

AF61Y Hardware Design

Automotive Wi-Fi&Bluetooth Module Series

Version: 1.0

Date: 2024-02-07

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236

Email: info@quectel.com

Or our local offices. For more information, please visit:

<http://www.quectel.com/support/sales.htm>.

For technical support, or to report documentation errors, please visit:

<http://www.quectel.com/support/technical.htm>.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2024. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2023-05-06	Isabella LI/ Ashley HUANG/ Morris XIAO	Creation of the document
1.0	2024-02-07	Isabella LI/ Gwara ZHANG/ Morris XIAO	First official release

Contents

Safety Information.....	3
About the Document.....	4
Contents	5
Table Index.....	7
Figure Index	8
1 Introduction	9
1.1. Special Mark.....	9
2 Product Overview	10
2.1. Key Features	10
2.2. Functional Diagram	12
2.3. Pin Assignment.....	13
2.4. Pin Description	14
2.5. EVB Kit	17
3 Operating Characteristics.....	18
3.1. Power Supply	18
3.1.1. Power Supply Interfaces	18
3.1.2. Reference Design for Power Supply.....	18
3.1.3. Power-up/-down Timing	19
3.2. Bootstrap Pins	20
4 Application Interfaces	21
4.1. Wi-Fi Application Interfaces.....	21
4.1.1. WLAN_EN	21
4.1.2. PCIe Interface	22
4.2. Bluetooth Application Interfaces.....	23
4.2.1. BT_EN.....	24
4.2.2. PCM Interface	24
4.2.3. Bluetooth UART	27
4.3. Coexistence UART Interface.....	29
4.4. Other Interfaces.....	29
4.4.1. BT_WAKE_HOST*	29
4.4.2. WLAN_SLP_CLK*	30
5 RF Specifications.....	31
5.1. RF Antenna Interfaces	31
5.1.1. Antenna Interfaces & Frequency Bands	31
5.1.2. Reference Design	32
5.2. RF Performance	33
5.2.1. Wi-Fi Performance	33
5.2.1.1. Transmit Power.....	33
5.2.1.2. Receiver Sensitivity	34

5.2.2. Bluetooth Performance	35
5.3. RF Routing Guidelines	36
5.4. Antenna Design Requirements	38
5.5. RF Connector Recommendation	39
6 Electrical Characteristics and Reliability	40
6.1. Electrical Characteristics	40
6.2. Power Consumption	41
6.3. Digital I/O Characteristics	42
6.4. ESD Protection	42
6.5. Operating and Storage Temperatures	43
6.6. Thermal Dissipation	43
7 Mechanical Information	45
7.1. Mechanical Dimensions	45
7.2. Recommended Footprint	47
7.3. Top and Bottom Views	48
8 Storage, Manufacturing & Packaging	49
8.1. Storage Conditions	49
8.2. Manufacturing and Soldering	50
8.3. Packaging Specification	52
8.3.1. Carrier Tape	52
8.3.2. Plastic Reel	53
8.3.3. Mounting Direction	53
8.3.4. Packaging Process	54
9 Appendix References	55

Table Index

Table 1: Special Mark.....	9
Table 2: Basic Information.....	10
Table 3: Key Features	10
Table 4: Parameter Definition.....	14
Table 5: Pin Description	14
Table 6: Power Supply and GND Pins	18
Table 7: Bootstrap Pins	20
Table 8: Pin Definition of WLAN_EN.....	21
Table 9: Pin Definition of PCIe Interface	22
Table 10: Pin Definition of BT_EN.....	24
Table 11: Pin Definition of PCM Interface	24
Table 12: PCM Timing Parameter (Slave Mode)	26
Table 13: PCM Timing Parameter (Master Mode)	27
Table 14: Pin Definition of Bluetooth UART	27
Table 15: Pin Definition of Coexistence UART Interface	29
Table 16: Pin Definition of BT_WAKE_HOST	29
Table 17: Pin Definition of WLAN_SLP_CLK.....	30
Table 18: Pin Definition of RF Antenna Interfaces	31
Table 19: Operating Frequency (Unit: GHz)	31
Table 20: Conducted RF Transmit Power at 2.4 GHz (Unit: dBm)	33
Table 21: Conducted RF Transmit Power at 5 GHz (Unit: dBm)	34
Table 22: Conducted RF Receiver Sensitivity at 2.4 GHz (Unit: dBm).....	34
Table 23: Conducted RF Receiver Sensitivity at 5 GHz (Unit: dBm).....	35
Table 24: Bluetooth Transmitting and Receiver Performance	35
Table 25: Antenna Design Requirements	38
Table 26: Absolute Maximum Ratings (Unit: V)	40
Table 27: Recommended Operating Conditions (Unit: V).....	40
Table 28: Wi-Fi Power Consumption of the Module (Normal Operation Mode; Unit: mA)	41
Table 29: VDD_IO I/O Requirements.....	42
Table 30: ESD Characteristics (Temperature: 25–30 °C, Humidity: 40 % \pm 5 %; Unit: kV).....	42
Table 31: Operating and Storage Temperatures (Unit: °C).....	43
Table 32: Recommended Thermal Profile Parameters.....	51
Table 33: Carrier Tape Dimension Table (Unit: mm)	52
Table 34: Plastic Reel Dimension Table (Unit: mm).....	53
Table 35: Related Documents	55
Table 36: Terms and Abbreviations	55

Figure Index

Figure 1: Functional Diagram.....	12
Figure 2: Pin Assignment (Top View)	13
Figure 3: Reference Design of Power Supply.....	19
Figure 4: Power-up and Power-down Timing.....	19
Figure 5: Block Diagram of Wi-Fi Application Interface Connection.....	21
Figure 6: PCIe Interface Connection.....	22
Figure 7: Block Diagram of Bluetooth Application Interface Connection	23
Figure 8: Block Diagram of PCM Interface (Slave Mode).....	25
Figure 9: Block Diagram of PCM Interface (Master Mode).....	25
Figure 10: Voltage-level Translator for PCM Interface.....	25
Figure 11: PCM Timing (Slave Mode)	26
Figure 12: PCM Timing (Master Mode)	27
Figure 13: Block Diagram of Bluetooth UART Connection.....	28
Figure 14: Voltage-level Translator for UART	28
Figure 15: Block Diagram of Coexistence UART Interface Connection	29
Figure 16: Reference Design of RF Antenna Interfaces	32
Figure 17: Reference Design of RF Antenna Interfaces (Vehicle Applications)	33
Figure 18: Microstrip Design on a 2-layer PCB	36
Figure 19: Coplanar Waveguide Design on a 2-layer PCB	36
Figure 20: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground).....	37
Figure 21: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground).....	37
Figure 22: Feature of the HFM Connector	39
Figure 23: Heatsink Design Example.....	44
Figure 24: Top and Side Dimensions	45
Figure 25: Bottom Dimensions (Bottom View)	46
Figure 26: Recommended Footprint	47
Figure 27: Top and Bottom Views of the Module	48
Figure 28: Recommended Reflow Soldering Thermal Profile	50
Figure 29: Carrier Tape Dimension Drawing (Unit: mm).....	52
Figure 30: Plastic Reel Dimension Drawing	53
Figure 31: Mounting Direction	53
Figure 32: Packaging Process	54

1 Introduction

This document describes the AF61Y features, performance, and air interfaces and hardware interfaces connected to your applications. The document provides a quick insight into interface specifications, RF performance, electrical and mechanical specifications, and other module information as well.

1.1. Special Mark

Table 1: Special Mark

Mark	Definition
*	Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, command, argument, and so on indicates that it is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable.

2 Product Overview

AF61Y is an automotive Wi-Fi and Bluetooth module with low power consumption and high performance. It is compliant with IEEE 802.11a/b/g/n/ac and Bluetooth 5.2 standard protocols. The module provides a PCIe interface for Wi-Fi application and UART and PCM interfaces for Bluetooth application, and it also supports a WWAN & WLAN/Bluetooth coexistence interface. It is an SMD module with compact packaging. Related information is listed in the table below:

Table 2: Basic Information

AF61Y	
Packaging type	LGA
Pin counts	112
Dimensions	(23.0 ±0.2) mm × (23.0 ±0.2) mm × (3.0 ±0.2) mm
Weight	Approx. 3.58 g

2.1. Key Features

Table 3: Key Features

Category	Description
Supply Voltages	<p>VDD_CORE:</p> <ul style="list-style-type: none">● 1.71–1.89 V● Typical: 1.8 V <p>VDD_IO:</p> <ul style="list-style-type: none">● 1.62–1.98 V● Typical: 1.8 V <p>VDD_PA:</p> <ul style="list-style-type: none">● 2.09–2.31 V● Typical: 2.2 V

Operating Frequencies	Wi-Fi: <ul style="list-style-type: none"> ● 2.4 GHz: 2.400–2.4835 GHz ● 5 GHz: 5.150–5.850 GHz Bluetooth: <ul style="list-style-type: none"> ● 2.402–2.480 GHz
Wi-Fi Data Rates	2.4 GHz: <ul style="list-style-type: none"> ● 802.11b: 1 Mbps, 2 Mbps, 5.5 Mbps, 11 Mbps ● 802.11g: 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, 54 Mbps ● 802.11n: HT20 (MCS 0–7), HT40 (MCS 0–7) 5 GHz: <ul style="list-style-type: none"> ● 802.11a: 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, 54 Mbps ● 802.11n: HT20 (MCS 0–7), HT40 (MCS 0–7) ● 802.11ac: VHT20 (MCS 0–8), VHT40 (MCS 0–9), VHT80 (MCS 0–9)
Wi-Fi Transmit Power	2.4 GHz: <ul style="list-style-type: none"> ● 802.11b @ 11 Mbps: 17.5 dBm ● 802.11g @ 54 Mbps: 15 dBm ● 802.11n @ HT20 MCS 7: 13.5 dBm ● 802.11n @ HT40 MCS 7: 12 dBm 5 GHz: <ul style="list-style-type: none"> ● 802.11a @ 54 Mbps: 13 dBm ● 802.11n @ HT20 MCS 7: 12.5 dBm ● 802.11n @ HT40 MCS 7: 12 dBm ● 802.11ac @ VHT20 MCS 8: 11.5 dBm ● 802.11ac @ VHT40 MCS 9: 10 dBm ● 802.11ac @ VHT80 MCS 9: 9.5 dBm
Wi-Fi Protocol Features	The module complies with IEEE 802.11a/b/g/n/ac protocol
Wi-Fi Modulations	CCK, BPSK, QPSK, 16QAM, 64QAM and 256QAM
Wi-Fi Operating Modes	AP and STA
Bluetooth Protocol Features	Bluetooth 5.2
Bluetooth Modulations	GFSK, 8-DPSK and π/4-DQPSK
Bluetooth Operating Modes	<ul style="list-style-type: none"> ● Bluetooth Classic (BR + EDR) ● Bluetooth Low Energy (BLE)
Wi-Fi & Bluetooth Application Interfaces	<ul style="list-style-type: none"> ● PCIe interface: for Wi-Fi application ● UART & PCM interfaces: for Bluetooth application ● Bluetooth & Wi-Fi 0 antenna interface (ANT_WIFI0) ● Wi-Fi 1 antenna interface (ANT_WIFI1) ● Reserved dedicated Bluetooth antenna interface (ANT_BT*)
Antenna Interfaces	

	<ul style="list-style-type: none"> 50 Ω characteristic impedance
Temperature Ranges	<ul style="list-style-type: none"> Normal operating temperature ¹: -40 °C to +85 °C Storage temperature: -40 °C to +90 °C
RoHS	All hardware components are fully compliant with EU RoHS directive

2.2. Functional Diagram

The functional diagram illustrates the following major functional parts:

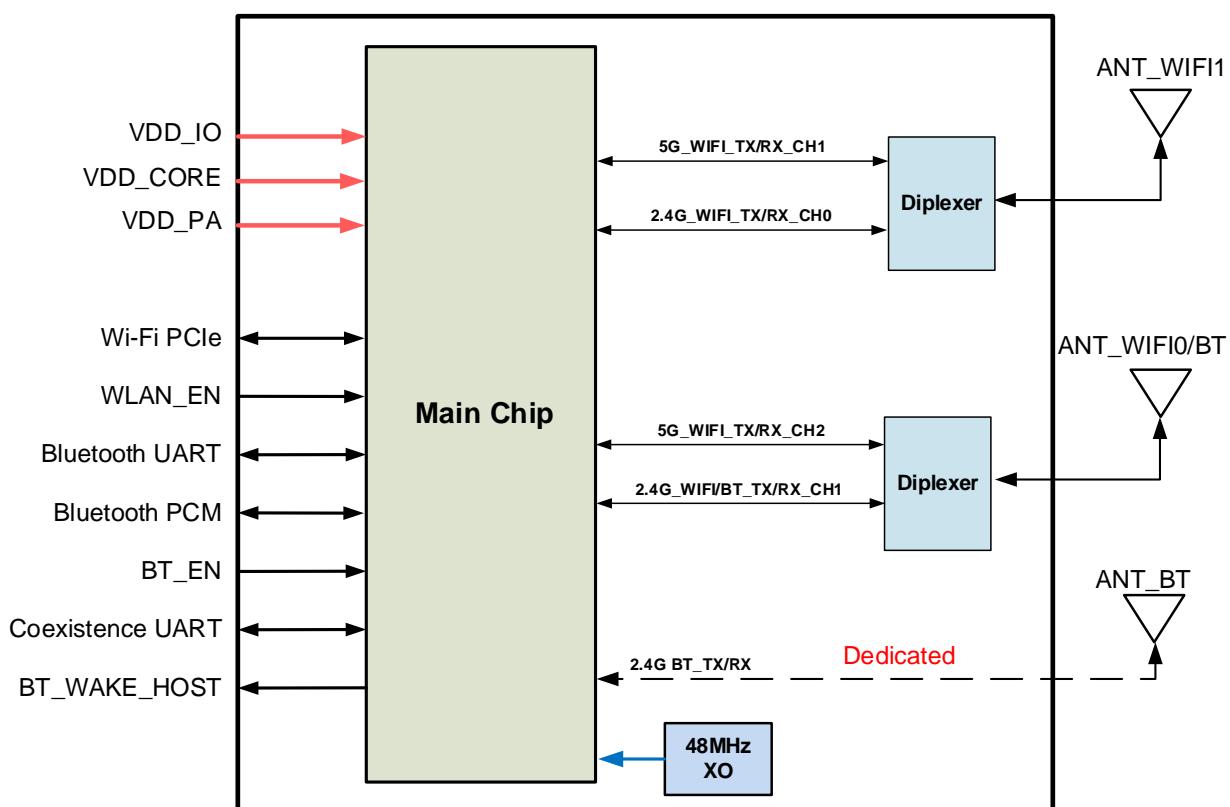


Figure 1: Functional Diagram

¹ Within this operating temperature range, the module's related performance meets IEEE and Bluetooth specifications.

2.3. Pin Assignment

Figure 2: Pin Assignment (Top View)

NOTE

1. Keep all RESERVED and unused pins unconnected.
2. All GND pins should be connected to ground.

2.4. Pin Description

Table 4: Parameter Definition

Parameter	Description
AI	Analog Input
AO	Analog Output
AIO	Analog Input/Output
DI	Digital Input
DO	Digital Output
PI	Power Input

DC characteristics include power domain and rated current.

Table 5: Pin Description

Power Supply and GND					
Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
VDD_CORE	77, 83	PI	Main power supply for the module	Vmin = 1.71 V Vnom = 1.8 V Vmax = 1.89 V	It must be provided with sufficient current up to 1.3 A.
VDD_PA	101, 102, 105, 106	PI	Power supply for RF	Vmin = 2.09 V Vnom = 2.2 V Vmax = 2.31 V	It must be provided with sufficient current up to 1.5 A.
VDD_IO	71	PI	Power supply for the module's I/O pins	Vmin = 1.62 V Vnom = 1.8 V Vmax = 1.98 V	It must be provided with sufficient current up to 50 mA.
GND	6, 11, 14, 17, 23, 26, 29, 36, 38, 43, 44, 46, 47, 52, 53, 55, 56, 67, 70, 78, 80–82, 84, 87, 88, 90–100, 103, 104, 107–112				

Bluetooth Application Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment

BT_EN	69	DI	Bluetooth enable control	Active high.
PCM_SYNC	5	DIO	PCM data frame sync	In master mode, it is an output signal. In slave mode, it is an input signal. Please ensure that the level logic is low during boot-up.
PCM_CLK	4	DIO	PCM clock	In master mode, it is an output signal. In slave mode, it is an input signal.
PCM_DIN	2	DI	PCM data input	VDD_IO If unused, keep it open.
PCM_DOUT	3	DO	PCM data output	Please ensure that the level logic is high during boot-up.
BT_TXD	74	DO	Bluetooth UART transmit	Please ensure that the level logic is high during boot-up.
BT_RXD	75	DI	Bluetooth UART receive	
BT_RTS	72	DO	Request to send signal from the module	Please ensure that the level logic is high during boot-up.
BT_CTS	73	DI	Clear to send signal to the module	

Wi-Fi Application Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
WLAN_EN	68	DI	WLAN function enable control	VDD_IO	Active high.
PCIE_REFCLK_P	19	AI	PCIe reference clock (+)		
PCIE_REFCLK_M	18	AI	PCIe reference clock (-)		Require differential impedance of 100 Ω.
PCIE_TX_M	16	AO	PCIe transmit (-)		PCIe Gen 2 compliant.
PCIE_TX_P	15	AO	PCIe transmit (+)		
PCIE_RX_M	13	AI	PCIe receive (-)		

PCIE_RX_P	12	AI	PCIe receive (+)	
PCIE_CLKREQ_N	9	DO	PCIe clock request	
PCIE_RST_N	7	DI	PCIe reset	VDD_IO
PCIE_WAKE_N	8	DO	PCIe wake up	

RF Antenna Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
ANT_WIFI0	45	AIO	Bluetooth & 2.4 GHz/5 GHz Wi-Fi 0 antenna interface		
ANT_WIFI1	54	AIO	2.4 GHz/5 GHz Wi-Fi 1 antenna interface		50 Ω characteristic impedance.
ANT_BT*	37	AIO	Reserved dedicated Bluetooth antenna interface		

Coexistence UART Interface

Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
COEX_TXD	76	DO	WWAN & WLAN/Bluetooth coexistence transmit	VDD_IO	Please ensure that the level logic is high during boot-up. If unused, keep it open.
COEX_RXD	1	DI	WWAN & WLAN/Bluetooth coexistence receive		If unused, keep it open.

WLAN_SLP_CLK Interface*

Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment
WLAN_SLP_CLK	22	DI	WLAN sleep clock	1.8 V	Internal sleep clock is used by default. Keep it open.

Control Signal Interface*

Pin Name	Pin No.	I/O	Description	DC Characteristic	Comment

BT_WAKE_HOST	39	DO	Bluetooth wake up host	1.8 V	Please ensure that the level logic is low during boot-up.
--------------	----	----	------------------------	-------	---

Reserved Pins

Pin Name	Pin No.	Comment
RESERVED	10, 20, 21, 24, 25, 27, 28, 30–35, 40–42, 48–51, 57–66, 79, 85, 86, 89	Keep them open.

2.5. EVB Kit

Quectel supplies an evaluation board (V2X&5G EVB) with accessories to develop and test the module. For more details, see [document \[1\]](#).

3 Operating Characteristics

3.1. Power Supply

3.1.1. Power Supply Interfaces

The following table shows the power supply and ground pins of the module.

Table 6: Power Supply and GND Pins

Pin Name	Pin No.	Description	Min.	Typ.	Max.	Unit
VDD_CORE	77, 83	Main power supply for the module	1.71	1.8	1.89	V
VDD_PA	101, 102, 105, 106	Power supply for RF	2.09	2.2	2.31	V
VDD_IO	71	Power supply for the module's I/O pins	1.62	1.8	1.98	V
GND	6, 11, 14, 17, 23, 26, 29, 36, 38, 43, 44, 46, 47, 52, 53, 55, 56, 67, 70, 78, 80–82, 84, 87, 88, 90–100, 103, 104, 107–112					

3.1.2. Reference Design for Power Supply

The module is powered by VDD_CORE and VDD_PA. It is recommended to use a power supply chip with maximum output current up to 1.3 A for VDD_CORE, and a power supply chip with maximum output current up to 1.5 A for VDD_PA. For better power supply performance, it is recommended to parallel a 100 μ F decoupling capacitor and 22 μ F, 100 nF, 33 pF and 10 pF filter capacitors near the input terminal of the VDD_CORE and VDD_PA. Meanwhile, it is suggested to add a TVS component near the input terminal of the VDD_CORE and VDD_PA to improve the surge voltage bearing capacity of the module. As per design rules, the longer the traces of the VDD_CORE and VDD_PA are, the wider they should be.

Reference circuit of the input terminal of the VDD_CORE and VDD_PA is shown in the figure below:

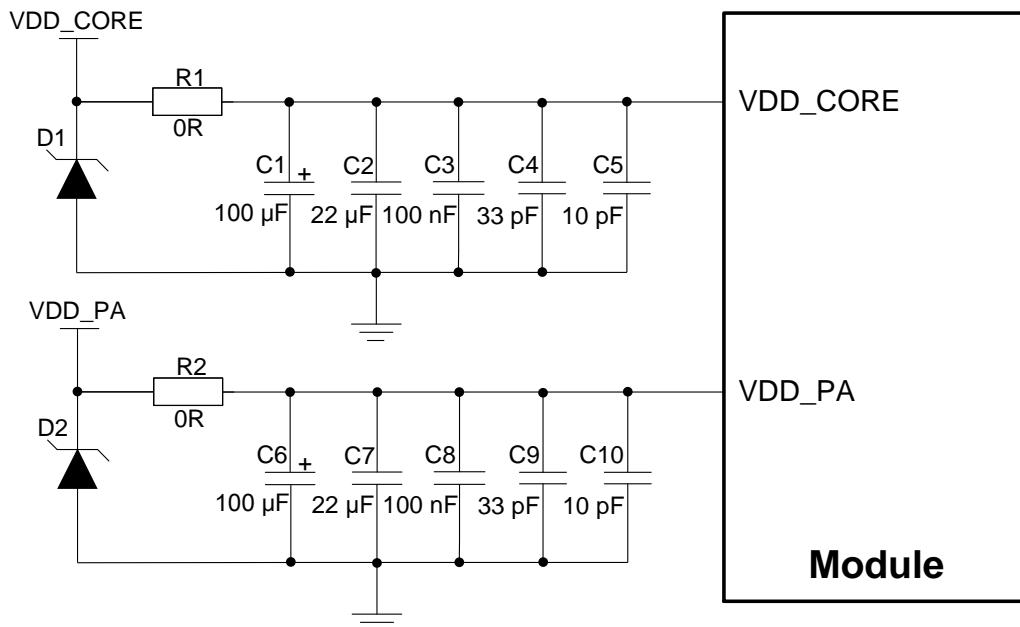


Figure 3: Reference Design of Power Supply

3.1.3. Power-up/-down Timing

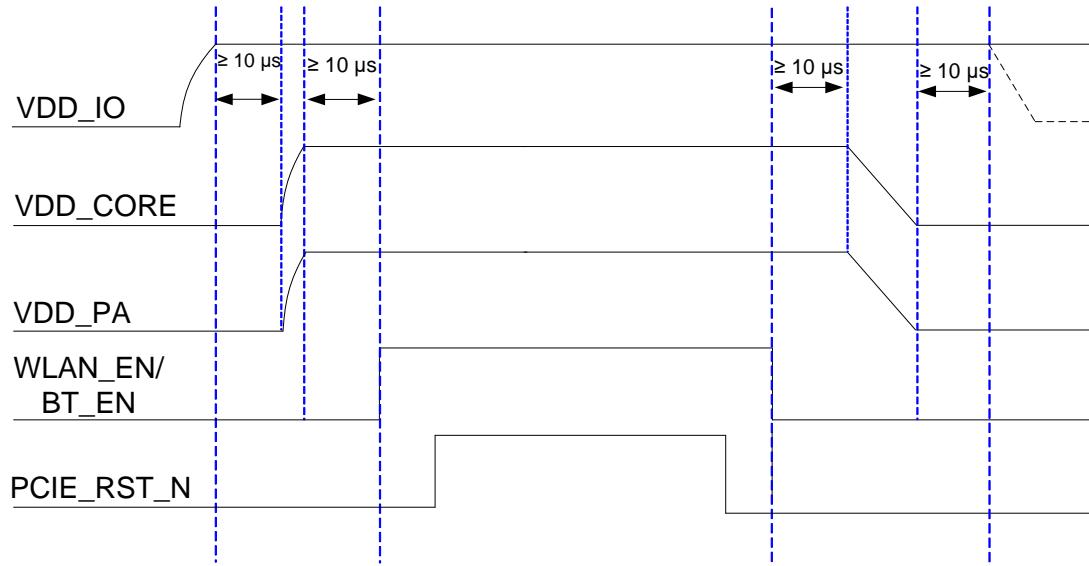


Figure 4: Power-up and Power-down Timing

3.2. Bootstrap Pins

Bootstrap pins are essential for operational boot-up. If it is designed incorrectly, the module will go into a non-operational mode. Bootstrap pins are sampled within 100 ms after the first enable pin (either WLAN_EN or BT_EN) is pulled high. The bootstrap level will be latched until the module is powered up again.

Table 7: Bootstrap Pins

Pin Name	Pin No.	A 10 kΩ Pull-up		Comment
		Resister Inside the Module		
PCM_DOUT	3	√		Please ensure that the level logic is high during boot-up, so do not add a pull-down resistor or connect it to GND outside the module.
PCM_SYNC	5	-		Please ensure that the level logic is low during boot-up, so it is recommended to add a 10 kΩ pull-down resistor outside the module.
BT_WAKE_HOST	39	-		Please ensure that the level logic is low during boot-up, so it is recommended to add a 10 kΩ pull-down resistor outside the module.
BT_RTS	72	√		Please ensure that the level logic is high during boot-up, so do not add a pull-down resistor or connect it to GND outside the module.
BT_TXD	74	√		Please ensure that the level logic is high during boot-up, so do not add a pull-down resistor or connect it to GND outside the module.
COEX_TXD	76	√		Please ensure that the level logic is high during boot-up, so do not add a pull-down resistor or connect it to GND outside the module.

NOTE

Pay attention to the initial state of these pins on the host side.

4 Application Interfaces

4.1. Wi-Fi Application Interfaces

The following figure shows the Wi-Fi application interface connection between the module and host:

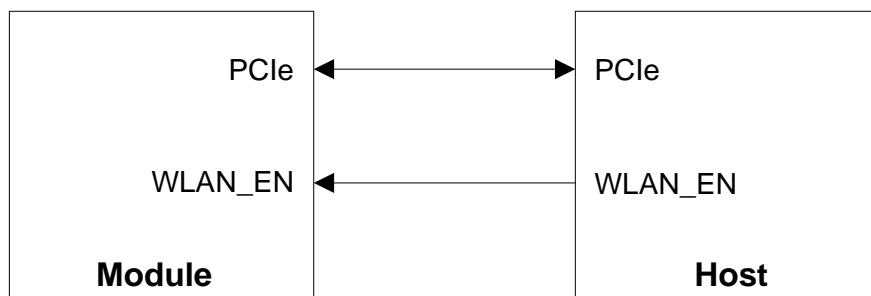


Figure 5: Block Diagram of Wi-Fi Application Interface Connection

4.1.1. WLAN_EN

WLAN enable function of the module is controlled by WLAN_EN.

Table 8: Pin Definition of WLAN_EN

Pin Name	Pin No.	I/O	Description	Comment
WLAN_EN	68	DI	WLAN function enable control	Active high.

NOTE

WLAN_EN is the sensitive signal. When routing, keep it far away from power supply traces, crystal-oscillators, magnetic devices, sensitive signals and signals like RF signals, analog signals, and noise signals generated by clock, DC-DC, etc.

4.1.2. PCIe Interface

Table 9: Pin Definition of PCIe Interface

Pin Name	Pin No.	I/O	Description	Comment
PCIE_REFCLK_P	19	AI	PCIe reference clock (+)	
PCIE_REFCLK_M	18	AI	PCIe reference clock (-)	
PCIE_TX_P	15	AO	PCIe transmit (+)	Require differential impedance of 100 Ω.
PCIE_TX_M	16	AO	PCIe transmit (-)	PCIe Gen 2 compliant.
PCIE_RX_P	12	AI	PCIe receive (+)	
PCIE_RX_M	13	AI	PCIe receive (-)	
PCIE_CLKREQ_N	9	DO	PCIe clock request	
PCIE_RST_N	7	DI	PCIe reset	VDD_IO power domain.
PCIE_WAKE_N	8	DO	PCIe wake up	

The following figure shows the PCIe interface connection between the module and host.

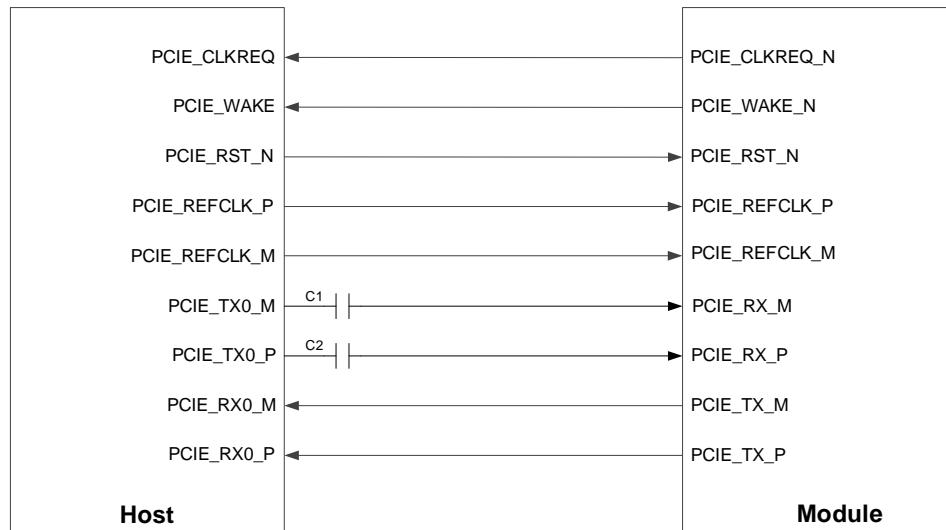
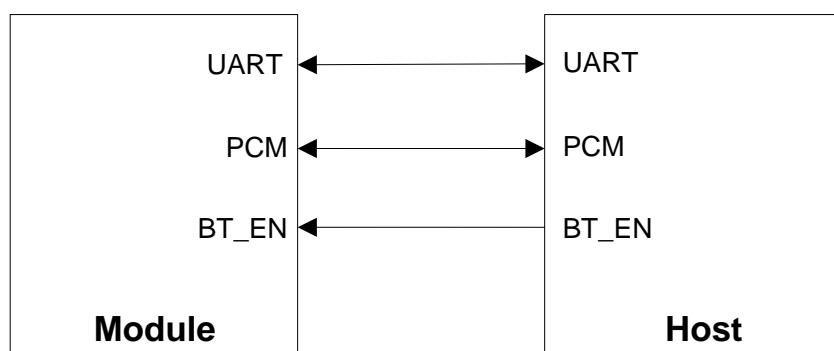


Figure 6: PCIe Interface Connection

In order to ensure the signal integrity of PCIe interface, C1 and C2 should be placed close to the host.

The following principles of PCIe interface design should be complied with to meet PCIe Gen 2 specifications.


- It is important to route the PCIe signal traces as differential pairs with total grounding. And the differential impedance is $100 \Omega \pm 10 \%$.
- For PCIe signal traces, the maximum length of each differential data pair (PCIE_TX/PCIE_RX/PCIE_REFCLK) is recommended to be less than 300 mm, and each differential data pair matching should be less than 0.7 mm (5 ps).
- The spacing between the Tx/Rx signal trace and other signal traces must be greater than 4 times the trace width.
- It is important to route the PCIe differential traces in inner-layer of the PCB and surround the traces on that layer and with ground planes above and below and keep away from the interference sources such as crystals, switching power and RF signal traces.

NOTE

1. For PCIE_TX_M and PCIE_TX_P, a 100 nF coupling capacitor has been respectively placed inside the module.
2. For PCIE_CLKREQ_N and PCIE_WAKE_N, a pull-up 10 k Ω resistor has been respectively placed inside the module.

4.2. Bluetooth Application Interfaces

The following figure shows the Bluetooth application interface connection between the module and host.

Figure 7: Block Diagram of Bluetooth Application Interface Connection

4.2.1. BT_EN

Bluetooth function of the module is controlled by BT_EN. When BT_EN is at a high level, Bluetooth function will be enabled.

Table 10: Pin Definition of BT_EN

Pin Name	Pin No.	I/O	Description	Comment
BT_EN	69	DI	Bluetooth enable control	Active high.

4.2.2. PCM Interface

The module provides a PCM interface for audio over Bluetooth.

Table 11: Pin Definition of PCM Interface

Pin Name	Pin No.	I/O	Description	Comment
PCM_SYNC	5	DIO	PCM data frame sync	In master mode, it is an output signal. In slave mode, it is an input signal. Please ensure that the level logic is low during boot-up.
PCM_CLK	4	DIO	PCM clock	In master mode, it is an output signal. In slave mode, it is an input signal.
PCM_DIN	2	DI	PCM data input	If unused, keep it open.
PCM_DOUT	3	DO	PCM data output	Please ensure that the level logic is high during boot-up. If unused, keep it open.

The following figures show reference design for PCM interface connection between the module and host.

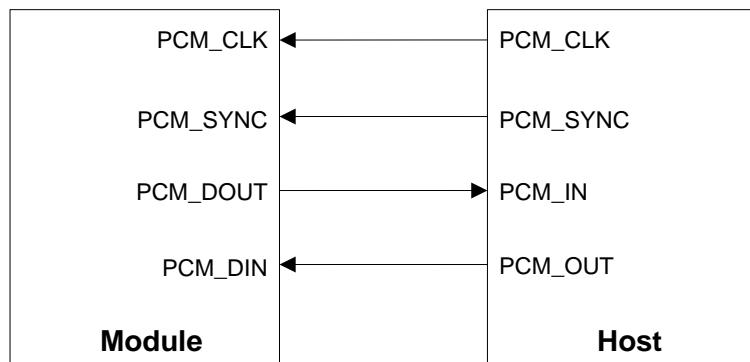


Figure 8: Block Diagram of PCM Interface (Slave Mode)

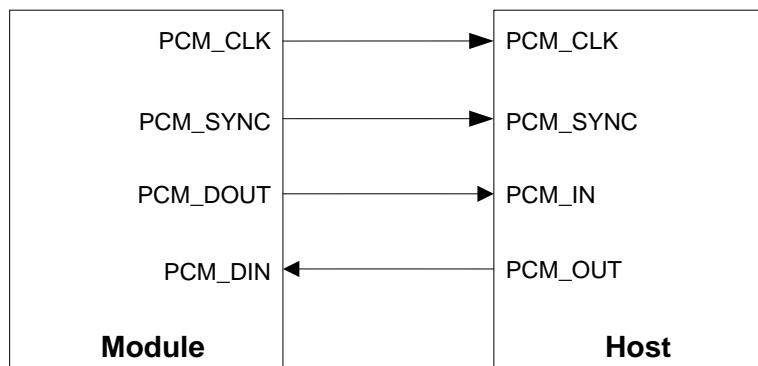


Figure 9: Block Diagram of PCM Interface (Master Mode)

When the host PCM voltage level does not match that of the module, it is necessary to add a voltage-level translator. Since PCM_DOUT and PCM_SYNC are bootstrap pins, it is recommended to keep the voltage-level translator disabled during boot-up. The voltage-level translator can be enabled or disabled via OE pin.

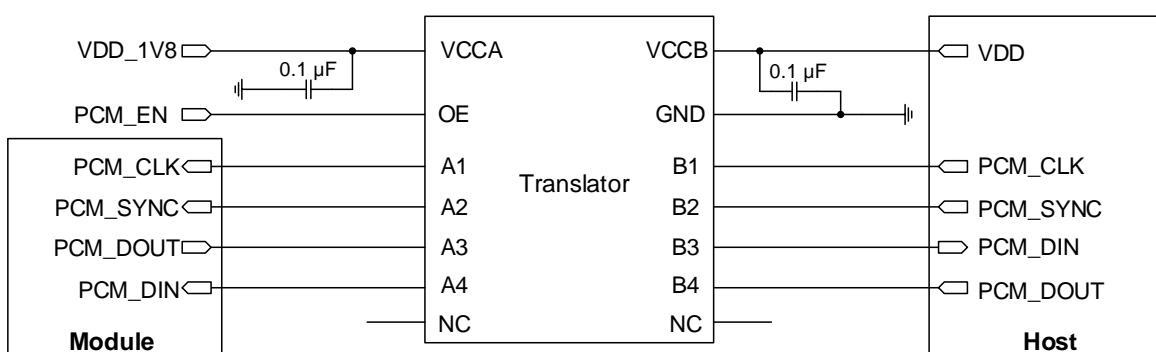


Figure 10: Voltage-level Translator for PCM Interface

The PCM interface timing and relevant parameters in both slave and master modes are shown in the following figures and tables:

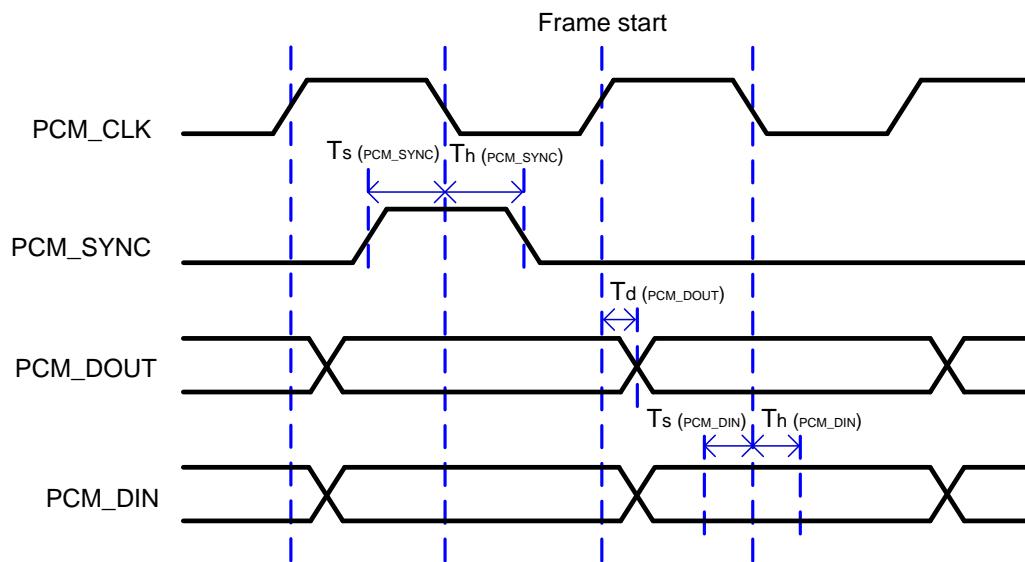


Figure 11: PCM Timing (Slave Mode)

Table 12: PCM Timing Parameter (Slave Mode)

Parameter	Description	Min.	Typ.	Max.	Unit
-	Frequency of PCM_CLK	64	-	2048	kHz
Ts (PCM_SYNC)	Setup time from PCM_SYNC to PCM_CLK falling edge	0	-	-	ns
Th (PCM_SYNC)	Holding time from PCM_CLK falling edge to PCM_SYNC falling edge	150	-	-	ns
Td (PCM_DOUT)	Delay time from PCM_CLK rising edge to PCM_DOUT	0	-	150	ns
Ts (PCM_DIN)	Setup time from PCM_DIN to PCM_CLK falling edge	0	-	-	ns
Th (PCM_DIN)	Holding time of PCM_DIN after PCM_CLK falls	150	-	-	ns

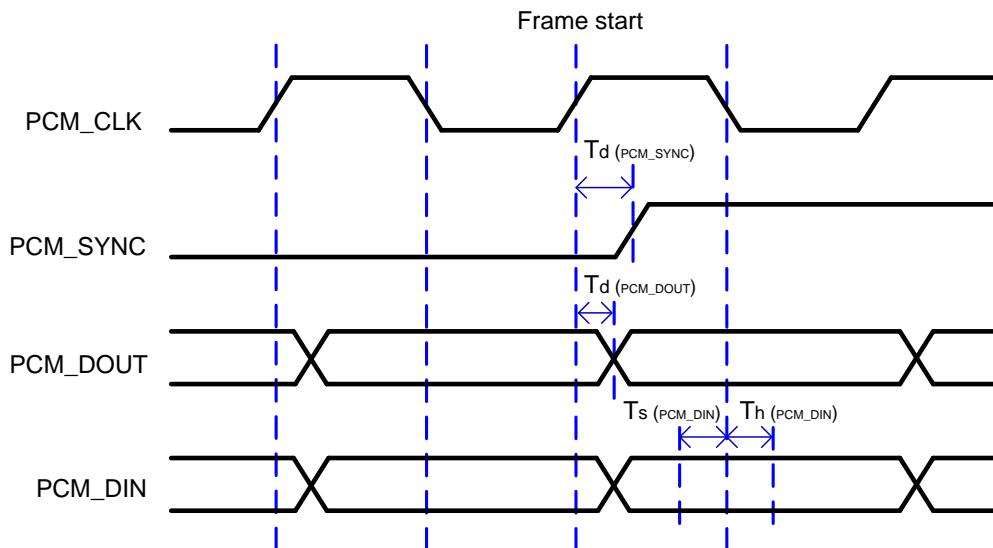


Figure 12: PCM Timing (Master Mode)

Table 13: PCM Timing Parameter (Master Mode)

Parameter	Description	Min.	Typ.	Max.	Unit
-	Frequency of PCM_CLK	64	-	2048	kHz
$T_d(PCM_SYNC)$	Delay time from PCM_CLK rising edge to PCM_SYNC	-10	-	50	ns
$T_d(PCM_DOUT)$	Delay time from PCM_CLK rising edge to PCM_DOUT	-10	-	50	ns
$T_s(PCM_DIN)$	Setup time from PCM_DIN to PCM_CLK falling edge	50	-	-	ns
$T_h(PCM_DIN)$	Holding time of PCM_DIN after PCM_CLK falls	150	-	-	ns

4.2.3. Bluetooth UART

The module supports an HCI UART as defined in *Bluetooth Core Specification Version 5.2*. The UART supports hardware flow control, and it can be used for data transmission with up to 3.2 Mbps baud rates.

Table 14: Pin Definition of Bluetooth UART

Pin Name	Pin No.	I/O	Description	Comment
BT_TXD	74	DO	Bluetooth UART transmit	Please ensure that the level logic is high during

BT_RXD	75	DI	Bluetooth UART receive	
BT_RTS	72	DO	Request to send signal from the module	Please ensure that the level logic is high during boot-up.
BT_CTS	73	DI	Clear to send signal to the module	

The following figure shows a reference design for Bluetooth UART connection between the module and host.

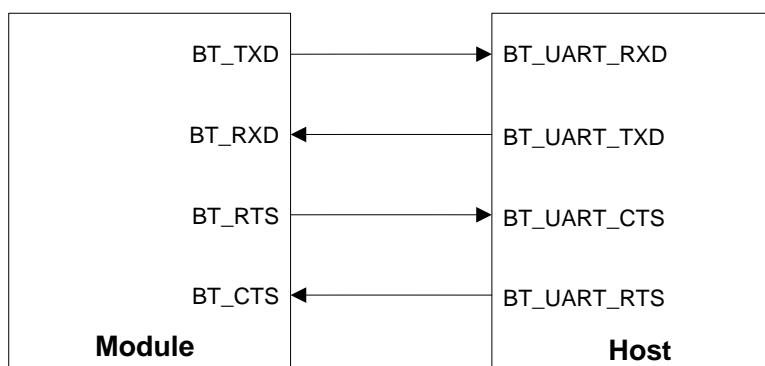


Figure 13: Block Diagram of Bluetooth UART Connection

When the host UART voltage level does not match that of the module, it is necessary to add a voltage-level translator.

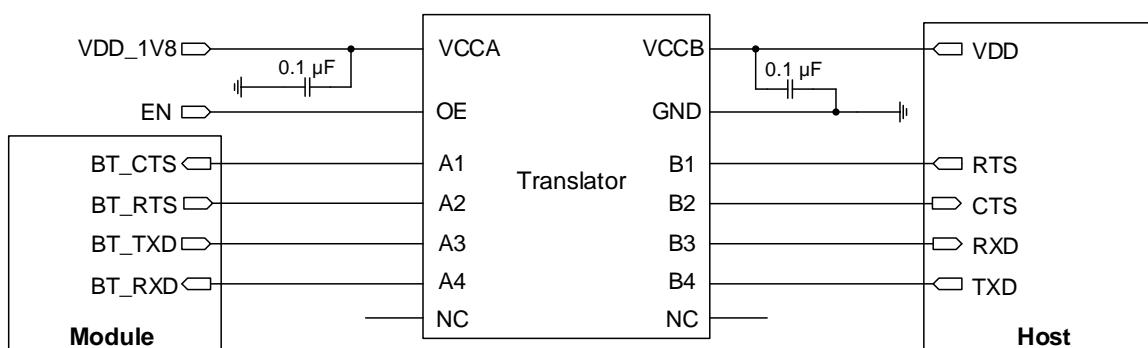


Figure 14: Voltage-level Translator for UART

NOTE

To increase the stability of UART communication, it is recommended to add UART hardware flow control design.

4.3. Coexistence UART Interface

Table 15: Pin Definition of Coexistence UART Interface

Pin Name	Pin No.	I/O	Description	Comment
COEX_TXD	76	DO	WWAN & WLAN/Bluetooth coexistence transmit	Please ensure that the level logic is high during boot-up. If unused, keep it open.
COEX_RXD	1	DI	WWAN & WLAN/Bluetooth coexistence receive	If unused, keep it open.

The following figure shows the coexistence UART interface connection between the module and host.

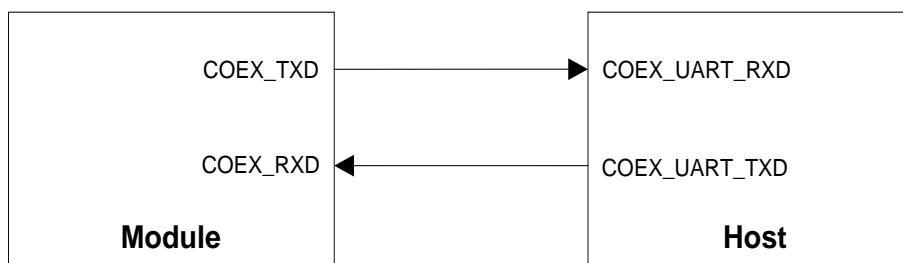


Figure 15: Block Diagram of Coexistence UART Interface Connection

4.4. Other Interfaces

4.4.1. BT_WAKE_HOST*

BT_WAKE_HOST is used to wake up the host and it is active high.

Table 16: Pin Definition of BT_WAKE_HOST

Pin Name	Pin No.	I/O	Description	Comment
BT_WAKE_HOST	39	DO	Bluetooth wake up host	1.8 V power domain. Please ensure that the level logic is low during boot-up.

4.4.2. WLAN_SLP_CLK*

The 32.768 kHz sleep clock is used in low power consumption modes, such as power saving mode and sleep mode. It can ensure basic logic operations when the module is in sleep mode.

Table 17: Pin Definition of WLAN_SLP_CLK

Pin Name	Pin No.	I/O	Description	Comment
WLAN_SLP_CLK	22	DI	WLAN sleep clock	Internal sleep clock is used by default. Keep it open.

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

5.1. RF Antenna Interfaces

5.1.1. Antenna Interfaces & Frequency Bands

Table 18: Pin Definition of RF Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT_WIFI0	45	AIO	Bluetooth & 2.4 GHz/5 GHz Wi-Fi 0 antenna interface	
ANT_WIFI1	54	AIO	2.4 GHz/5 GHz Wi-Fi 1 antenna interface	50 Ω characteristic impedance.
ANT_BT*	37	AIO	Reserved dedicated Bluetooth antenna interface	

Table 19: Operating Frequency (Unit: GHz)

Parameter	Frequency
2.4 GHz Wi-Fi	2.400–2.4835
5 GHz Wi-Fi	5.150–5.850
Bluetooth	2.402–2.480

5.1.2. Reference Design

The module provides three RF antenna pins for Wi-Fi & Bluetooth antenna connection. The RF trace in host PCB connected to the module's RF antenna pins should be microstrip line or other types, with the characteristic impedance close to $50\ \Omega$.

It is recommended to reserve a π -type matching circuit and add an ESD protection component for better RF performance. For ANT_WIFI0, place the matching components C1, R1 and C2 to the antenna as close as possible. Capacitors C1 and C2 are not mounted by default. R1 is mounted with a $0\ \Omega$ resistor. C3 is a $33\ pF$ capacitor and D1 is a TVS by default. The reference design of ANT_WIFI1 and ANT_BT is the same.

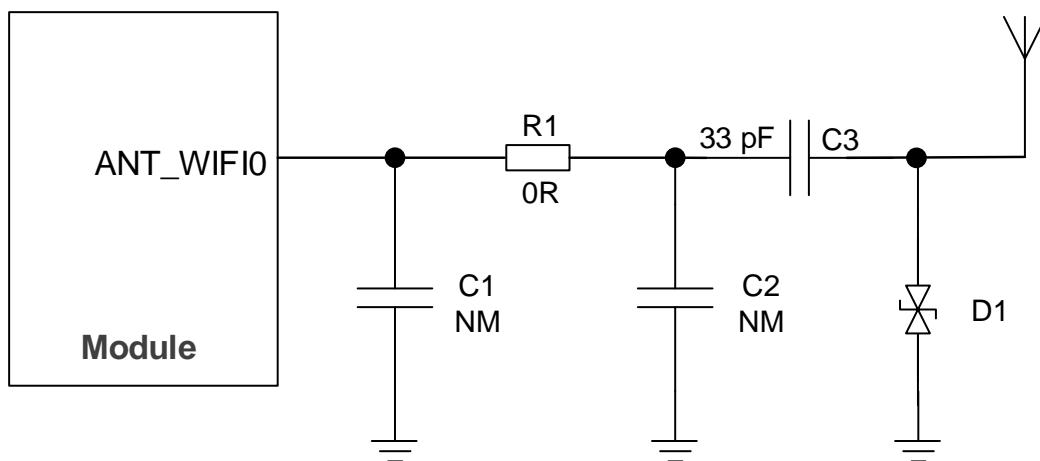


Figure 16: Reference Design of RF Antenna Interfaces

Another type of reference circuit for the RF antenna interfaces is shown below. It is designed for vehicle applications. It is recommended to reserve two notch filter circuits and a π -type matching circuit for better RF performance. For ANT_WIFI0, L1, C3, C4 and L3 comprise two notch filter circuits for filtering out interference caused by a particular frequency. When L1, C3, C4 and L3 are not mounted, C1, R1 and C2 comprise a π -type matching circuit. Capacitors (C1, C2, C3 and C4) and inductors (L1 and L3) are not mounted by default, and R1 is only mounted with a $0\ \Omega$ resistor by default. The reference design of ANT_WIFI1 and ANT_BT is the same.

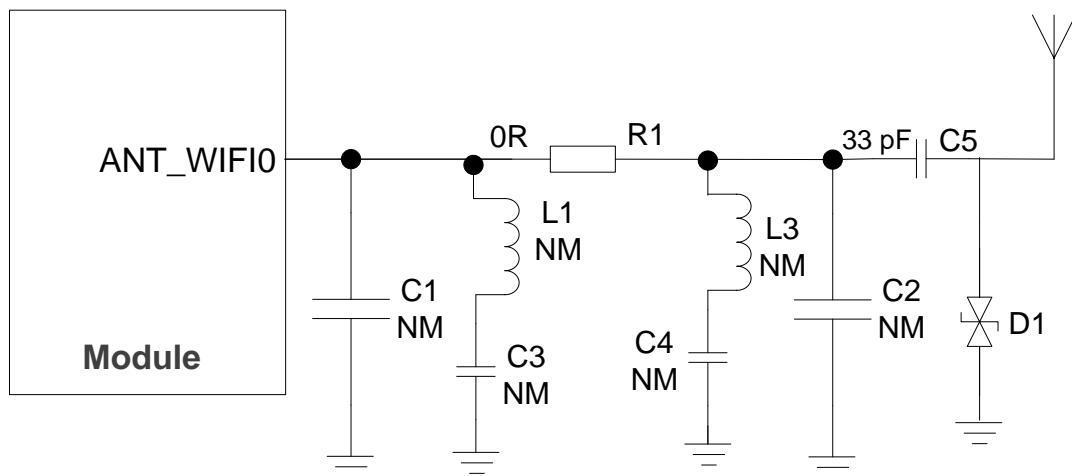


Figure 17: Reference Design of RF Antenna Interfaces (Vehicle Applications)

5.2. RF Performance

5.2.1. Wi-Fi Performance

5.2.1.1. Transmit Power

Table 20: Conducted RF Transmit Power at 2.4 GHz (Unit: dBm)

Standard	Data Rate	Typ.
802.11b	1 Mbps	17.5
802.11b	11 Mbps	17.5
802.11g	6 Mbps	17
802.11g	54 Mbps	15
802.11n (HT20)	MCS 0	17
802.11n (HT20)	MCS 7	13.5
802.11n (HT40)	MCS 0	16.5
802.11n (HT40)	MCS 7	12

Table 21: Conducted RF Transmit Power at 5 GHz (Unit: dBm)

Standard	Data Rate	Typ.
802.11a	6 Mbps	15.5
802.11a	54 Mbps	13
802.11n (HT20)	MCS 0	15.5
802.11n (HT20)	MCS 7	12.5
802.11n (HT40)	MCS 0	15
802.11n (HT40)	MCS 7	12
802.11ac (VHT20)	MCS 0	15.5
802.11ac (VHT20)	MCS 8	11.5
802.11ac (VHT40)	MCS 0	15
802.11ac (VHT40)	MCS 9	10
802.11ac (VHT80)	MCS 0	14.5
802.11ac (VHT80)	MCS 9	9.5

5.2.1.2. Receiver Sensitivity

Table 22: Conducted RF Receiver Sensitivity at 2.4 GHz (Unit: dBm)

Standard	Data Rate	Max.	Typ.
802.11b	1 Mbps	-82	-95
802.11b	11 Mbps	-76	-86.5
802.11g	6 Mbps	-82	-89
802.11g	54 Mbps	-65	-72.5
802.11n (HT20)	MCS 0	-82	-90
802.11n (HT20)	MCS 7	-64	-70
802.11n (HT40)	MCS 0	-79	-87

802.11n (HT40)	MCS 7	-61	-67.5
----------------	-------	-----	-------

Table 23: Conducted RF Receiver Sensitivity at 5 GHz (Unit: dBm)

Standard	Data Rate	Max.	Typ.
802.11a	6 Mbps	-82	-90
802.11a	54 Mbps	-65	-71.5
802.11n (HT20)	MCS 0	-82	-89
802.11n (HT20)	MCS 7	-64	-70.5
802.11n (HT40)	MCS 0	-79	-86
802.11n (HT40)	MCS 7	-61	-67.5
802.11ac (VHT20)	MCS 0	-82	-89
802.11ac (VHT20)	MCS 8	-59	-65.5
802.11ac (VHT40)	MCS 0	-79	-86
802.11ac (VHT40)	MCS 9	-54	-63
802.11ac (VHT80)	MCS 0	-76	-82
802.11ac (VHT80)	MCS 9	-51	-57

5.2.2. Bluetooth Performance

Table 24: Bluetooth Transmitting and Receiver Performance

Mode	Transmit Power	Receiver Sensitivity
BR	7 dBm ± 2.5 dB	-91 dBm
EDR	2.5 dBm ± 2.5 dB	-85 dBm
BLE	7 dBm ± 2.5 dB	-94 dBm

NOTE

The data above are tested under Bluetooth power class 1.5.

5.3. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

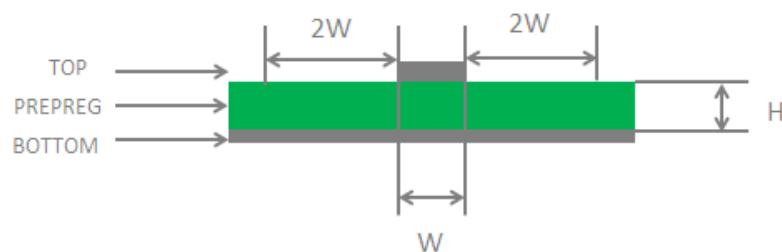


Figure 18: Microstrip Design on a 2-layer PCB

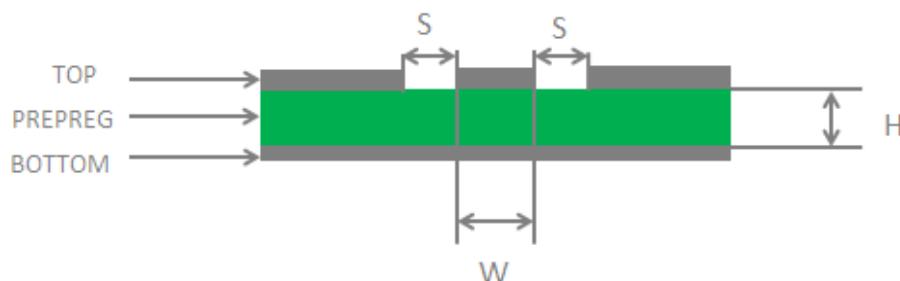


Figure 19: Coplanar Waveguide Design on a 2-layer PCB

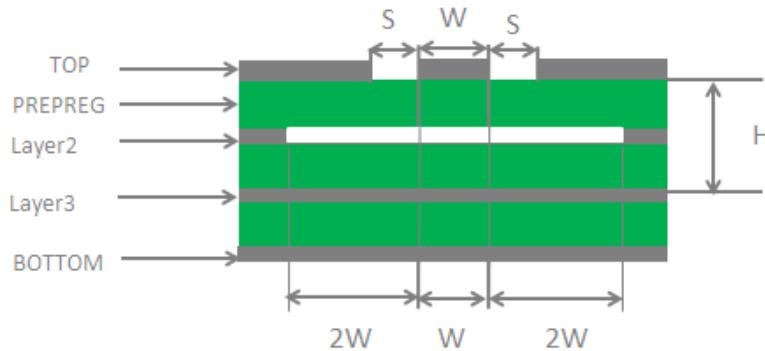


Figure 20: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

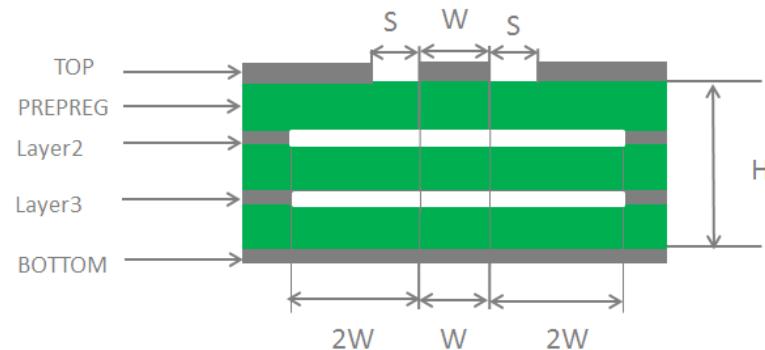


Figure 21: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135° .
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be at least twice the width of RF signal traces ($2 \times W$).
- Keep RF traces away from interference sources (such as DC-DC, (U)SIM/USB/SDIO high frequency digital signals, display signals, and clock signals), and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see [document \[2\]](#).

5.4. Antenna Design Requirements

Table 25: Antenna Design Requirements

Parameter	Requirement
Frequency Range (GHz)	<ul style="list-style-type: none">● 2.4 GHz Wi-Fi: 2.400–2.4835● 5 GHz Wi-Fi: 5.150–5.850● Bluetooth: 2.402–2.480
Cable Insertion Loss (dB)	< 1
VSWR	≤ 2 (Typ.)
Gain (dBi)	1 (Typ.)
Max. Input Power (W)	50
Input Impedance (Ω)	50
Polarization Type	Vertical

5.5. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use the HFM connector provided by Rosenberger.

HFM - Products

Products

- HFM Cable plugs and jacks
single, double, quad, quint
straight and right angle
Cable diameter: 1.2 mm; 2.9 mm; 3.6 mm
- HFM PCB connectors
single, double, quad, quint
- HFM Cable connectors waterproof
under development

Features

- Frequency up to 15 GHz
- High data rates up to 20 Gbit/s
- Optimized used of space
- Saving up of installation space up to 80%
- Cost optimized

Figure 22: Feature of the HFM Connector

For more details, visit <http://www.hirose.com>.

6 Electrical Characteristics and Reliability

6.1. Electrical Characteristics

Table 26: Absolute Maximum Ratings (Unit: V)

Parameter	Min.	Max.
VDD_CORE	-0.5	1.98
VDD_PA	-0.5	2.42
VDD_IO	-0.5	3.6
Voltage at Digital Pins	-0.3	2.0

Table 27: Recommended Operating Conditions (Unit: V)

Parameter	Min.	Typ.	Max.
VDD_CORE	1.71	1.8	1.89
VDD_PA	2.09	2.2	2.31
VDD_IO	1.62	1.8	1.98

6.2. Power Consumption

Table 28: Wi-Fi Power Consumption of the Module (Normal Operation Mode; Unit: mA)

Standard	Condition	I _{VDD_CORE}	I _{VDD_IO}	I _{VDD_PA}
802.11b	Tx 1 Mbps @ 17.5 dBm	280	5.6	455
	Tx 11 Mbps @ 17.5 dBm	290	5.6	460
802.11g	Tx 6 Mbps @ 17 dBm	303	5.7	455
	Tx 54 Mbps @ 15 dBm	327	5.8	420
802.11n (2.4 GHz)	Tx HT20 MCS 0 @ 17 dBm	305	5.8	440
	Tx HT20 MCS 7 @ 13.5 dBm	320	5.8	390
	Tx HT40 MCS 0 @ 16.5 dBm	317	5.8	450
	Tx HT40 MCS 7 @ 12 dBm	317	5.6	375
802.11a	Tx 6 Mbps @ 15.5 dBm	325	5.9	515
	Tx 54 Mbps @ 13 dBm	338	5.9	456
802.11n (5 GHz)	Tx HT20 MCS 0 @ 15.5 dBm	327	5.9	516
	Tx HT20 MCS 7 @ 12.5 dBm	343	6.0	458
	Tx HT40 MCS 0 @ 15 dBm	358	6.0	498
	Tx HT40 MCS 7 @ 12 dBm	348	5.8	433
802.11ac	Tx VHT20 MCS 0 @ 15.5 dBm	326	5.9	498
	Tx VHT20 MCS 8 @ 11.5 dBm	345	5.9	438
	Tx VHT40 MCS 0 @ 15 dBm	357	6.0	497
	Tx VHT40 MCS 9 @ 10 dBm	348	5.9	408
	Tx VHT80 MCS 0 @ 14.5 dBm	410	6.1	462
	Tx VHT80 MCS 9 @ 9.5 dBm	348	5.8	400

6.3. Digital I/O Characteristics

Table 29: VDD_IO I/O Requirements

Parameter	Description	Min.	Max.	Unit
V_{IH}	High-level input voltage	1.17	1.98	V
V_{IL}	Low-level input voltage	-0.3	0.63	V
V_{OH}	High-level output voltage	1.40	1.98	V
V_{OL}	Low-level output voltage	-0.3	0.3	V

6.4. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 30: ESD Characteristics (Temperature: 25–30 °C, Humidity: 40 % ±5 %; Unit: kV)

Tested Interfaces	Contact Discharge	Air Discharge
VDD, GND	±8	±12
Antenna interfaces	±6	±10
Other Interfaces	±6	±10

6.5. Operating and Storage Temperatures

Table 31: Operating and Storage Temperatures (Unit: °C)

Parameter	Min.	Typ.	Max.
Normal Operating Temperature ²	-40	+25	+85
Storage Temperature	-40	-	+90

6.6. Thermal Dissipation

The module exhibits the best performance when all internal chips are working within their designated operating temperature ranges. However, if any chip reaches or exceeds its maximum temperature, the module may still work but its performance and functionalities (such as RF output power and data rate) will be compromised. Therefore, the thermal design should be maximally optimized to ensure that all internal chips consistently remain within their recommended operating temperature ranges.

The following principles for thermal consideration are provided for reference:

- Keep the module away from heat sources on the PCB motherboard, especially high-power components such as processor, power amplifier, and power supply.
- Maintain the integrity of the PCB copper layer and drill as many thermal vias as possible.
- Expose the copper on the backside of the PCB where the module is mounted.
- Follow the principles below when designing the heatsink:
 - It is recommended to integrate the heatsink with the outer shell of telematic control unit (TCU) according to the module's application scenario. This allows for rapid transfer of the heat generated by the module to the outer shell, thus enhancing heat dissipation efficiency and eliminating the need for fixing the heatsink.
 - The entire shell of the TCU or the shell of the area where the module is located must be made of materials with excellent heat dissipation properties. It is recommended to use die-cast aluminum with higher thermal conductivity.
 - uminum with higher thermal conductivity.
 - Based on the heat dissipation direction of the module, you can choose either of the following optional heatsink installation positions:
 - a) The top surface of the module shielding cover;
 - b) The bottom surface of the PCBA under the module;
 - c) Both the top surface of the module shielding cover and the bottom surface of the PCBA

² Within this operating temperature range, the module's related performance meets IEEE and Bluetooth specifications.

under the module.

If the heatsink is located only on one side, option a) is recommended; if the situation allows, option c) is recommended.

- The heatsink must meet the following requirements:
 - a) The base plate area of the heatsink should be larger than the module area for full coverage;
 - b) Choose a heatsink with adequate fins to ensure effective heat dissipation. The fins should be located within the area where the module is mounted.
- Since the heatsink is in contact with either the top surface of the shielding cover or the bottom surface of the PCBA through the thermal interface material (TIM), it is necessary to choose a TIM with high thermal conductivity, good flexibility, and good wettability.
- Fasten the shell (heatsink) with screws around the TCU to prevent the heatsink from falling off during the drop tests, shock and vibration tests, or transportation.

- Implement other auxiliary cooling methods, such as air cooling or liquid cooling.

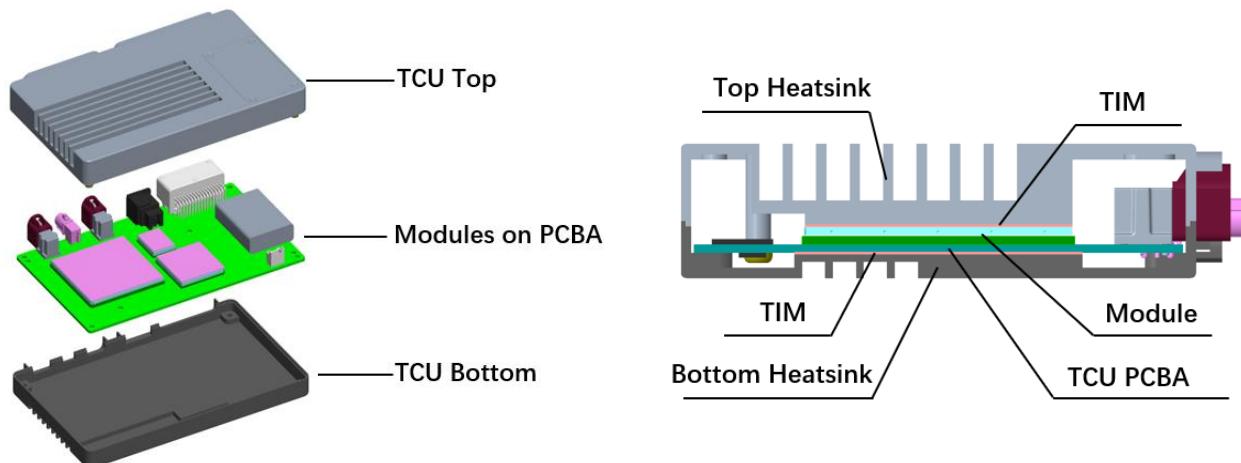


Figure 23: Heatsink Design Example

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ± 0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

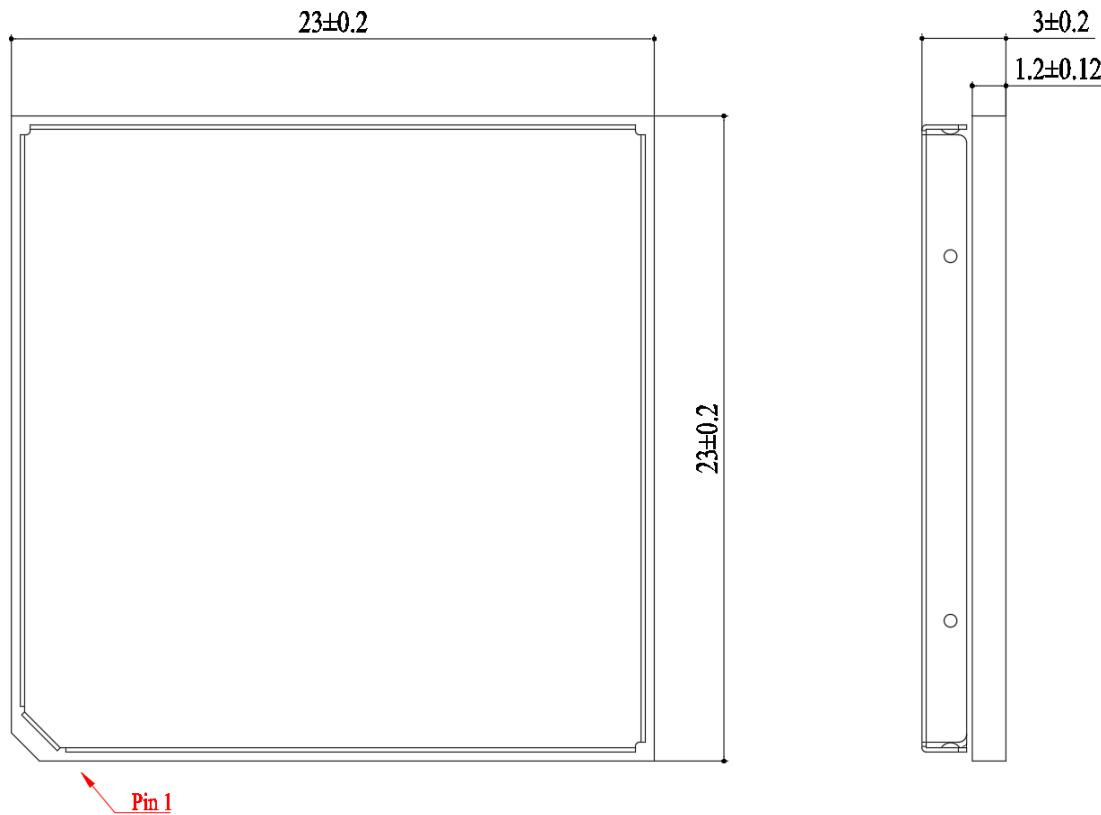


Figure 24: Top and Side Dimensions

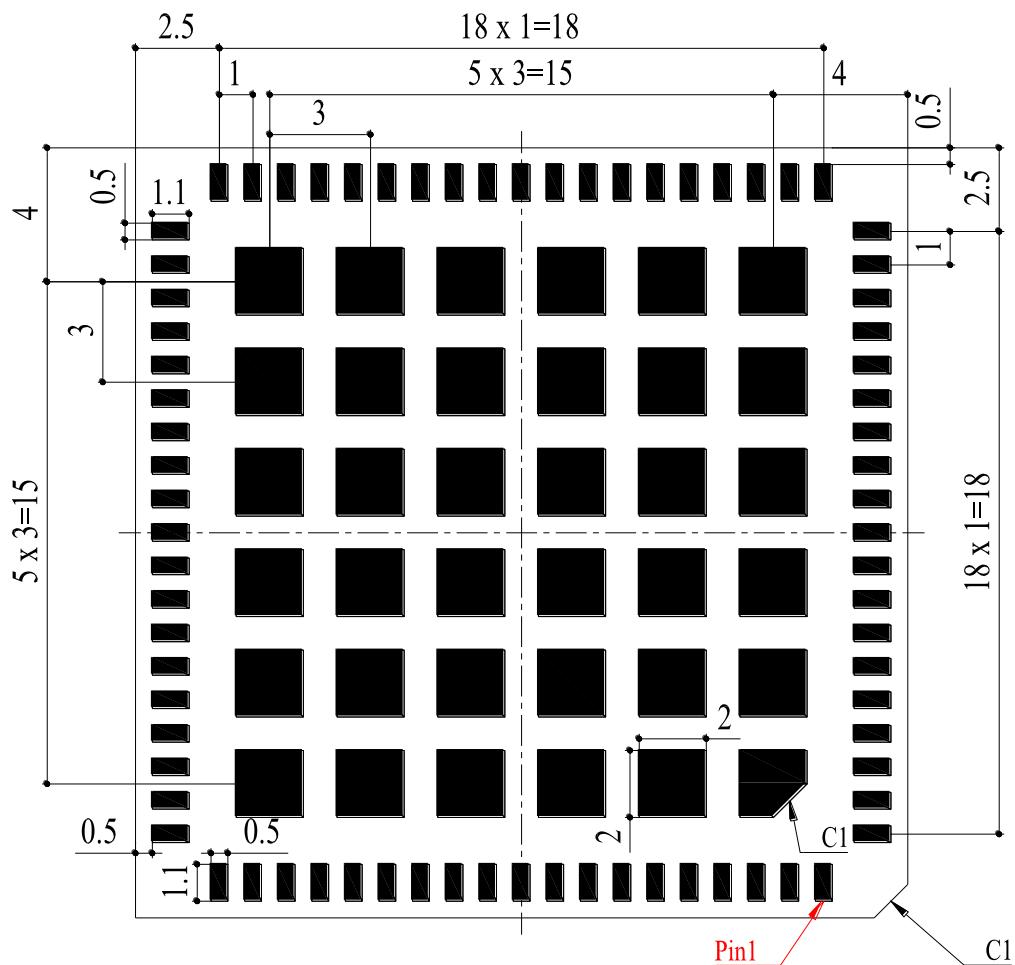
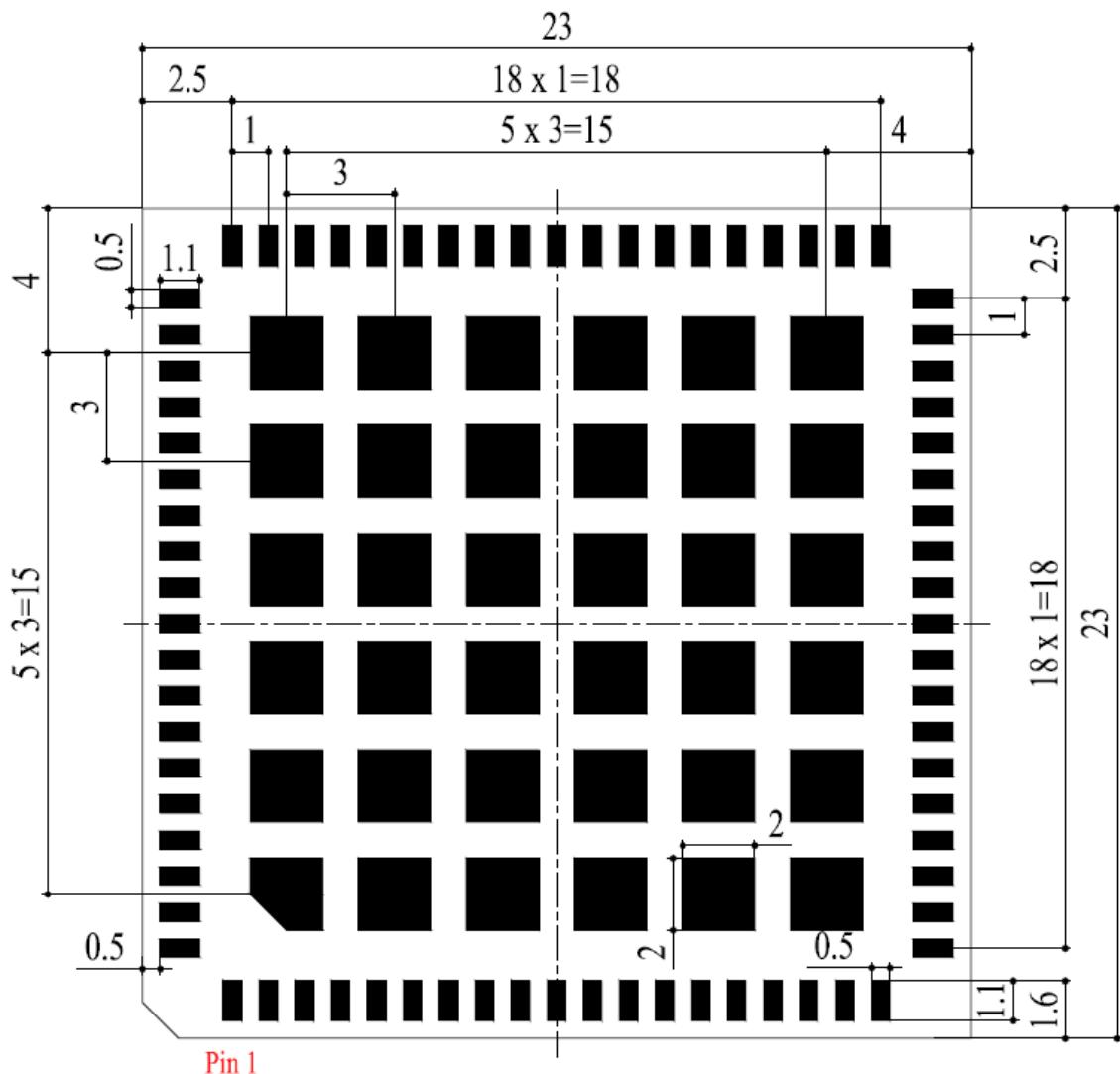



Figure 25: Bottom Dimensions (Bottom View)

NOTE

The package warpage level of the module refers to the *JEITA ED-7306* standard.

7.2. Recommended Footprint

Figure 26: Recommended Footprint

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

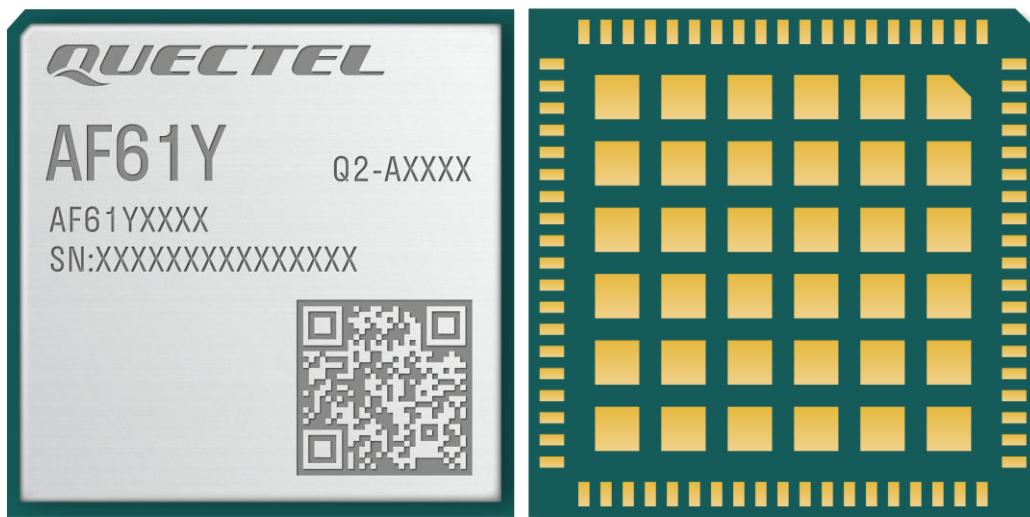


Figure 27: Top and Bottom Views of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

1. Recommended Storage Condition: the temperature should be 23 ± 5 °C and the relative humidity should be 35–60 %.
2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
3. Floor life: 168 hours ³ in a factory where the temperature is 23 ± 5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours.
5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ± 5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

³ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not unpack the modules in large quantities until they are ready for soldering.

NOTE

1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [3]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below:

Temp. (°C)

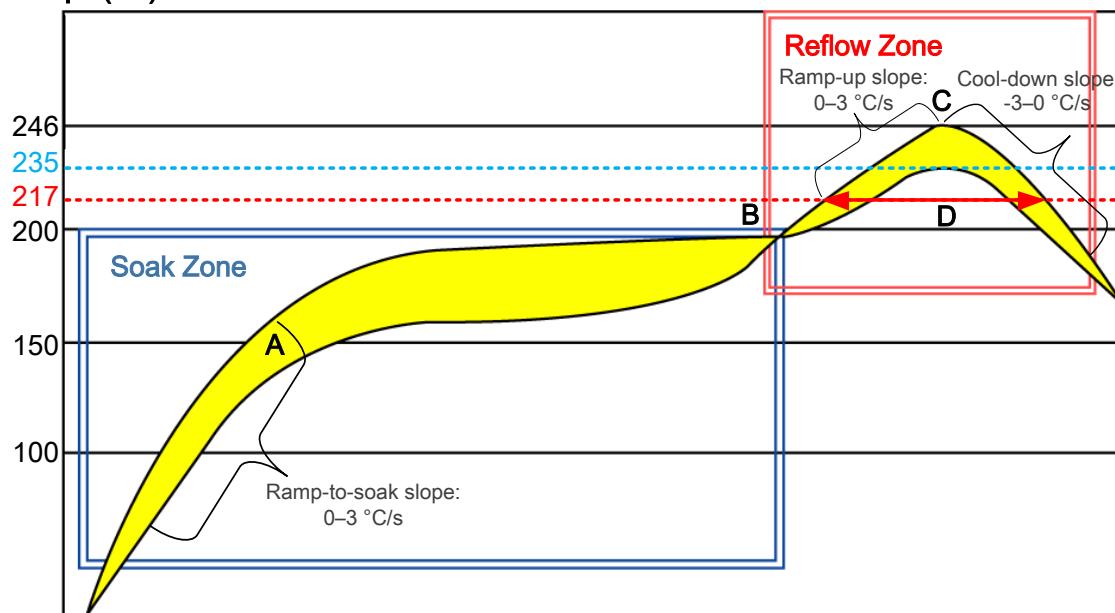


Figure 28: Recommended Reflow Soldering Thermal Profile

Table 32: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0–3 °C/s
Reflow time (D: over 217 °C)	40–70 s
Max. temperature	235–246 °C
Cool-down slope	-3–0 °C/s
Reflow Cycle	
Max. reflow cycle	1

NOTE

1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene. Otherwise, the shielding can may become rusted.
3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
4. If a conformal coating is necessary for the module, do not use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
6. Avoid using materials that contain mercury (Hg), such as adhesives, for module processing, even if the materials are RoHS compliant and their mercury content is below 1000 ppm (0.1 %).
7. Due to the complexity of the SMT process, contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g. selective wave soldering, ultrasonic soldering) that is not mentioned in **document [3]**.

8.3. Packaging Specification

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery.

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

8.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:

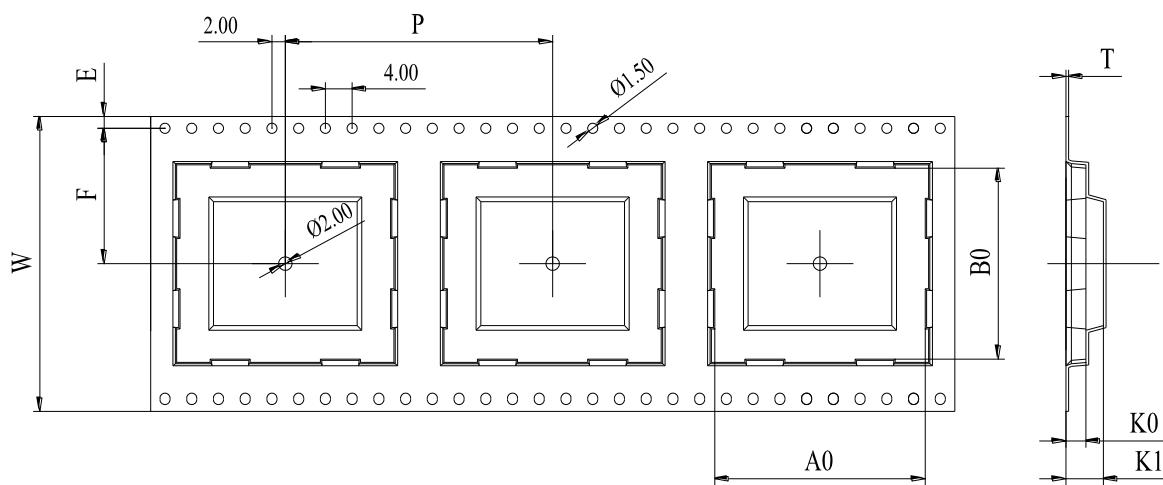


Figure 29: Carrier Tape Dimension Drawing (Unit: mm)

Table 33: Carrier Tape Dimension Table (Unit: mm)

W	P	T	A0	B0	K0	K1	F	E
44	32	0.4	23.5	23.5	3.5	6.8	20.2	1.75

8.3.2. Plastic Reel

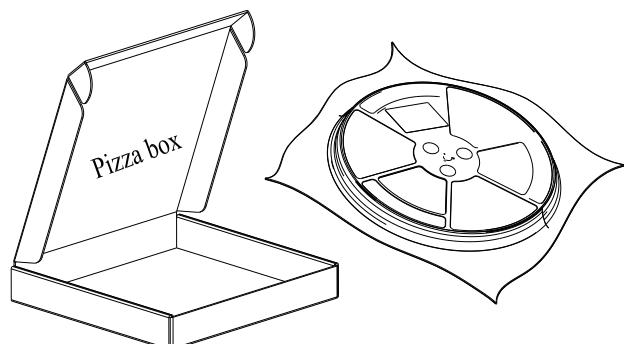
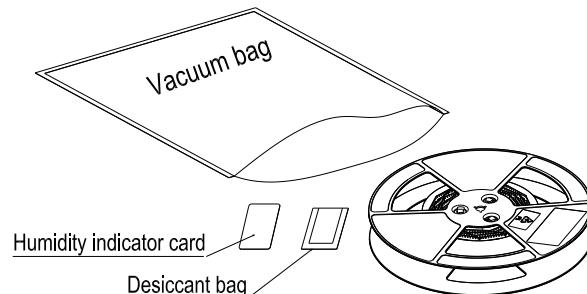
Plastic reel dimensions are illustrated in the following figure and table:

Figure 30: Plastic Reel Dimension Drawing

Table 34: Plastic Reel Dimension Table (Unit: mm)

ØD1	ØD2	W
330	100	44.5

8.3.3. Mounting Direction



Figure 31: Mounting Direction

8.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can pack 250 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Place the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

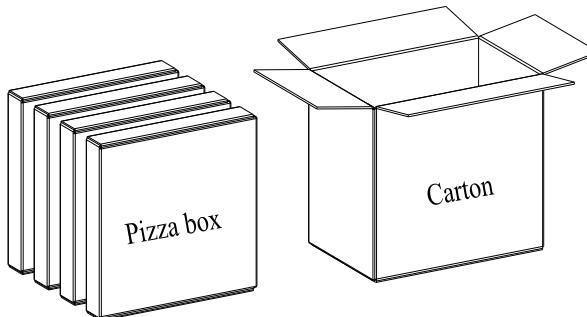


Figure 32: Packaging Process

9 Appendix References

Table 35: Related Documents

Document Name
[1] Quectel_V2X&5G_EVB_User_Guide
[2] Quectel_RF_Layout_Application_Note
[3] Quectel_Module_SMT_User_Guide

Table 36: Terms and Abbreviations

Abbreviation	Description
AP	Access Point
BLE	Bluetooth Low Energy
BPSK	Binary Phase Shift Keying
BR	Basic Rate
CCK	Complementary Code Keying
CTS	Clear To Send
DPSK	Differential Phase Shift Keying
DQPSK	Differential Quadrature Reference Phase Shift Keying
EDR	Enhanced Data Rate
ESD	Electrostatic Discharge
EVB	Evaluation Board
GFSK	Gaussian Frequency Shift Keying

GND	Ground
HT	High Throughput
IEEE	Institute of Electrical and Electronics Engineers
I/O	Input/Output
LGA	Land Grid Array
Mbps	Megabits per second
MCS	Modulation and Coding Scheme
MSL	Moisture Sensitivity Levels
PA	Power Amplifier
PCB	Printed Circuit Board
PCBA	Printed Circuit Board Assembly
PCIe	Peripheral Component Interconnect Express
PCM	Pulse Code Modulation
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
RTS	Request To Send
Rx	Receive
RXD	Receive Data (Pin)
SDIO	Secure Digital Input/Output
SMD	Surface Mount Device
SMT	Surface Mount Technology
STA	Station
TCU	Telematic Control Unit

TIM	Thermal Interface Material
Tx	Transmit
TXD	Transmit Data (Pin)
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
(U)SIM	(Universal) Subscriber Identity Module
VHT	Very High Throughput
Vmax	Maximum Voltage
Vnom	Nominal Voltage
Vmin	Minimum Voltage
VSWR	Voltage Standing Wave Ratio
WLAN	Wireless Local Area Network
