

FCC SAR TEST REPORT

Applicant: Guangdong COROS Sports Technology Co., Ltd

Room 601, Room 701, Building 2, No. 2, Science and Technology 9

Address: Rd, Songshan Lake Hi Tech Zone, Dongguan City, Guangdong

Province, P.R. China

Product Name: COROS NOMAD

FCC ID: 2BBGF-W942

Standard(s): 47 CFR Part 2(2.1093)

Report Number: 2502S52595E-20A

Report Date: 2025/05/28

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Mark Jong

Browne LU

Reviewed By: Mark Dong

Approved By: Brave Lu

Title: SAR Engineer

Title: SAR Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked \blacktriangle is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with \bigstar . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

SAR TEST RESULTS SUMMARY

Mode		Max. Reported SAR Level(s) (W/kg)	Limit (W/kg)
WLAN 2.4G 10g Extremity SAR		0.72	4.0
Bluetooth	10g Extremity SAR	0.05	4.0

	FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices
Applicable Standards	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
Standards	KDB procedures KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 248227 D01 802.11 Wi-Fi SAR v02r02

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in **FCC 47 CFR part 2.1093** and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

Report Template Version: FCC SAR-V1.0

Page 2 of 35

CONTENTS

SAR TEST RESULTS SUMMARY	_
DOCUMENT REVISION HISTORY	
1. GENERAL INFORMATION ·····	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)····································	
2. REFERENCE, STANDARDS, AND GUIDELINES ······	7
2.1 SAR LIMITS·····	7
2.2 TEST FACILITY ·····	8
3. DESCRIPTION OF TEST SYSTEM·····	9
4. EQUIPMENT LIST AND CALIBRATION	14
4.1 EQUIPMENTS LIST & CALIBRATION INFORMATION	14
5. SAR MEASUREMENT SYSTEM VERIFICATION	15
5.1 Liquid Verification	
5.2 Liquid Verification Results ·····	
5.3 SYSTEM ACCURACY VERIFICATION ·····	16
5.4 SYSTEM ACCURACY CHECK RESULTS······	16
5.5 SAR SYSTEM VALIDATION DATA ·····	17
6. EUT TEST STRATEGY AND METHODOLOGY ······	18
6.1 TEST POSITIONS FOR LIMB-WORN DEVICE ······	18
6.2 TEST DISTANCE FOR SAR EVALUATION	18
6.3 SAR EVALUATION PROCEDURE ·····	19
7. CONDUCTED OUTPUT POWER MEASUREMENT······	20
7.1 TEST PROCEDURE ·····	20
7.2 MAXIMUM TARGET OUTPUT POWER······	20
7.3 TEST RESULTS:	21
8. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	23
8.1 ANTENNAS LOCATION:	23
9. SAR MEASUREMENT RESULTS·····	
9.1 SAR TEST DATA ·····	24
10. MEASUREMENT VARIABILITY	
11. DUT HOLDER PERTURBATIONS······	
12. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION ······	
12.1 SIMULTANEOUS TRANSMISSION:	29
APPENDIX A - MEASUREMENT UNCERTAINTY ······	
APPENDIX B - SAR PLOTS ·····	31

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: 2502S52595E-20A
APPENDIX C - EUT TEST POSITION PHOTOS ·····	33
APPENDIX D - PROBE CALIBRATION CERTIFICA	ATES 34
APPENDIX E - DIPOLE CALIBRATION CERTIFIC	CATES 35

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision	
1.0	2502S52595E-20A	Original Report	2025/05/28	

Report No.: 2502S52595E-20A

Page 5 of 35

Report Template Version: FCC SAR-V1.0

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

•	generation (E01)			
EUT Name:	COROS NOMAD			
EUT Model:	W942			
Device Type:	Portable			
Exposure Category:	Population / Uncontrolled			
Antenna Type(s):	Internal Antenna			
Body-Worn Accessories:	None			
Proximity Sensor:	None			
Carrier Aggregation:	None			
Operation Modes:	WLAN, Bluetooth and BLE			
	Wi-Fi 2.4G: 2412-2462 MHz (TX/RX)			
Frequency Band:	Bluetooth: 2402-2480MHz(TX/RX)			
	BLE 1M/2M:2402-2480MHz(TX/RX)			
Rated Input Voltage:	DC 3.91V from Rechargeable Battery			
Serial Number:	317C-1			
Normal Operation:	Limbs			
EUT Received Date:	2025/04/10			
Test Date:	2025/05/23			
EUT Received Status:	Good			

Report Template Version: FCC SAR-V1.0

Page 6 of 35

2. REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No.: 2502S52595E-20A

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

2.1 SAR Limits

FCC Limit

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population /	(Occupational /			
	Uncontrolled Exposure	Controlled Exposure			
	Environment)	Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.6	8			
Spatial Peak					
(hands/wrists/feet/ankles	4	20			
averaged over 10 g)					

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that maybe incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 4 W/kg(FCC) for 10g Extremity SAR applied to the EUT.

Report Template Version: FCC SAR-V1.0 Page 7 of 35

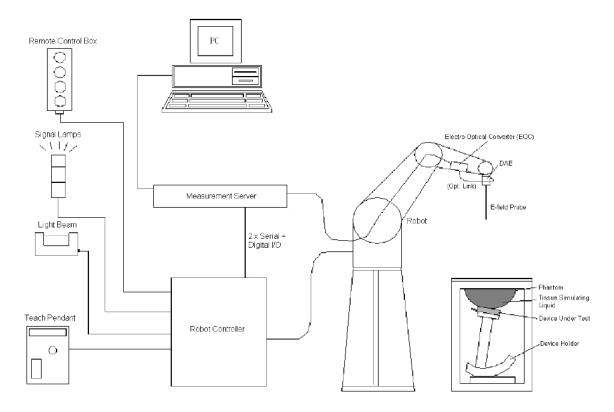
2.2 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

Report No.: 2502S52595E-20A

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. :829273, the FCC Designation No. : CN5044.

Report Template Version: FCC SAR-V1.0 Page 8 of 35


3. DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

Report Template Version: FCC SAR-V1.0

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

ES3DV3 E-Field Probes

Frequency	10 MHz - 4 GHz Linearity: ± 0.2 dB (30 MHz to 4 GHz)				
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)				
Dynamic Range	5 μ W/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)				
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 2.0 mm				
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones				
Compatibility	DASY3, DASY4, DASY52, DASY6, DASY8 SAR, EASY6, EASY4/MRI				

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness

increases to 6 mm). The phantom has three measurement areas:

- Left Head
- Right Head
- Flat phantom

The phantom table for the DASY systems based on the robots have the size of $100 \times 50 \times 85 \text{ cm}$ (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible.

Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS7MB robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10 mm, with the side length of the 10 g cube is 21.5 mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528-2013

Recommended Tissue Dielectric Parameters for Head liquid

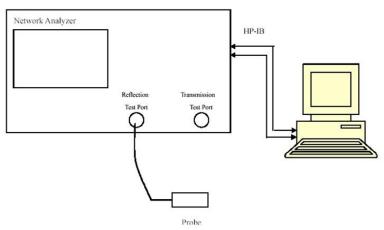
Table 3—Target dielectric properties of head tissue-equivalent material in the 300 MHz to 6000 MHz frequency range

Frequency	Relative permittivity	Conductivity (σ)
(MHz)	(£';)	(S/m)
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1500	40.4	1.23
1640	40.2	1.31
1750	40.1	1.37
1800	40.0	1.40
1900	40.0	1.40
2000	40.0	1.40
2100	39.8	1.49
2300	39.5	1.67
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
6000	35.1	5.48

NOTE—For convenience, permittivity and conductivity values at some frequencies that are not part of the original data from Drossos et al. [B60] or the extension to 5800 MHz are provided (i.e., the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6000 MHz that were linearly extrapolated from the values at 3000 MHz and 5800 MHz.

4. EQUIPMENT LIST AND CALIBRATION

4.1 Equipments List & Calibration Information


Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.10	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 4.5.12	1470	NCR	NCR
Data Acquisition Electronics	DAE4	772	2025/2/17	2026/2/16
E-Field Probe	ES3DV3	3220	2024/10/15	2025/10/14
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
Twin SAM	Twin SAM V5.0	1874	NCR	NCR
Dipole, 2450 MHz	D2450V2	971	2024/6/15	2027/6/14
Simulated Tissue Liquid Head	HBBL600-10000V6	SL AAH U16 BC (Batch:220809-1)	Each Time	/
Network Analyzer	8753C +85047A	3029A01355 +3033A02857	2025/5/9	2026/5/8
Dielectric assessment kit	1253	SM DAK 040 CA	NCR	NCR
synthesized signal generator	8665B	3438a00584	2024/10/18	2025/10/17
EPM Series Power Meter	E4419B	MY45103907	2024/10/18	2025/10/17
Power Sensor	8482A	US37296108	2024/10/19	2025/10/18
Power Meter	EPM-441A	GB37481494	2024/10/19	2025/10/18
USB Wideband Power Sensor	U2022XA	MY54170006	2024/10/18	2025/10/17
Power Amplifier	ZHL-5W-202-S+	416402204	NCR	NCR
Power Amplifier	ZVE-6W-83+	637202210	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR
Thermometer	DTM3000	3635	2024/8/12	2025/8/11
Hygrothermograph	HTC-2	EM072	2024/11/4	2025/11/3
Spectrum Analyzer	FSV40	101461	2024/9/5	2025/9/4

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report Template Version: FCC SAR-V1.0 Page 14 of 35

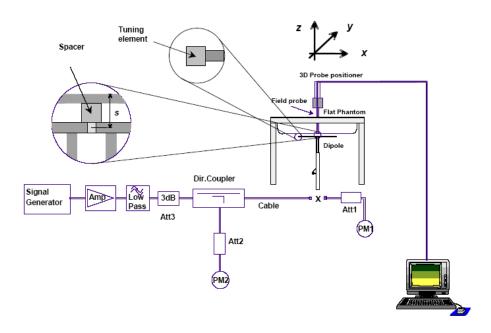
5. SAR MEASUREMENT SYSTEM VERIFICATION

5.1 Liquid Verification

5.2 Liquid Verification Results

Frequency	I ionid Tema	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	$\mathbf{\epsilon}_{\mathrm{r}}$	O' (S/m)	$\mathbf{\epsilon}_{\mathrm{r}}$	O' (S/m)	$\Delta \epsilon_{ m r}$	ΔΟ (S/m)	(%)
2402	Simulated Tissue Liquid Head	41.022	1.797	39.3	1.76	4.38	2.1	±5
2412	Simulated Tissue Liquid Head	40.892	1.809	39.28	1.77	4.1	2.2	±5
2437	Simulated Tissue Liquid Head	40.781	1.84	39.23	1.79	3.95	2.79	±5
2441	Simulated Tissue Liquid Head	40.754	1.846	39.22	1.79	3.91	3.13	±5
2450	Simulated Tissue Liquid Head	40.699	1.859	39.2	1.8	3.82	3.28	±5
2462	Simulated Tissue Liquid Head	40.681	1.869	39.18	1.81	3.83	3.26	±5
2480	Simulated Tissue Liquid Head	40.613	1.889	39.16	1.83	3.71	3.22	±5

^{*}Liquid Verification above was performed on 2025/05/23.


5.3 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the **System Verification Setup Block Diagram** is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm} \text{ for } 1000 \text{ MHz} < f \le 3000 \text{ MHz};$
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $3000 \text{ MHz} < f \le 6000 \text{ MHz}$.

System Verification Setup Block Diagram

5.4 System Accuracy Check Results

Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	Measured SAR (W/kg)		Normalized to 1W (W/kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2025/05/23	2450	Head	100	10g	2.37	23.7	24.8	-4.44	±10

Note:

All the SAR values are normalized to 1Watt forward power.

5.5 SAR SYSTEM VALIDATION DATA

System Performance 2450 MHz Head

DUT: D2450V2; Type: 2450 MHz; Serial: 971

Communication System: CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.859 \text{ S/m}$; $\varepsilon_r = 40.699$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

DASY5 Configuration:

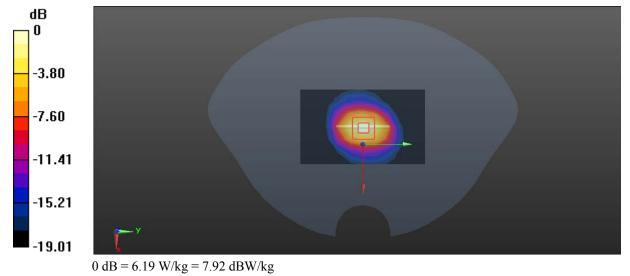
- Probe:ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @2450 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.14 (7501)

Area Scan(7x10x1):Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 6.08 W/kg

Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =60.42 V/m; Power Drift = 0.13 dB


Peak SAR (extrapolated) = 9.33 W/kg

SAR(1 g) = 4.91 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 62.6%

Maximum value of SAR (measured) = 6.19 W/kg

6. EUT TEST STRATEGY AND METHODOLOGY

6.1 Test positions for Limb-worn device

A limb-worn device is a unit whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode). It is similar to a body-worn device.

Therefore, the test positions of 6.1.4.4 also apply. The strap shall be opened so that it is divided into two parts as shown in Figure 10. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom.

If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna.

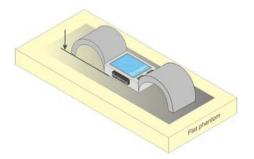


Figure 10 - Test position for limb-worn devices

6.2 Test Distance for SAR Evaluation

For Limb mode(10g Extremity SAR) the EUT is set 0mm away from the phantom, the test distance is 0mm.

Report Template Version: FCC SAR-V1.0

6.3 SAR Evaluation Procedure

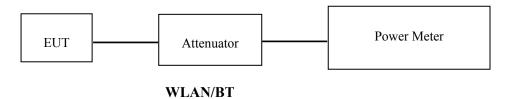
The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No.: 2502S52595E-20A

- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points $(10 \times 10 \times 10)$ were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.


Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

Report Template Version: FCC SAR-V1.0 Page 19 of 35

7. CONDUCTED OUTPUT POWER MEASUREMENT

7.1 Test Procedure

The RF output of the transmitter was connected to the input port of the Power Meter through attenuator.

7.2 Maximum Target Output Power

Max Target Power(dBm)									
Mode/Band	Channel								
Mode/Band	Low	Middle	High						
WLAN 2.4G(802.11b)	16	16	16						
WLAN 2.4G(802.11g)	15	15	15						
WLAN 2.4G(802.11n ht20)	15	15	15						
WLAN 2.4G(802.11ax20)	8	8	8						
BT BDR(GFSK)	11	11	11						
BT EDR(π/4-DQPSK)	10	10	10						
BT EDR(8DPSK)	10	10	10						
BLE 1Mbps	11	11	11						
BLE 2Mbps	11	11	11						

7.3 Test Results:

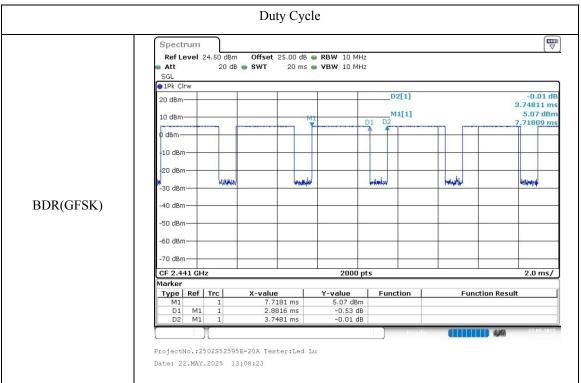
WLAN: 2.4G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)
	2412			15.59
802.11b	2437	1Mbps	99.50	15.73
	2462			15.70
	2412			14.43
802.11g	2437	6Mbps	95.96	14.73
	2462			14.69
	2412			14.30
802.11n ht20	2437	MCS0	96.81	14.57
	2462			14.74
	2412			7.66
802.11ax20	2437	MCS0	36.14	7.82
	2462			7.90

Note:

Bluetooth:

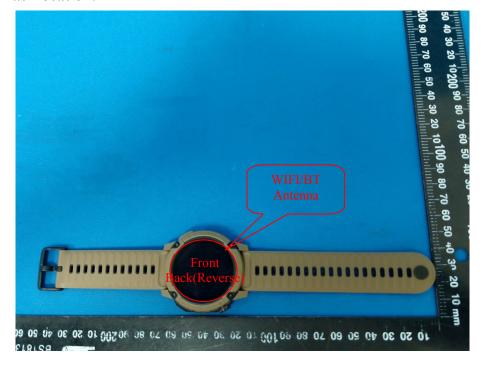
Mode	Channel frequency (MHz)	RF Output Power (dBm)		
	2402	10.95		
BDR(GFSK)	2441	10.83		
	2480	10.72		
	2402	9		
EDR(π/4-DQPSK)	2441	8.88		
	2480	8.72		
	2402	9.26		
EDR(8DPSK)	2441	9.22		
	2480	9.10		
	2402	10.6		
BLE 1Mbps	2440	10.49		
	2480	10.36		
	2402	10.80		
BLE 2Mbps	2440	10.60		
	2480	10.57		


Note:

^{1.} The EUT was configured for testing in software SSCOM V5.13.1, which was provided by the manufacturer. the parameters were consistent with the RF report.

^{2.} The duty cycle plots, please refer to the radio report: 2502S52595E-RF-00C.

 $^{1.\} The\ EUT\ was\ configured\ for\ testing\ in\ software\ SSCOM\ V5.13.1,\ which\ was\ provided\ by\ the\ manufacturer.$ the parameters were consistent with\ the\ RF\ report.


Test Modes	Ton	Ton+off	Duty cycle	Scaled Factor
	(ms)	(ms)	(%)	(1/duty cycle)
BDR(GFSK)	2.88	3.75	76.8%	1.3

Note: The duty cycle was measured under radiation method.

8. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS

8.1 Antennas Location:

9. SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

Report No.: 2502S52595E-20A

9.1 SAR Test Data

Environmental Conditions

Environmental Temperature:	22.2-22.8 ℃
Relative Humidity:	37%
ATM Pressure:	100.6 kPa
Test Date:	2025/05/23

Testing was performed by Led Lu.

Report Template Version: FCC SAR-V1.0 Page 24 of 35

WLAN 2.4G:

Limb Mode:

			Max.	Max.		10g S	AR (W/k	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
T: 1 D 1	2412	802.11b	15.59	16	1.099	1.01	0.478	0.53	/
Limb Back (0mm)	2437	802.11b	15.73	16	1.064	1.01	0.455	0.49	/
(Ollilli)	2462	802.11b	15.70	16	1.072	1.01	0.667	0.72	1#

Note:

- 1. When the SAR value is less than half of the limit, testing for other channels are optional.
- 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
- 3. For 802.11b mode power is the largest among 802.11b/g/n/ax, 802.11b mode as initial test configuration is selected to test.
- 4. According KDB 248227 D01, for SAR testing of WLAN with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

Report Template Version: FCC SAR-V1.0

Bluetooth:

Limb Mode:

			Max.	Max.		10g S	AR (W/k	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
I. 1 D 1	2402	GFSK	10.95	11	1.012	1.3	0.032	0.04	/
Limb Back	2441	GFSK	10.83	11	1.04	1.3	0.033	0.04	/
(0mm)	2480	GFSK	10.72	11	1.067	1.3	0.033	0.05	2#

Note:

- 1. When the SAR value is less than half of the limit, testing for other channels are optional.
- 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
- 3. For GFSK mode power is the largest among GFSK, $\pi/4$ -DQPSK, 8DPSK and BLE, GFSK mode as initial test configuration is selected to test.
- 4. According TCB Workshop October 2016, for SAR testing of BT with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

10. MEASUREMENT VARIABILITY

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

Report No.: 2502S52595E-20A

Page 27 of 35

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Head

SAR probe calibration point	Frequency Band	Freq.(MHz)	EUT Position	Meas. SAR (W/kg) Original Repeated		Largest to Smallest SAR Ratio
/	/	/	/	/	/	/

Body

SAR probe	Frequency Band	Freq.(MHz)	EUT Position	Meas. SA	R (W/kg)	Largest to Smallest
calibration point	Trequency Bana	1104.(11112)	201100000	Original	Repeated	SAR Ratio
/	/	/	/	/	/	/

Note:

- 1. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.
- SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements.

Report Template Version: FCC SAR-V1.0

11. DUT HOLDER PERTURBATIONS

In accordance with TCB workshop October 2016:

1) SAR perturbation due to test device holders, depending on antenna locations, buttons locations on phones or device, form factor (e.g. dongles etc.), the measured SAR could be influenced by the relative positions of the test device and its holder

Report No.: 2502S52595E-20A

- 2) SAR measurement standards have included protocols to evaluate this with a flat phantom, with and without the device holder
- 3) When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands in the same exact device and holder positions used for head and body SAR measurements; i.e. same device/button locations in the holder

Per IEEE 1528: 2013/Annex E/E.4.1.1: Device holder perturbation tolerance for a specific test device: Type B When it is unknown if a device holder perturbs the fields of a test device, the SAR uncertainty shall be assessed with a flat phantom (see Clause 5) by comparing the SAR with and without the device holder according to the following tests:

The SAR tolerance for device holder disturbance is computed using Equation (E.21) and entered in the corresponding row of the appropriate uncertainty table with an assumed rectangular probability distribution and $vi = \infty$ degrees of freedom:

$$SAR_{\text{tolerance}} \left[\% \right] = 100 \times \left(\frac{SAR_{\text{w/ holder}} - SAR_{\text{w/o holder}}}{SAR_{\text{w/o holder}}} \right)$$
(E.21)

The Highest Measured SAR Configuration among all applicable Frequency Band

European Pond Europ (MH-) FITT Bo		FUT Dogiđiou	Meas. SAR (W/kg)		The Device holder		
Frequency Band	Freq.(MHz)	EUT Position	With holder	Without holder	perturbation uncertainty		
/	/ /		/	/	/		

Report Template Version: FCC SAR-V1.0 Page 28 of 35

12. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

12.1 Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities							
Transmitter Combination Simultaneous? Hotspot							
WLAN 2.4G+ Bluetooth	×	×					

Report No.: 2502S52595E-20A

Report Template Version: FCC SAR-V1.0 Page 29 of 35

APPENDIX A - MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Measurement uncertainty evaluation for IEEE1528-2013 SAR test											
Uncertainty component	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)				
Measurement system											
Probe calibration(k=1)	6.55	N	1	1	1	6.6	6.6				
Axial isotropy	4.7	R	√3	√0.5	√0.5	1.9	1.9				
Hemispherical isotropy	9.6	R	√3	√0.5	√0.5	3.9	3.9				
Boundary effect	1.0	R	√3	1	1	0.6	0.6				
Linearity	4.7	R	√3	1	1	2.7	2.7				
System detection limits	1.0	R	√3	1	1	0.6	0.6				
Modulation response	0.0	R	√3	1	1	0.0	0.0				
Readout electronics	0.3	N	1	1	1	0.3	0.3				
Response time	0.0	R	√3	1	1	0.0	0.0				
Integration time	0.0	R	√3	1	1	0.0	0.0				
RF ambient conditions-noise	1.0	R	√3	1	1	0.6	0.6				
RF ambient conditions-reflections	1.0	R	√3	1	1	0.6	0.6				
Probe positioner mech.tolerance	0.8	R	√3	1	1	0.5	0.5				
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9				
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	2.0	R	√3	1	1	1.2	1.2				
		Test sample	related								
Test sample positioning	3.3	N	1	1	1	3.3	3.3				
Device holder uncertainty	4.7	N	1	1	1	4.7	4.7				
Output power variation –SAR draft measurement	5.0	R	√3	1	1	2.9	2.9				
SAR scaling	2.8	R	√3	1	1	1.6	1.6				
	Phan	tom and tissu	e paramete	ers							
Phantom shell uncertainty– shape, thickness and permittivity	4.0	R	√3	1	1	2.3	2.3				
Uncertainty in SAR correction for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.9	1.6				
Liquid conductivity meas.	2.5	N	1	0.78	0.71	2.0	1.8				
Liquid permittivity meas.	2.5	N	1	0.23	0.26	0.6	0.7				
Liquid conductivity – temperature uncertainty	1.7	R	√3	0.78	0.71	0.8	0.7				
Liquid permittivity – temperature uncertainty	0.3	R	√3	0.23	0.26	0.0	0.0				
Combined standard uncertainty		RSS				12.1	12.0				
Expanded uncertainty (95 % confidence interval)		k=2				24.2	24.0				

Report Template Version: FCC SAR-V1.0

Page 30 of 35

APPENDIX B - SAR PLOTS

Test Plot 1#: WLAN 2.4G High Limb Back

DUT: COROS NOMAD; Type: W942; Serial: 317C-1

Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1.01 Medium parameters used: f = 2462 MHz; $\sigma = 1.869$ S/m; $\varepsilon_r = 40.681$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

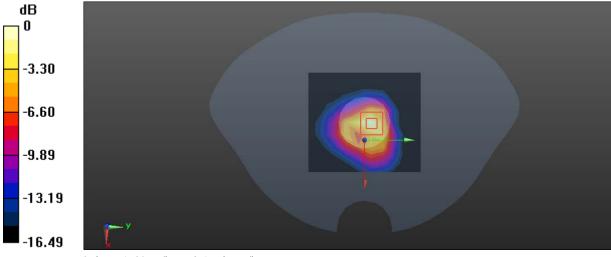
DASY5 Configuration:

- Probe: ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @ 2462 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.61 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.75 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 g) = 1.3 W/kg; SAR(10 g) = 0.667 W/kg

Smallest distance from peaks to all points 3 dB below = 7.6 mm

Ratio of SAR at M2 to SAR at M1 = 67.7%

Maximum value of SAR (measured) = 1.64 W/kg

0 dB = 1.64 W/kg = 2.15 dBW/kg

Test Plot 2#: BT High Limb Back

DUT: COROS NOMAD; Type: W942; Serial: 317C-1

Communication System: UID 0, Bluetooth(GFSK) (0); Frequency: 2480 MHz; Duty Cycle: 1:1.3 Medium parameters used: f = 2480 MHz; $\sigma = 1.889 \text{ S/m}$; $\varepsilon_r = 40.613$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

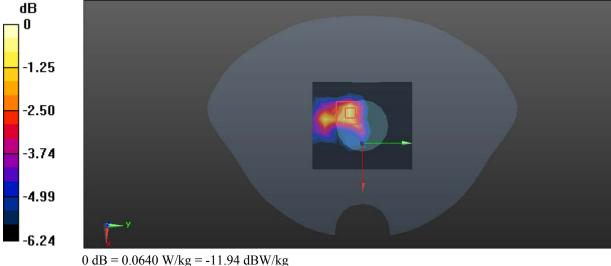
DASY5 Configuration:

- Probe: ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @ 2480 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0518 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.515 V/m; Power Drift = -0.13 dB


Peak SAR (extrapolated) = 0.0800 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.033 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm)

Ratio of SAR at M2 to SAR at M1 = 73%

Maximum value of SAR (measured) = 0.0640 W/kg

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: 2502S52595E-20A
APPENDIX C - EUT TEST POSITION PHOTO	<u>OS</u>
Please refer to the attachment.	
rease refer to the attachment.	

Page 33 of 35

Report Template Version: FCC SAR-V1.0

APPENDIX D - PROBE CALIBRATION CER	KIIIICAIES
Please refer to the attachment.	

Da-		Carre	1:	T ala ama	4	Came	(Dar	ngguan)	
D۵۱	Alta	COIIIL	manice	Lauora	lones	COLD. (וטעו	igguaiii	

APPENDIX E - DIPOLE CALIBRATION CERTIFICATES

Please refer to the attachment.

*****END OF REPORT****

Report No.: 2502S52595E-20A

Report Template Version: FCC SAR-V1.0 Page 35 of 35