25 MHz – 6 GHz	1.96	±4.4 dB
1 GHz – 18 GHz	1.96	±4.7 dB
18 GHz – 40 GHz	1.96	±4.9 dB
40 GHz – 325 GHz	1.96	±6.1 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	± 5 %
Frequency	2	± 10 ⁻⁷

The expanded uncertainty reported according to to ETSI TR 100 028:2001 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Table 16 Measurement uncertainty based on ETSI TR 100 028

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: 2011 + A1 + A2 + Cor1 (U_{CISPR}) and as specified in the test report below. This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

Product Service

Test Name	Expanded Uncertainty
Occupied Bandwidth	±5 %
Conducted Power	
9 kHz ≤ f < 30 MHz	±1.0 dB
30 MHz ≤ f < 1 GHz	±1.5 dB
1 GHz ≤ f ≤ 40 GHz	±2.5 dB
1 MS/s power sensor (2.4 / 5 GHz band)	±1.5 dB
Power Spectral Density	±3.0 dB
Radiated Power	
25 MHz – 26.5 GHz	±6.0 dB
26.5 GHz – 66 GHz	±8.0 dB
40 GHz – 325 GHz	±10.0 dB
Conducted Spurious Emissions	±3.0 dB
Radiated Field Strength 9 kHz – 40 GHz	±6.0 dB
Voltage	
DC	± 1.0 %
AC	± 2.0 %
Time (automatic)	± 5 %
Frequency	± 10 ⁻⁷

Table 17 Decision Rule: Maximum allowed measurement uncertainty