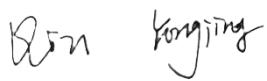


TEST REPORT


Applicant: Hefei Invispower Co., Ltd
Address: 2A, Yousi Tiancheng Industrial Park, No. 1800, Dabieshan Road, High-tech Zone, Hefei, P.R.China
Equipment Type: Wireless Charging module
Model Name: YG0050-12 (refer to section 2.3)
Brand Name: INVISPOWER
FCC ID: 2BBHYGKJ-PAHWPC
Test Standard: 47 CFR Part 15 Subpart C
ANSI C63.10-2013
Sample Arrival Date: Jan. 07, 2025
Test Date: Jan. 16, 2025 - Jan. 23, 2025
Date of Issue: Jul. 14, 2025

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Qiu Yongjing**Checked by:** Zong Liyao**Approved by:** Tolan Tu

(Testing Director)

Revision History

Version	Issue Date	Revisions Content
<u>Rev. 01</u>	<u>Jul. 14, 2025</u>	<u>Initial Issue</u>

TABLE OF CONTENTS

1	GENERAL INFORMATION	3
1.1	Test Laboratory	3
1.2	Test Location	3
2	PRODUCT INFORMATION	4
2.1	Applicant Information	4
2.2	Manufacturer Information	4
2.3	General Description for Equipment under Test (EUT)	4
2.4	Technical Information	4
3	SUMMARY OF TEST RESULTS	5
3.1	Test Standards	5
3.2	Verdict	5
3.3	Test Uncertainty	5
4	GENERAL TEST CONFIGURATIONS	6
4.1	Test Environments	6
4.2	Test Setups	6
5	TEST ITEMS	8
5.1	Antenna Requirements	8
5.2	Emission Tests	9
ANNEX A	TEST RESULTS	13
A.1	Radiated Emission	13
A.2	Conducted Emission	24
A.3	20 dB Bandwidth	24
ANNEX B	TEST SETUP PHOTOS	29
ANNEX C	EUT EXTERNAL PHOTOS	29
ANNEX D	EUT INTERNAL PHOTOS	29

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.
Location	<input checked="" type="checkbox"/> Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China <input type="checkbox"/> 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, No. 1008, Songbai Road, Yangguang Community, Xili Sub-district, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Hefei Invispower Co., Ltd
Address	2A, Yousi Tiancheng Industrial Park, No. 1800, Dabieshan Road, High-tech Zone, Hefei, P.R.China

2.2 Manufacturer Information

Manufacturer	Hefei Invispower Co., Ltd
Address	2A, Yousi Tiancheng Industrial Park, No. 1800, Dabieshan Road, High-tech Zone, Hefei, P.R.China

2.3 General Description for Equipment under Test (EUT)

EUT Name	Wireless Charging module
Model Name Under Test	YG0050-12
Series Model Name	YG0050-01, YG0050-02, YG0050-03, YG0050-04, YG0050- 05, YG0050-06, YG0050-07, YG0050-08, YG0050-09, YG0050-10, YG0050-11, YG0050-13
Description of Model name differentiation	Their circuit design, layout and internal wiring are identical. Only with different appearance, location of DC fans, location of the power port and mounting options. (this information provided by the applicant)
Hardware Version	0.0.1
Software Version	4.00.00
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.4 Technical Information

Network and Wireless connectivity	WPT
-----------------------------------	-----

The requirement for the following technical information of the EUT was tested in this report:

Modulation Type	WPT
Operating Frequency	110.5kHz-147.7kHz
Product Type	<input type="checkbox"/> Mobile <input type="checkbox"/> Portable <input checked="" type="checkbox"/> Fix Location
Antenna Type	Coil Antenna
About Product	The EUT support the Qi and PMA technology, and they have the same operating frequency.

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.2 Verdict

No.	Description	FCC Part No.	Verdict
1	Antenna Requirement	15.203	Pass <small>Note</small>
2	Radiated Emission	15.209,15.215(b)	Pass
3	Conducted Emission, AC Ports	15.207	N/A
4	20 dB Bandwidth	15.215(c)	Pass

Note 1: This product does not have an AC port

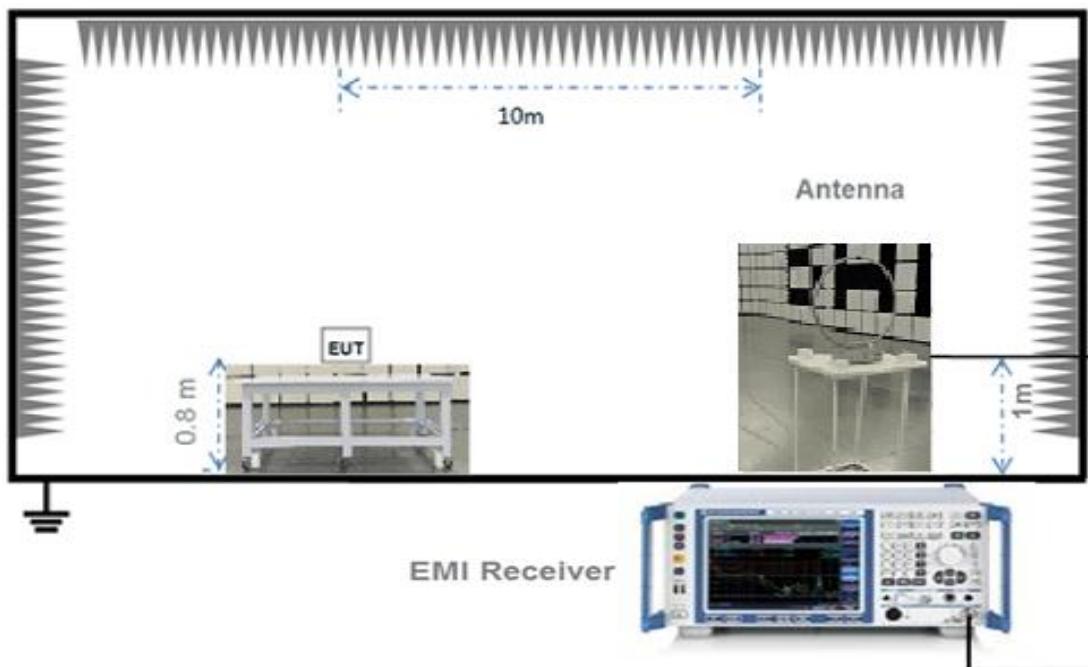
Note 2: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

3.3 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions (9 kHz-30 MHz)	3.2 dB
Radiated emissions (9 kHz-30 MHz)	3.9 dB
Radiated emissions (30 MHz-1 GHz)-3m	4.4 dB

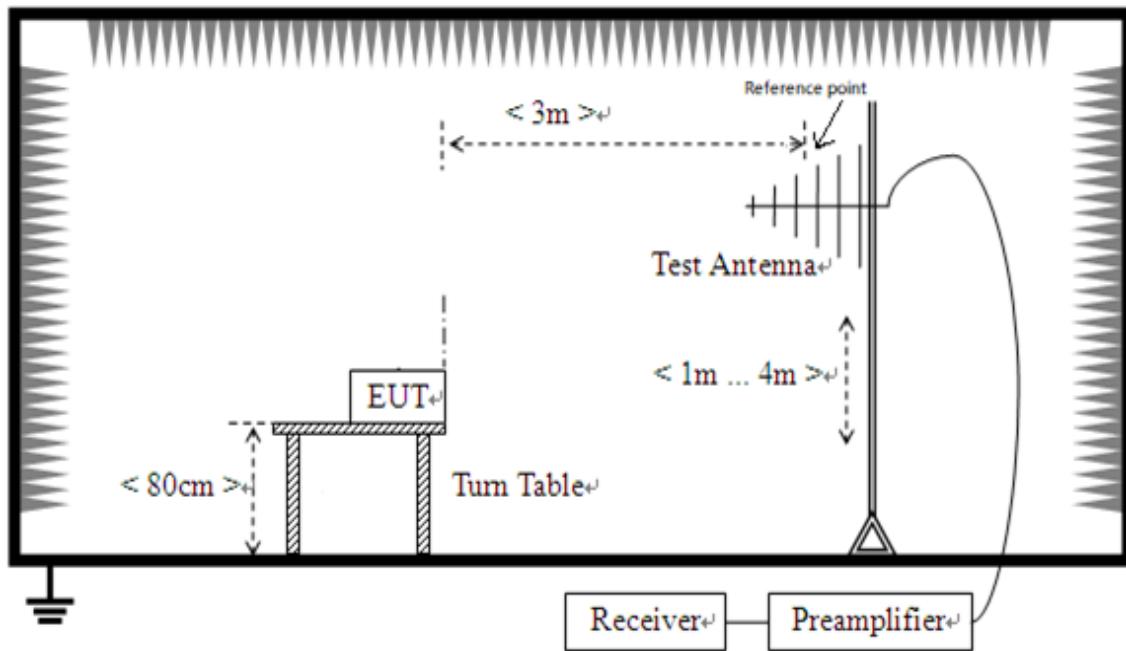
4 GENERAL TEST CONFIGURATIONS


4.1 Test Environments

Relative Humidity	30% to 60%	
Atmospheric Pressure	100 kPa to 102 kPa	
Temperature	NT (Normal Temperature)	+22°C to +25°C
Working Voltage of the EUT	NV (Normal Voltage)	12 V

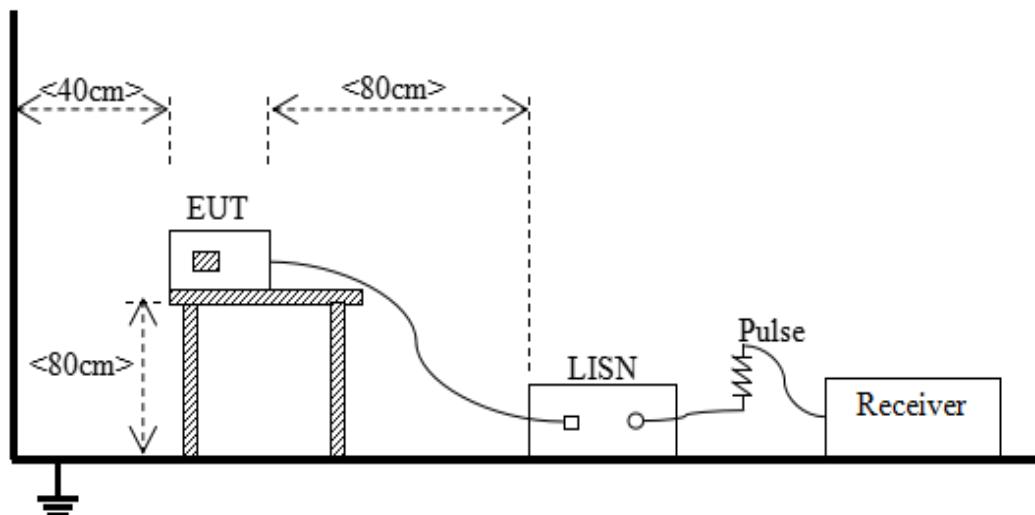
4.2 Test Setups

Test Setup 1


Radiated Test (Below 30 MHz)

(Diagram 1)

Test Setup 2


Radiated Test (30 MHz-1 GHz)

(Diagram 2)

Test Setup 3

AC Power Supply Port Test

(Diagram 3)

5 TEST ITEMS

5.1 Antenna Requirements

5.1.1 Relevant Standards

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	An embedded-in antenna design is used.

Reference Documents	Item
Photo	Please refer EUT internal photos.

5.2 Emission Tests

5.2.1 Radiated Emission

5.2.1.1 Limit

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

NOTE:

- 1) Field Strength ($\text{dB}\mu\text{V}/\text{m}$) = $20 \times \log [\text{Field Strength} (\mu\text{V}/\text{m})]$.
- 2) In the emission tables above, the tighter limit applies at the band edges.
- 3) For above 1000 MHz, limit field strength of harmonics: 54 $\text{dB}\mu\text{V}/\text{m}$ @3 m (AV) and 74 $\text{dB}\mu\text{V}/\text{m}$ @3 m (PK)
- 4) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). For example, at the frequency 9 kHz, limit @10m = $20 \times \log (2400/f) + 40 \log (d_{\text{limit}}/d_{\text{measure}})$ where limit = 300m, dmeasure=10m. limit @10m = $20 \times \log (2400/9) + 40 \log (300/10) = 107.5$ ($\text{dB}\mu\text{V}/\text{m}$).
- 5) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided, When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements). For example, at the frequency 30 MHz, limit @10m = $20 \times \log (100) + 20 \log (d_{\text{limit}}/d_{\text{measure}})$ where limit = 3m, dmeasure=10m. limit @10m = $20 \times \log (100) + 20 \log (3/10) = 29.5$ ($\text{dB}\mu\text{V}/\text{m}$).

5.2.1.2 Test Setup

Refer to 4.2 section (test setup 1 to test setup 2) for radiated emission test, the photo of test setup please refer to ANNEX B.

5.2.1.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented. The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test

condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for 30 MHz $< f < 1$ GHz, 10 kHz for 150 kHz $< f < 30$ MHz, 300 Hz for $f < 150$ kHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.2.1.4 Test Result and Test Equipment List

Please refer to ANNEX A.1.

NOTE:

1. Results (dB μ V/m) = Reading (dB μ V) + Factor (dB/m)

The reading level is calculated by software which is not shown in the sheet

2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) – Amplifier Gain (dB)

3. Margin = Limit – Results

5.2.2 Conduct Emission

5.2.2.1 Test Limit

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

NOTE:

- 1) The limit is applicable to Class B ITE.
- 2) The lower limit shall apply at the band edges.
- 3) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50 MHz.

5.2.2.2 Test Setup

Refer to 4.2 section test (test setup 3) for conducted emission, the photo of test setup please refer to ANNEX B.

5.2.2.3 Test Procedure

The EUT is connected to the power mains through a LISN which provides $50 \Omega/50 \mu\text{H}$ of coupling impedance for the measuring instrument. The test frequency range is from 150 kHz to 30 MHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.2.2.4 Test Result and Test Equipment List

Please refer to ANNEX A.2.

NOTE:

1. Results (dB μ V) = Reading (dB μ V) + Factor (dB/m)

The reading level is calculated by software which is not shown in the sheet

2. Factor = Insertion loss + Cable loss

3. Margin = Limit – Results

5.2.3 20 dB Bandwidth

5.2.3.1 Limit

FCC §15.215(c)

The 20 dB bandwidth is known as the 99% emission bandwidth, or 20 dB bandwidth ($10 \log 1\% = 20$ dB) taking the total RF output power.

5.2.3.2 Test Setup

Refer to 4.2 section test (test setup 1) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3.3 Test Procedure

The 20dB bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT while the EUT is operating in transmission mode.

Use the following spectrum analyzer settings:

Span = between 2 to 5 times the OBW

RBW = 1% to 5% the OBW

VBW \geq 3RBW

Sweep = auto

Detector function = peak

Trace = max hold

The 99% emission bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT while the EUT is operating in transmission mode.

Use the following spectrum analyzer settings:

Span = between 1.5 to 5 times the OBW

RBW = 1% to 5% OBW

VBW \geq 3RBW

Sweep = auto

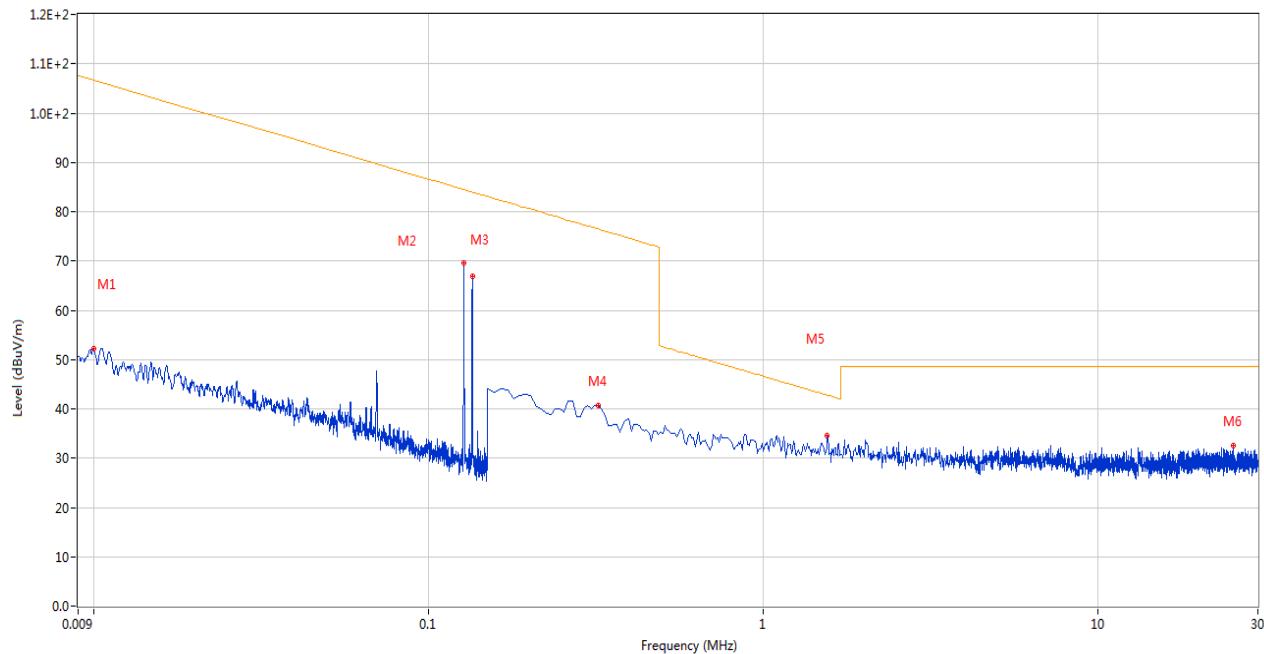
Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate, Allow the trace to stabilize.

5.2.3.4 Test Result and Test Equipment List

Please refer to ANNEX A.3.


ANNEX A TEST RESULTS

A.1 Radiated Emission

Note 1: This frequency which near 129 kHz with circle should be ignored because they are Qi carrier frequency.

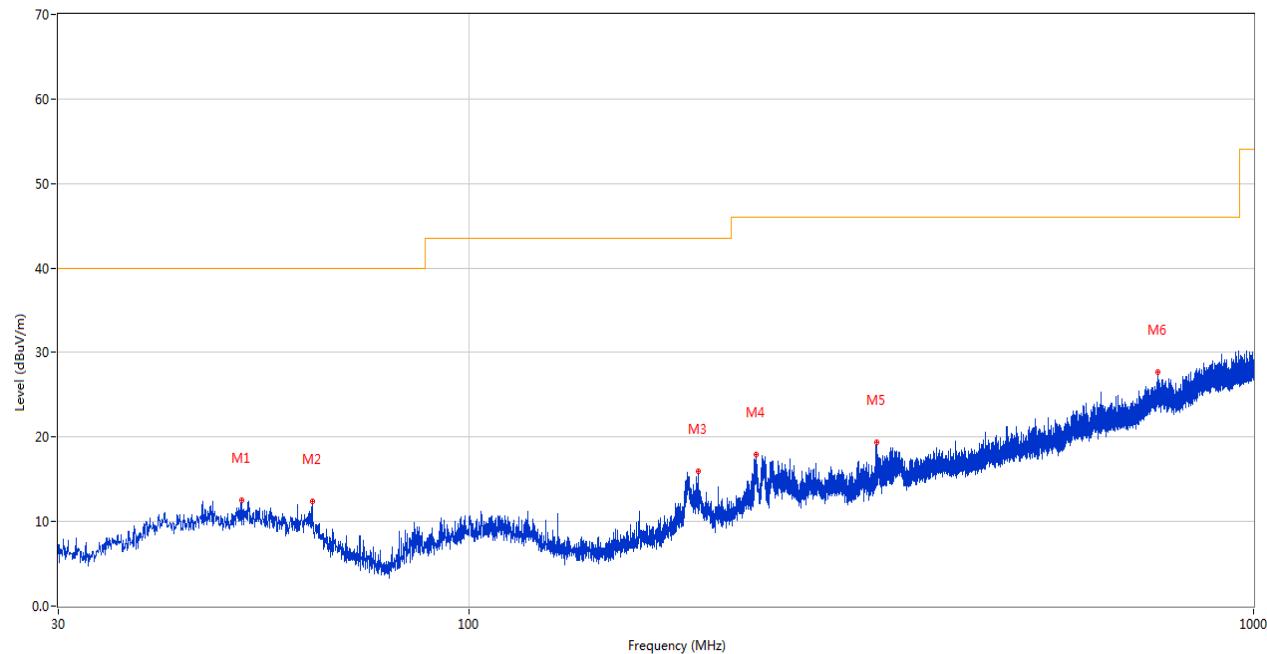
Note 2: All Radiated Emissions tests were performed in X, Y, Z axis direction of EUT. And only the worst axis test condition was recorded in this test report.

Sample No.	S03	Temperature	22.7 °C
Humidity	35%RH	Pressure	101kPa
Test Engineer	Gong Baihua	Test Date	2025.01.16

Test Data and Plot**Mode 1****9 kHz to 30 MHz, ANT-H**

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	0.010	52.19	20.03	106.6	54.41	Peak	196.00	100	X axis	Pass
2	0.128	69.54	20.15	84.5	14.96	Peak	360.00	100	X axis	N/A
3	0.135	66.81	20.14	84.0	17.19	Peak	196.00	100	X axis	N/A
4	0.322	40.60	20.15	76.5	35.90	Peak	222.00	100	X axis	Pass
5	1.553	34.50	20.51	42.8	8.30	Peak	8.00	100	X axis	Pass
6	25.336	32.49	21.15	48.5	16.01	Peak	177.00	100	X axis	Pass

Note 1 : This frequency which near 0.128 MHz and 0.135 MHz with circle should be ignored because they are WPT carrier wave.

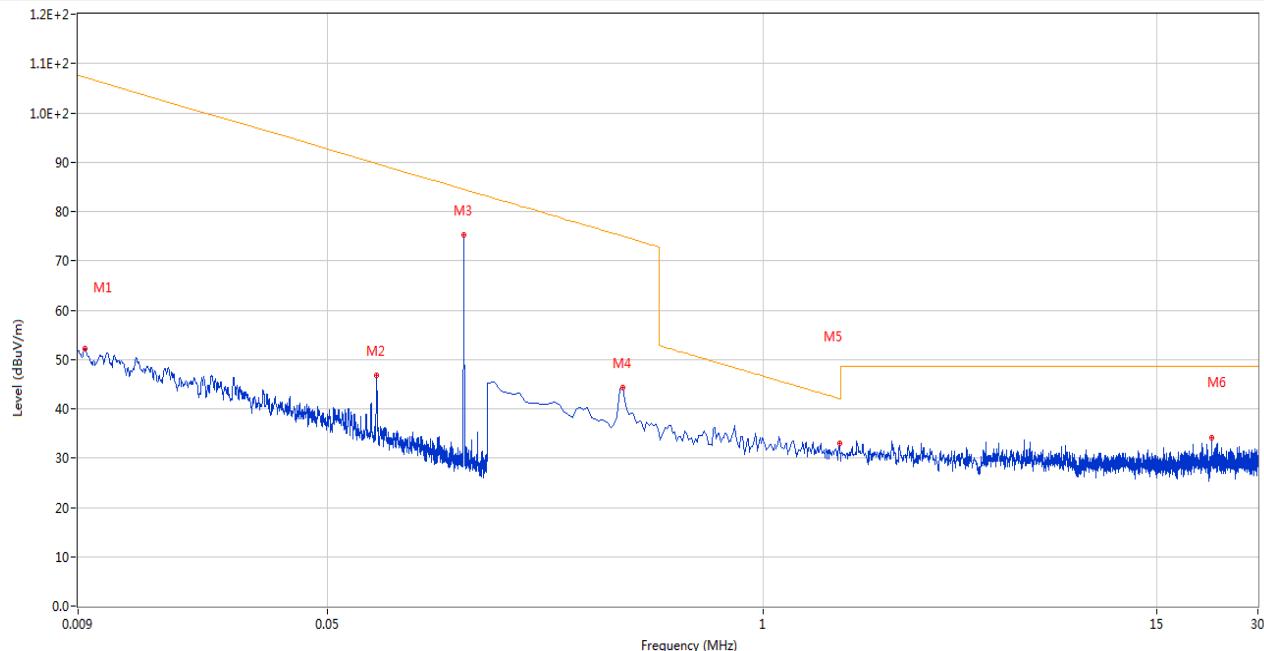

Note 2: All Radiated Emissions tests were performed in X, Y, Z axis direction of EUT. And only the worst axis test condition was recorded in this test report.

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2024.08.01	2025.07.31	<input checked="" type="checkbox"/>
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2024.01.23	2027.01.22	<input checked="" type="checkbox"/>
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60*7 .35m	130	2024.07.13	2027.07.12	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/	/	Use
Test Software	BALUN	BL410-E	V22.930			<input checked="" type="checkbox"/>

Sample No.	S03	Temperature	24.8°C
Humidity	56%RH	Pressure	101kPa
Test Engineer	He Shichang	Test Date	2025.01.17

Test Data and Plot

30 MHz to 1 GHz, ANT-H


No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	51.340	12.49	-24.76	40.0	27.51	Peak	157.20	100	Horizontal	Pass
2	63.174	12.38	-26.90	40.0	27.62	Peak	51.50	200	Horizontal	Pass
3	195.967	15.89	-25.70	43.5	27.61	Peak	186.10	200	Horizontal	Pass
4	232.294	17.96	-24.98	46.0	28.04	Peak	53.50	100	Horizontal	Pass
5	331.282	19.44	-22.08	46.0	26.56	Peak	246.50	100	Horizontal	Pass
6	756.094	27.66	-11.81	46.0	18.34	Peak	51.30	100	Horizontal	Pass

30 MHz to 1 GHz, ANT-V

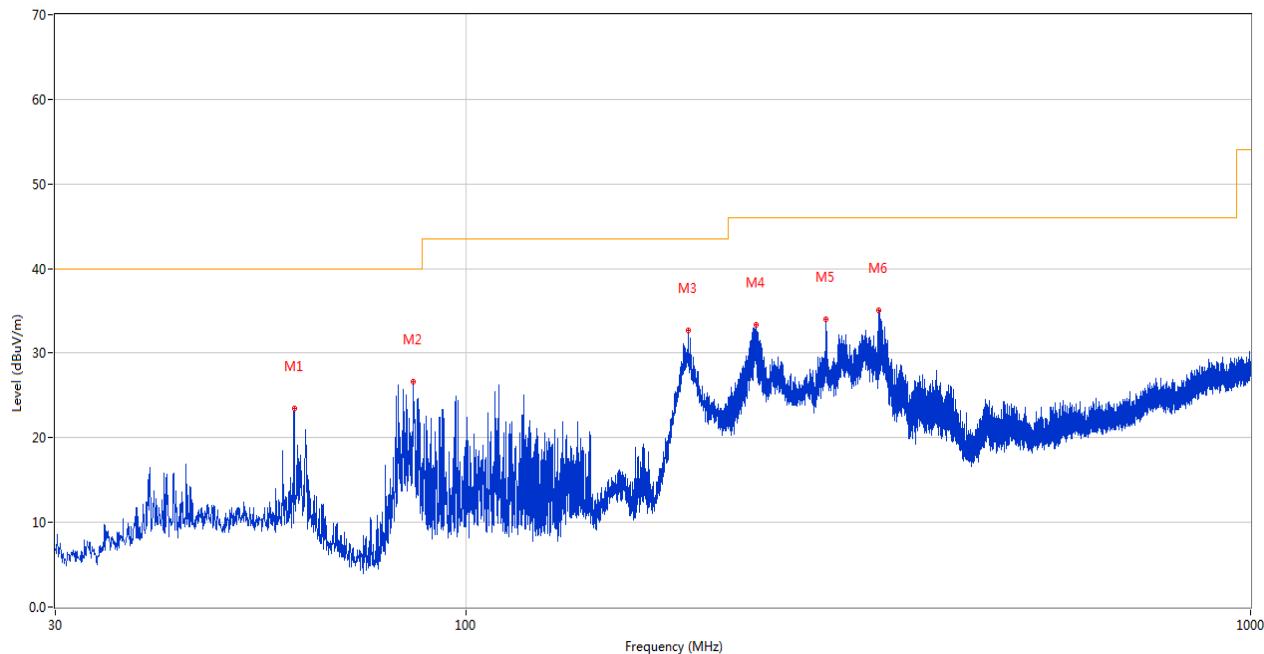
No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	39.361	11.83	-26.05	40.0	28.17	Peak	290.00	100	Vertical	Pass
2	62.301	13.06	-26.54	40.0	26.94	Peak	86.40	100	Vertical	Pass
3	106.048	11.16	-26.62	43.5	32.34	Peak	256.00	100	Vertical	Pass
4	248.686	18.48	-24.57	46.0	27.52	Peak	309.30	200	Vertical	Pass
5	394.332	19.74	-20.47	46.0	26.26	Peak	164.40	200	Vertical	Pass
6	752.553	27.47	-12.14	46.0	18.53	Peak	156.00	200	Vertical	Pass

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	Keysight	N9038A	MY55330120	2024.08.01	2025.07.31	<input checked="" type="checkbox"/>
Amplifier (30MHz-1GHz)	COM-MV	ZT30- 1000M	B2018054558	2024.11.28	2025.11.27	<input checked="" type="checkbox"/>
Test Antenna- Bi-Log	SCHWARZBE CK	VULB 9168	9168-01162	2022.04.12	2025.04.11	<input checked="" type="checkbox"/>
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60* 7.35m	130	2024.07.21	2027.07.20	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/		Use
Test Software	BALUN	BL410-E	V22.930	/		<input checked="" type="checkbox"/>

Mode 3&4**9 kHz to 30 MHz, ANT-H**

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	0.009	52.15	19.93	107.1	54.95	Peak	358.00	100	X axis	Pass
2	0.070	46.73	20.17	89.7	42.97	Peak	253.00	100	X axis	Pass
3	0.128	75.15	20.15	84.5	9.35	Peak	7.00	100	X axis	N/A
4	0.381	44.29	20.17	75.0	30.71	Peak	333.00	100	X axis	Pass
5	1.687	33.07	20.46	42.0	8.93	Peak	35.00	100	X axis	Pass
6	21.858	34.23	21.14	48.5	14.27	Peak	229.00	100	X axis	Pass

Note 1: This frequency which near 0.128 MHz with circle should be ignored because it is WPT carrier wave.


Note 2: All Radiated Emissions tests were performed in X, Y, Z axis direction of EUT. And only the worst axis test condition was recorded in this test report.

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2024.08.01	2025.07.31	<input checked="" type="checkbox"/>
Test Antenna-Loop	SCHWARZBECK	FMZB 1519	1519-037	2024.01.23	2027.01.22	<input checked="" type="checkbox"/>
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60*7 .35m	130	2024.07.13	2027.07.12	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/	/	Use
Test Software	BALUN	BL410-E	V22.930			<input checked="" type="checkbox"/>

Sample No.	S03	Temperature	24.8°C
Humidity	56%RH	Pressure	101kPa
Test Engineer	He Shichang	Test Date	2025.01.17

Test Data and Plot

30 MHz to 1 GHz, ANT-H

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	60.458	23.49	-26.10	40.0	16.51	Peak	53.90	200	Horizontal	Pass
2	85.678	26.62	-30.08	40.0	13.38	Peak	56.10	200	Horizontal	Pass
3	192.038	32.72	-26.33	43.5	10.78	Peak	358.30	200	Horizontal	Pass
4	234.379	33.39	-24.79	46.0	12.61	Peak	62.00	100	Horizontal	Pass
5	288.020	34.04	-23.25	46.0	11.96	Peak	70.90	100	Horizontal	Pass
6	335.744	35.09	-22.16	46.0	10.91	Peak	238.10	100	Horizontal	Pass

30 MHz to 1 GHz, ANT-V

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	61.525	28.74	-26.41	40.0	11.26	Peak	111.50	100	Vertical	Pass
2	84.126	26.27	-30.57	40.0	13.73	Peak	284.70	200	Vertical	Pass
3	144.024	30.11	-29.67	43.5	13.39	Peak	253.00	100	Vertical	Pass
4	247.329	29.84	-24.46	46.0	16.16	Peak	288.90	200	Vertical	Pass
5	288.020	32.33	-23.25	46.0	13.67	Peak	359.30	200	Vertical	Pass
6	562.578	30.65	-16.66	46.0	15.35	Peak	189.10	100	Vertical	Pass

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	Keysight	N9038A	MY55330120	2024.08.01	2025.07.31	<input checked="" type="checkbox"/>
Amplifier (30-1GHz)	COM-MV	ZT30- 1000M	B2017119081	2024.11.28	2025.11.27	<input checked="" type="checkbox"/>
Test Antenna- Bi-Log	SCHWARZBE CK	VULB 9168	9168-00867	2022.04.12	2025.04.11	<input checked="" type="checkbox"/>
Anechoic Chamber (#2)	YiHeng	9m*6m*6m	142	2024.07.21	2027.07.20	<input checked="" type="checkbox"/>
Description	Supplier	Name	Version	/		Use
Test Software	BALUN	BL410-E	V22.930	/		<input checked="" type="checkbox"/>

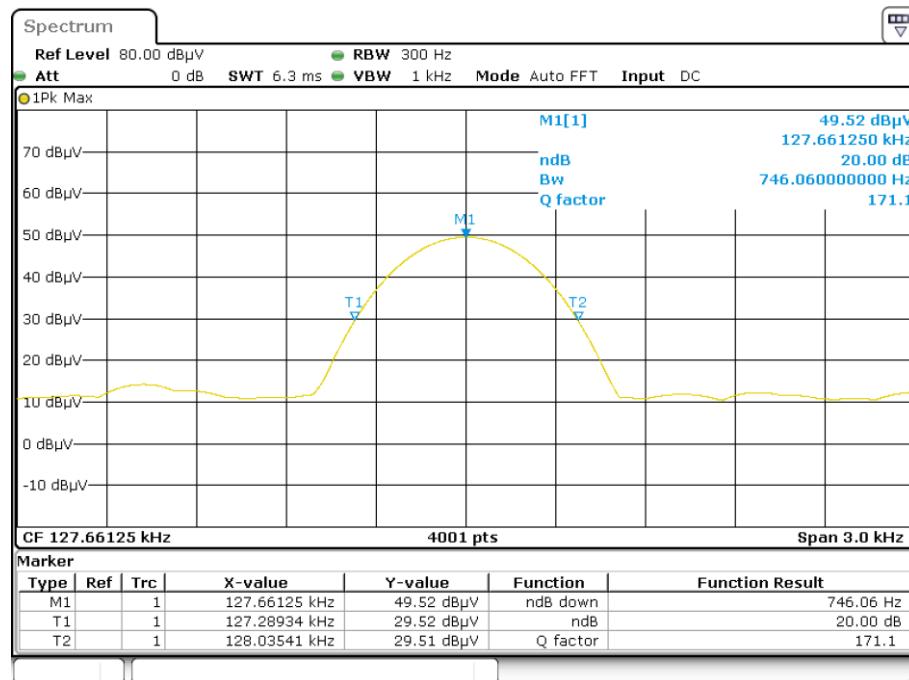
A.2 Conducted Emission

Note: Not applicable.

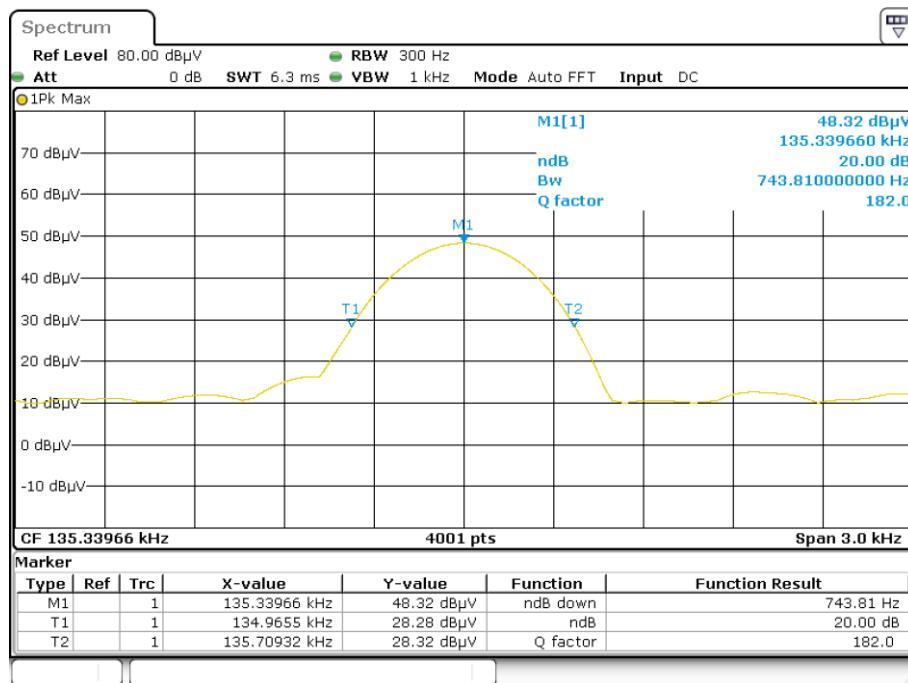
A.3 20 dB Bandwidth

Note: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

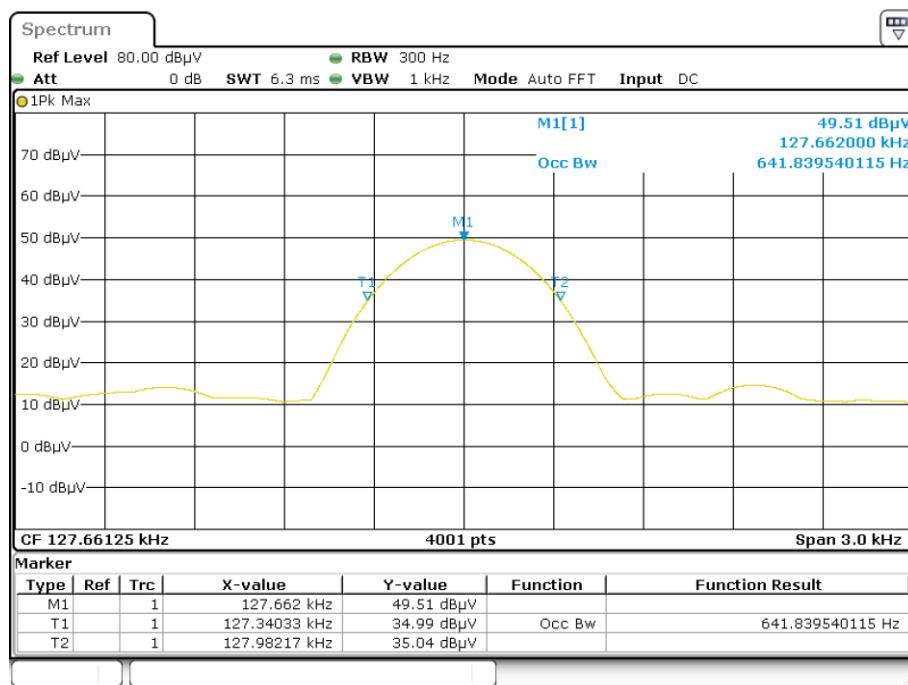
Sample No.	S03	Temperature	22.7 °C
Humidity	35%RH	Pressure	101kPa
Test Engineer	Gong Baihua	Test Date	2025.01.16

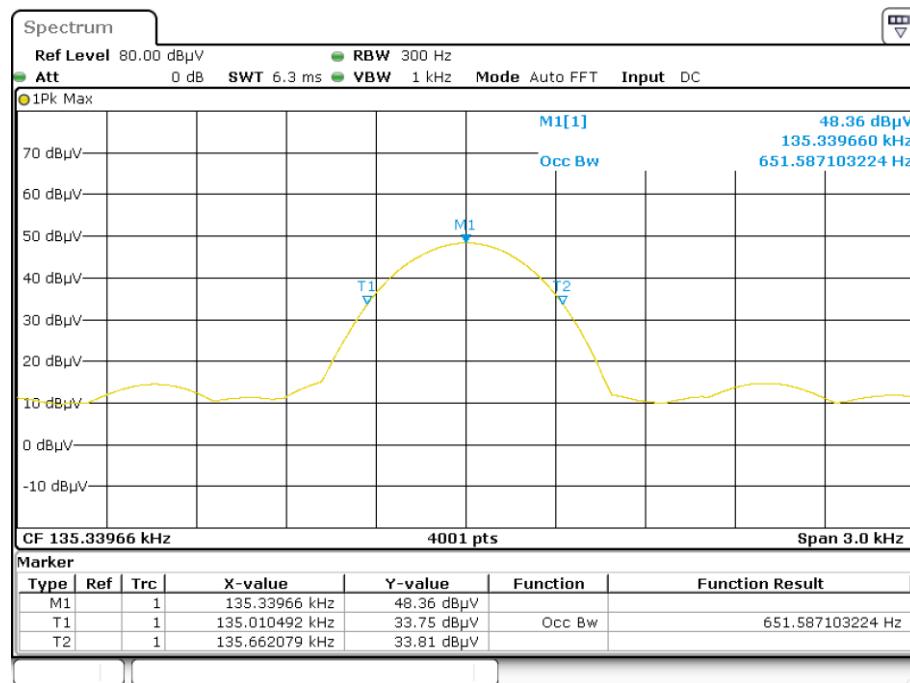

Test Data

Mode 1

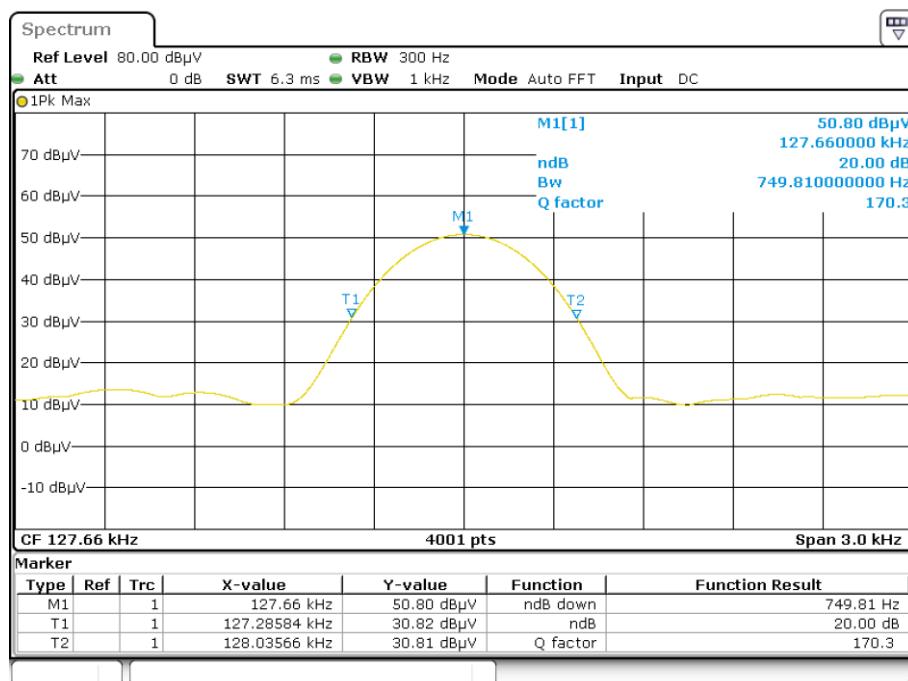

Frequency (MHz)	Emission Bandwidth (20dB down) (kHz)	Occupied Bandwidth (99%) (kHz)
127.662	746.060	641.840
135.340	743.810	651.587

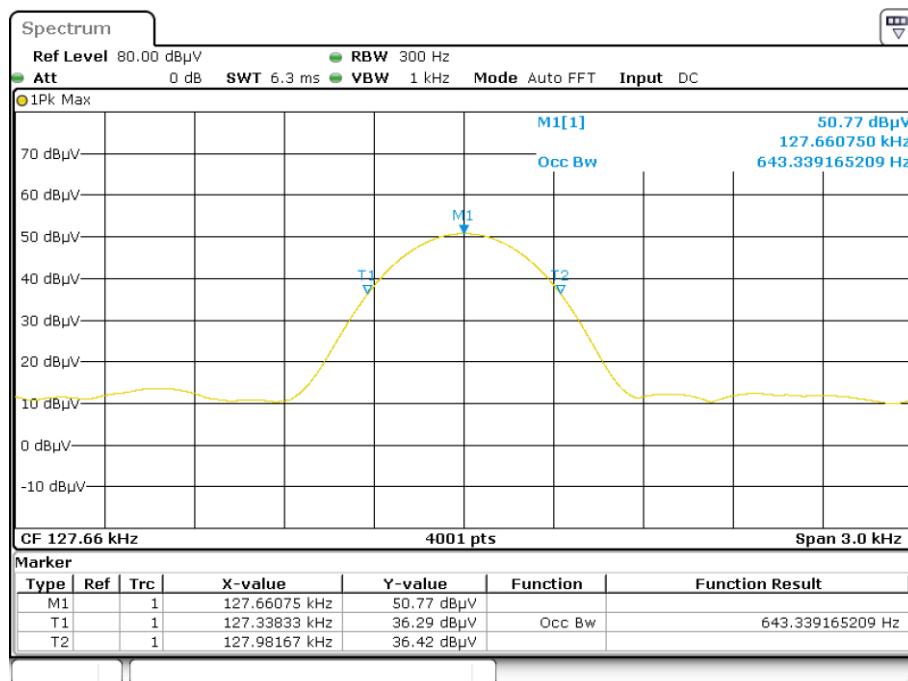
Test Plots


Emission Bandwidth



Note: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.


99% Occupied Bandwidth



Mode 3&4

Frequency (MHz)	Emission Bandwidth (20dB down) (kHz)	Occupied Bandwidth (99%) (kHz)
127.660	749.810	643.339

Test PlotsEmission Bandwidth

Note: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

99% Occupied Bandwidth

Note: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

Equipment Information						
Equipment Name	Supplier	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHW ARZ	ESRP	101036	2024.08.01	2025.07.31	<input checked="" type="checkbox"/>
Test Antenna- Loop	SCHWARZBECK	FMZB 1519	1519-037	2024.01.23	2027.01.22	<input checked="" type="checkbox"/>
Anechoic Chamber (10M)	EMC TECHNOLOGY LTD	20.1m*11.6 m*7.35m	130	2024.07.13	2027.07.12	<input checked="" type="checkbox"/>

ANNEX B TEST SETUP PHOTOS

Please refer the document “BL-SZ2510533-AE-2.PDF”.

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document “BL-SZ2510533-AW.PDF”.

ANNEX D EUT INTERNAL PHOTOS

Please refer the document “BL-SZ2510533-AI.PDF”.

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--