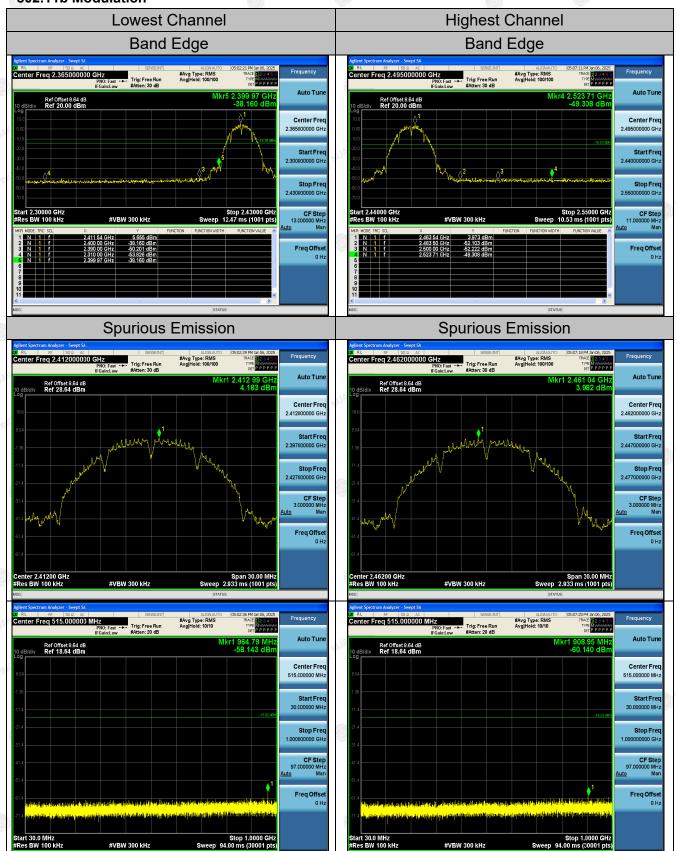


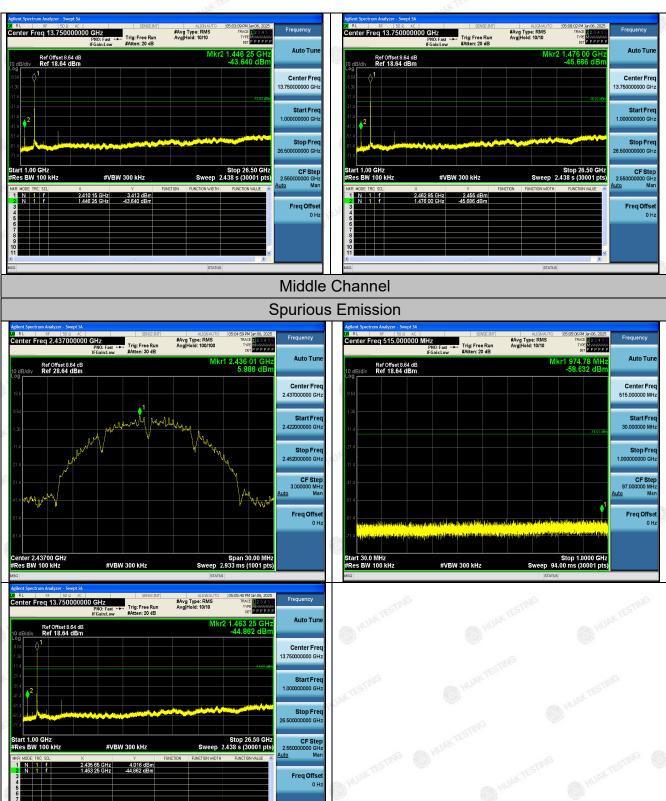
4.6. Conducted Band Edge and Spurious Emission Measurement

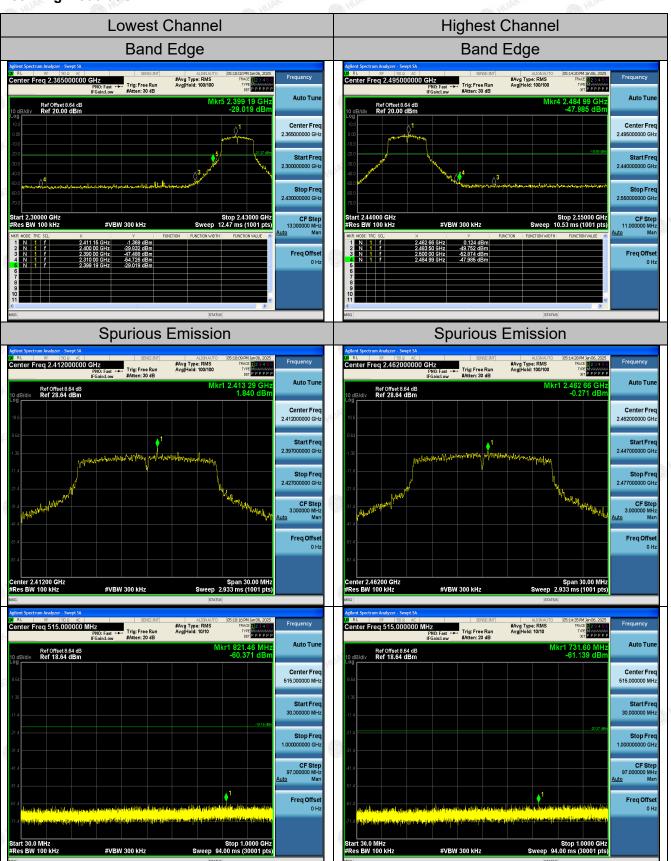
Test Specification

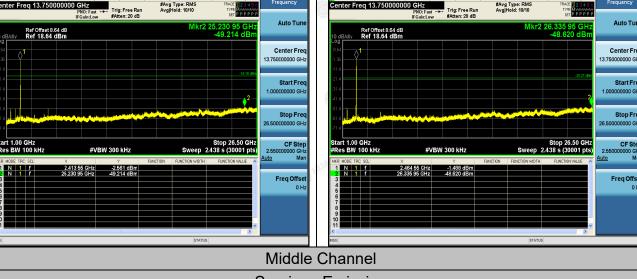
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02					
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 					
Test Result:	PASS					

Test Instruments


		RF To	est Room		
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A

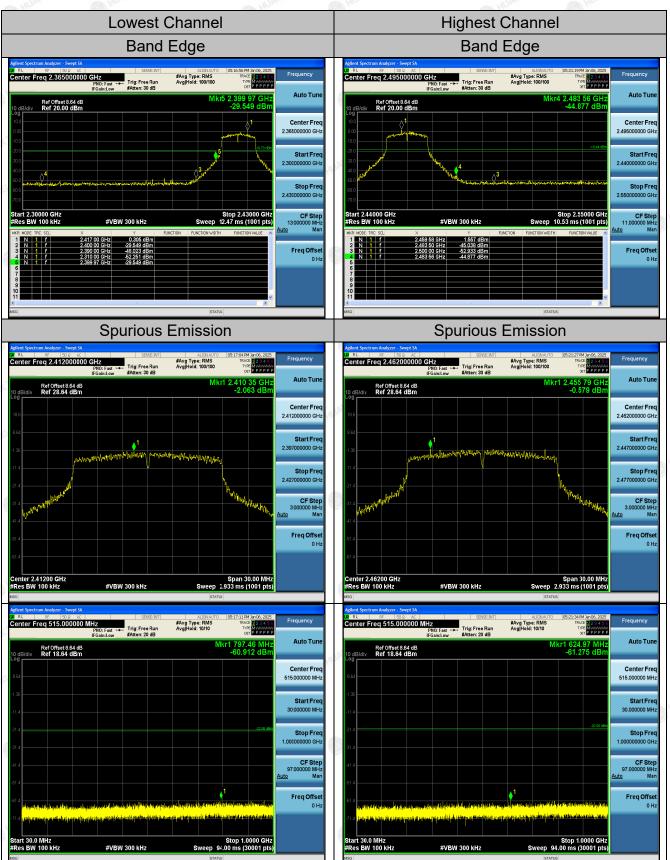

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Test Data

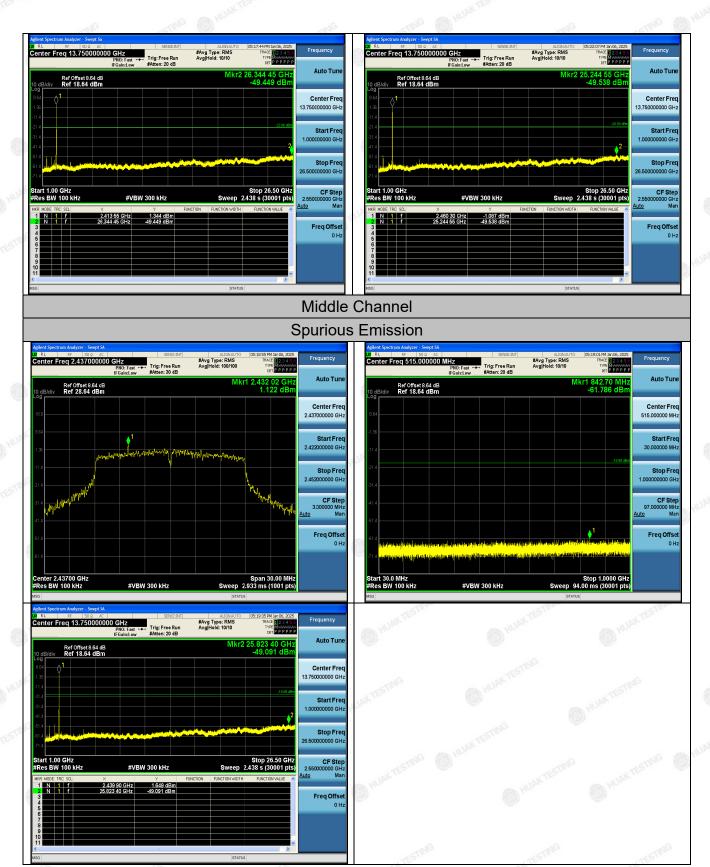

802.11b Modulation



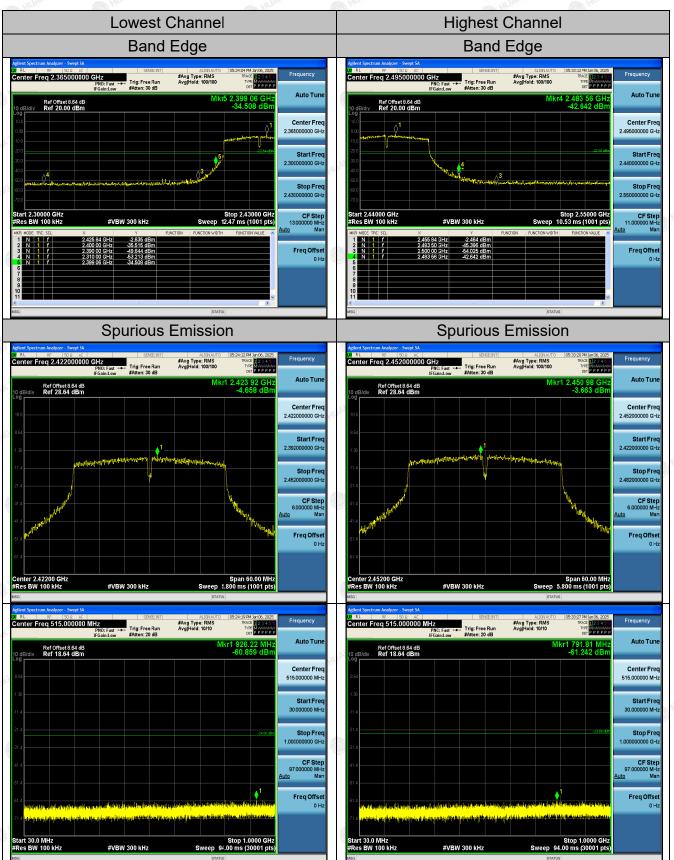
802.11g Modulation

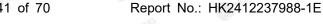


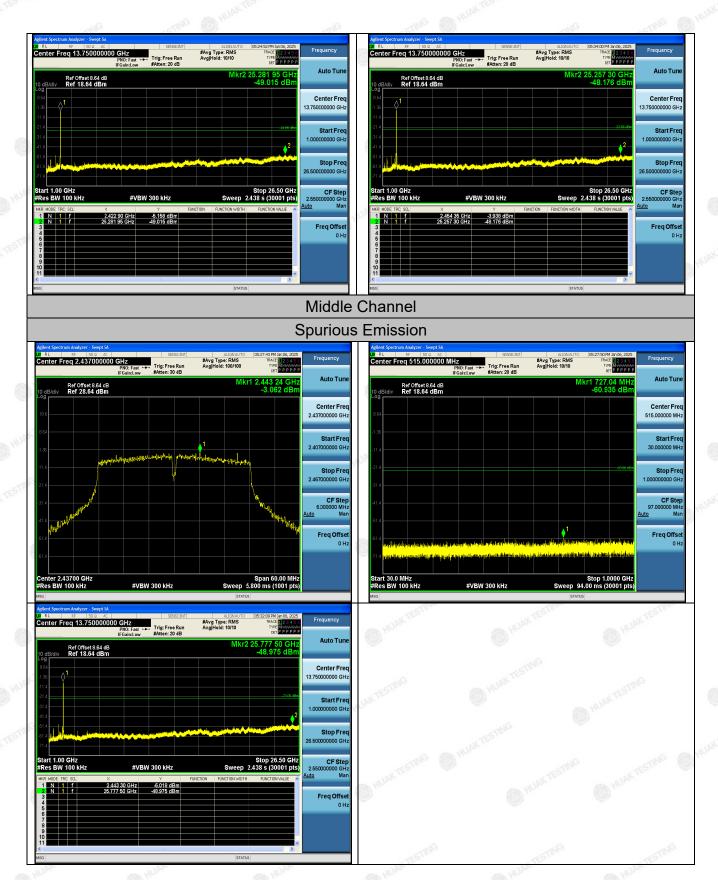
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

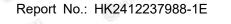
Freq Offs

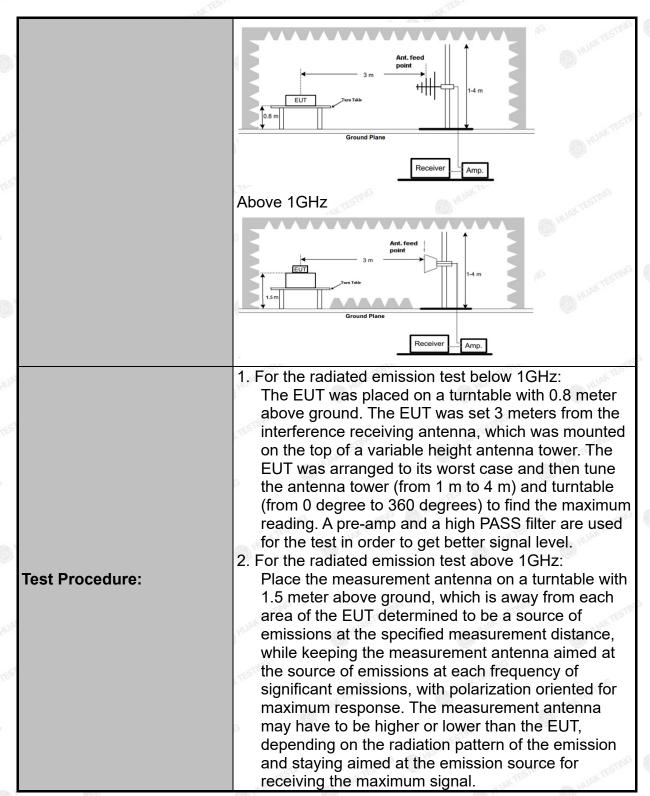

802.11n (HT20) Modulation





802.11n (HT40) Modulation


4.7. Radiated Spurious Emission Measurement


Test Specification

kHz to 25 (HUAN		HUAN				
10.	GHz			ANSI C63.10: 2013					
m	-mG	9 kHz to 25 GHz							
	3 m								
orizontal &	Vertical			6	IUAK				
ansmitting	mode w	ith modulat	ion						
Frequency	Detector	RBW	VBW	TIME	Remark				
kHz- 150kHz	Quasi-pea	ak 200Hz	1kHz	Quas	i-peak Value				
150kHz- 30MHz	Quasi-pea	ak 9kHz	30kHz	Quas	i-peak Value				
0MHz-1GHz	Quasi-pea	ak 120KHz	300KHz	Quas	i-peak Value				
Abovo 1CHz	Peak	1MHz	3MHz	Pe	eak Value				
Peal		1MHz	10Hz	Ave	rage Value				
Frequency		(microvolts	meter) Dista		Measurement Distance (meters)				
			300						
(C) (C)	,	KHz)	30						
		Me		30					
	- 1/2			3					
15.0	293	F-1		TING	3				
	100		- MAKTE	0,	3				
1.3313 333									
Frequency		-	Measurement Distance (meters)		Detector				
AL 4011	TO WAK TES	500	3		Average				
Above 1GHz	(a)	5000	3		Peak				
	Frequency kHz- 150kHz 150kHz- 30MHz 0MHz-1GHz Above 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9	Frequency Detector kHz- 150kHz Quasi-pea 150kHz- Quasi-pea 30MHz Quasi-pea Above 1GHz Peak Peak Peak Peak Peak 1009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Fie (mici Above 1GHz Fie	Frequency Detector RBW kHz- 150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Peak 1MHz 1MHz Peak 1MHz 1MHz Peak 1MHz 2400/F(R 0.009-0.490 2400/F(R 24000/F(R 1.705-30 30 30-88 100 88-216 150 200 Above 960 500 500 Field Strength (microvolts/meter) Above 1GHz 500 5000	kHz- 150kHz Quasi-peak 200Hz 1kHz 150kHz- 30MHz Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Field Strength (microvolts/meter) Measure Distan (meter 500 3	Frequency Detector RBW VBW kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak 150kHz- 30MHz Quasi-peak 9kHz 30kHz Quasi-peak 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Above 1GHz Peak 1MHz 3MHz Peak Peak 1MHz 10Hz Ave Frequency Field Strength (microvolts/meter) Measurement Distance (meters) 0.009-0.490 2400/F(KHz) 24000/F(KHz) 1.705-30 30 30 30-88 100 88-216 216-960 200 500 Above 960 500 Measurement Distance (meters) Above 1GHz 500 3 5000 3 5000 3				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

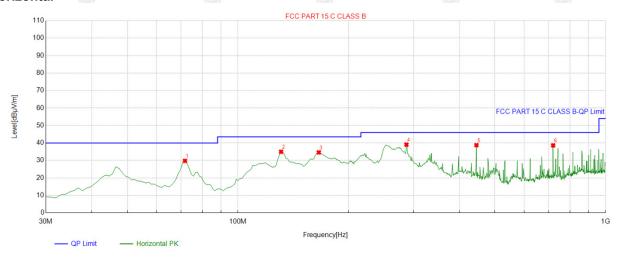
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

"IAK The			" LOK TE		
	that vertical measure emission from ground and the second and the	which maximus arement and sions shall be and plane. It devel - Predeasurement will be reported than the appropriate than the appropriat	spectrum and le enough to g measured; kHz for f < 1 ; Detector fur MHz, VBW=	ssions. The ion for max to a range of bund or reference actor + Ca = Level and the end detect and de	imum of heights of erence ble Loss + ssion level for is 3 dB emission quasi-peak ngs: re the V ≥RBW; ak; Trace = > 1 GHz for when duty T, when is the h the maximum
Test results:	PASS				

Test Instruments

	Rad	liated Emission	Test Site (966	6)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A
RSE Test Software	Tonscend	JS36-RSE 5.0 .0	HKE-184	N/A	N/A

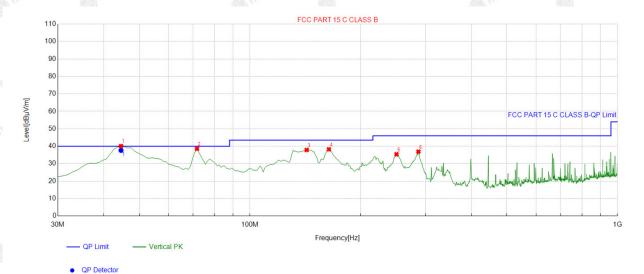
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz


Horizontal

Suspe	Suspected List										
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	71.751752	-17.38	47.16	29.78	40.00	10.22	100	196	Horizontal		
2	130.98098	-17.44	52.42	34.98	43.50	8.52	100	48	Horizontal		
3	165.93593	-17.41	52.01	34.60	43.50	8.90	100	51	Horizontal		
4	287.30730	-12.28	51.36	39.08	46.00	6.92	100	125	Horizontal		
5	445.57557	-8.66	47.43	38.77	46.00	7.23	100	359	Horizontal		
6	720.36036	-4.25	42.88	38.63	46.00	7.37	100	212	Horizontal		

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Susp	Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	44.564565	-13.72	53.78	40.06	40.00	-0.06	100	339	Vertical			
2	71.751752	-17.38	55.91	38.53	40.00	1.47	100	98	Vertical			
3	142.63263	-18.41	56.27	37.86	43.50	5.64	100	359	Vertical			
4	163.99399	-17.59	55.83	38.24	43.50	5.26	100	235	Vertical			
5	250.41041	-13.45	48.81	35.36	46.00	10.64	100	248	Vertical			
6	287.30730	-12.28	49.17	36.89	46.00	9.11	100	251	Vertical			

CESSES.	Final [inal Data List										
I	5	Freq.	Factor	QP Reading	QP Value	QP Limit	QP Margin	Height	Angle	Delevite		
8	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
	1	44.56456	-13.72	51.36	37.64	40.00	2.36	100	339	Vertical		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
My	Why was	HUAN NO.
	<u></u>	-
		-
STING STING	- STATE	STIME -

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4824	52.46	-3.64	48.82	74	-25.18	peak	
4824	43.11	-3.64	39.47	54	-14.53	AVG	
7236	50.15	-0.95	49.2	74	-24.8	peak	
7236	41.07	-0.95	40.12	54	-13.88	AVG	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	54.35	-3.64	50.71	74	-23.29	peak
4824	42.46	-3.64	38.82	54	-15.18	AVG
7236	50.72	-0.95	49.77	74	-24.23	peak
7236	40.56	-0.95	39.61	54	-14.39	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	52.55	-3.51	49.04	74	-24.96	peak
4874	44.29	-3.51	40.78	54	-13.22	AVG
7311	50.68	-0.82	49.86	74	-24.14	peak
7311	41.99	-0.82	41.17	54	-12.83	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.22	-3.51	49.71	74	-24.29	peak
4874	41.85	-3.51	38.34	54	-15.66	AVG
7311	51.16	-0.82	50.34	74	-23.66	peak
7311	40.65	-0.82	39.83	54	··· -14.17	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52.52	-3.43	49.09	74	-24.91	peak
₆ 4924	41.85	-3.43	38.42	54	-15.58	AVG
7386	50.46	-0.75	49.71	74	-24.29	peak
7386	39.94	-0.75	39.19	54	-14.81	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.31	-3.43	49.88	74	-24.12	peak
4924	43.83	-3.43	40.4	54	-13.6	AVG
7386	51.86	-0.75	51.11	74	-22.89	peak
7386	41.73	-0.75	40.98	54	-13.02	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.38	-3.64	48.74	74	-25.26	peak
4824	43.41	-3.64	39.77	54	-14.23	AVG
7236	51.35	-0.95	50.4	74	-23.6	peak
7236	41.06	-0.95	40.11	54 TESTIN	-13.89	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.31	-3.64	48.67	74	-25.33	peak
4824	44.72	-3.64	41.08	54	-12.92	AVG
7236	50.82	-0.95	49.87	74	-24.13	peak
7236	40.79	-0.95	39.84	54	-14.16	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.72	-3.51	50.21	74	-23.79	peak
4874	43.69	-3.51	40.18	54	-13.82	AVG
7311	50.92	-0.82	50.1	74	-23.9	peak
7311	42.28	-0.82	41.46	54	-12.54	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	53.12	-3.51	49.61	74	-24.39	peak
4874	41.88	-3.51	38.37	54	-15.63	AVG
7311	51.28	-0.82	50.46	74	-23.54	peak
7311	39.59	-0.82	38.77	54	-15.23	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	54.04	-3.43	50.61	74	-23.39	peak
4924	44.22	-3.43	40.79	54	-13.21	AVG
7386	50.09	-0.75	49.34	74 HUM	-24.66	peak
7386	42.22	-0.75	41.47	54	-12.53	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	52.04	-3.43	48.61	74	-25.39	peak
4924	43.37	-3.43	39.94	54	-14.06	AVG
7386	50.43	-0.75	49.68	74 MIA	-24.32	peak
7386	40.59	-0.75	39.84	54	-14.16	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/HT20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	[©] (dBµV/m)	(dB)	Туре
4824	55.94	-3.64	52.3	74	-21.7	peak
4824	43.53	-3.64	39.89	54	-14.11	AVG
7236	52.27	-0.95	51.32	74	-22.68	peak
7236	41.24	-0.95	40.29	54	-13.71	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	54.66	-3.64	51.02	74	-22.98	peak
4824	44.02	-3.64	40.38	54	-13.62	AVG
7236	52.45	-0.95	51.5	74	-22.5	peak
7236	40.61	-0.95	39.66	54	-14.34	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH6 (802.11n/HT20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	53.39	-3.51	49.88	74	-24.12	peak
4874	43.22	-3.51	39.71	54	-14.29	AVG
7311	51.93	-0.82	51.11	74	-22.89	peak
7311	40.07	-0.82	39.25	54	-14.75	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.55	-3.51	50.04	74	-23.96	peak
4874	41.37	-3.51	37.86	54 HUP	-16.14	AVG
7311	50.78	-0.82	49.96	74	-24.04	peak
7311	39.69	-0.82	38.87	54	-15.13	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH11 (802.11n/HT20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	53.79	-3.43	50.36	74	-23.64	peak
4924	42.45	-3.43	39.02	54	-14.98	AVG
7386	52.06	-0.75	51.31	74	-22.69	peak
7386	40.23	-0.75	39.48	54	-14.52	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
(MHz) (dBµV)	(dBµV)					
4924	54.23	-3.43	50.8	74	-23.2	peak
4924	41.41	-3.43	37.98	54	-16.02	AVG
7386	51.63	-0.75	50.88	74	-23.12	peak
7386	40.73	-0.75	39.98	54	-14.02	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

LOW CH3 (802.11n/HT40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	52.75	-3.63	49.12	74	-24.88	peak
4844	41.45	-3.63	37.82	54	-16.18	AVG
7266	50.81	-0.94	49.87	74	-24.13	peak
7266	40.96	-0.94	40.02	54	-13.98	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	52.92	-3.63	49.29	74	-24.71	peak
4844	41.16	-3.63	37.53	54	-16.47	AVG
7266	50.88	-0.94	49.94	74	-24.06	peak
7266	40.16	-0.94	39.22	54	-14.78	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH6 (802.11n/HT40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	53.43	-3.51	49.92	74	-24.08	peak
4874	43.43	-3.51	39.92	54	-14.08	AVG
7311	52.07	-0.82	51.25	74	-22.75	peak
7311	41.29	-0.82	40.47	54 KTEST	-13.53	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
4874	54.19	-3.51	50.68	74	-23.32	peak
4874	42.89	-3.51	39.38	54	-14.62	AVG
7311	50.63	-0.82	49.81	74	-24.19	peak
7311	40.22	-0.82	39.4	54	-14.6	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH9 (802.11n/HT40 Mode)/2452

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	53.85	-3.43	50.42	74	-23.58	peak
4904	42.71	-3.43	39.28	54	-14.72	AVG
7356	51.03	-0.75	50.28	74	-23.72	peak
7356	40.17	-0.75	39.42	54 50	-14.58	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	A MUAK TESTA
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	53.92	-3.43	50.49	74	-23.51	peak
4904	41.44	-3.43	38.01	54	-15.99	AVG
7356	51.06	-0.75	50.31	74	-23.69	peak
7356	40.19	-0.75	39.44	54	-14.56	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	53.95	-5.81	48.14	74	-25.86	peak
2310.00	44.98	-5.81	39.17	54	-14.83	AVG
2390.00	51.47	-5.84	45.63	74	-28.37	peak
2390.00	40.43	-5.84	34.59	54	-19.41	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	- C- 1	ATTAL VIV	of Early 1	ATTAL VV		of Co. S.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	52.61	-5.81	46.8	74	-27.2	peak
2310.00	44.07	-5.81	38.26	54	-15.74	AVG
2390.00	50.23	-5.84	44.39	74	-29.61	peak
2390.00	41.21	-5.84	35.37	54	-18.63	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	52.93	-5.81	47.12	74 HUAN	-26.88	peak
2483.50	43.02	-5.81	37.21	54	-16.79	AVG
2500.00	50.63	-6.06	44.57	74	-29.43	peak
2500.00	40.84	-6.06	34.78	54	-19.22	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	No.	40		400		
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TESTING
2483.50	52.91	-5.81	47.1	74	-26.9	peak
2483.50	43.16	-5.81	37.35	54	-16.65	AVG
2500.00	51.17	-6.06	45.11	74	-28.89	peak
2500.00	40.49	-6.06	34.43	54	-19.57	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

-allo	Slav	la.	0	Ollo.	-all	Slav
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	_ Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	52.84	-5.81	47.03	74 HUAY	-26.97	peak
2310.00	43.36	-5.81	37.55	54	-16.45	AVG
2390.00	51.26	-5.84	45.42	74	-28.58	peak
2390.00	40.61	-5.84	34.77	54	-19.23	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	. 0.10	. 0.10	210.		277	- 110
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TING
2310.00	51.91	-5.81	46.1	74	-27.9	peak
2310.00	43.88	-5.81	38.07	54	-15.93	AVG
2390.00	50.26	-5.84	44.42	74	-29.58	peak
2390.00	41.37	-5.84	35.53	54	-18.47	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

W. Les III

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.26	-5.65	47.61	74	-26.39	peak
2483.50	41.41	-5.65	35.76	54	-18.24	AVG
2500.00	52.64	-5.65	46.99	74	-27.01	peak
2500.00	40.33	-5.65	34.68	54	-19.32	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

- CV	-61	-61		111	-C-1"	-61
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	56.21	-5.65	50.56	74	-23.44	peak
2483.50	43.42	-5.65	37.77	54	-16.23	AVG
2500.00	52.06	-5.65	46.41	74	-27.59	peak
2500.00	41.72	-5.65	36.07	54	-17.93	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/HT20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	53.81	-5.81	48	74	-26	peak
2310.00	42.52	-5.81	36.71	54	-17.29	AVG
2390.00	52.24	-5.84	46.4	74	-27.6	peak
2390.00	40.15	-5.84	34.31	54	-19.69	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	54.27	-5.81	48.46	74 HUAN	-25.54	peak
2310.00	43.56	-5.81	37.75	54	-16.25	AVG
2390.00	53.11	-5.84	47.27	74	-26.73	peak
2390.00	41.39	-5.84	35.55	54	-18.45	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Operation Mode: TX CH High (2462MHz)

Horizontal

-allo	Sla-	Uni	2		-allo	Sla
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	7.
2483.50	53.85	-5.65	48.2	74	-25.8	peak
2483.50	41.87	-5.65	36.22	54	-17.78	AVG
2500.00	51.62	-5.65	45.97	74	-28.03	peak
2500.00	40.68	-5.65	35.03	54	-18.97	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TESTING
2483.50	53.33	-5.65	47.68	74	-26.32	peak
2483.50	42.79	-5.65	37.14	54	-16.86	AVG
2500.00	51.21	-5.65	45.56	74	-28.44	peak
2500.00	40.27	-5.65	34.62	54	-19.38	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/HT40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	53.26	-5.81	47.45	74	-26.55	peak
2310.00	2,11	-5.81	- WAY TESTIN	54	1	AVG
2390.00	51.48	-5.84	45.64	74	-28.36	peak
2390.00	MIG MINA	-5.84		54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

- Cline	S. Land	-61	0		- Ella-	Clin-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)] "
2310.00	55.26	-5.81	49.45	74	-24.55	peak
2310.00	1	-5.81	O 1	54	1 🔘	AVG
2390.00	53.18	-5.84	47.34	74	-26.66	peak
2390.00	MAKTE	-5.84	ALAKTE	54	HUAK TEST	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2452MHz)

Horizontal

Ollan	Clar	lai		363	Olo	clo-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.62	-5.65	48.97	74	-25.03	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	51.75	-5.65	46.1	74	-27.9	peak
2500.00	HI AKTES /	-5.65	ALLEK TES	54	HUAK TES	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.46	-5.65	47.81	74	-26.19	peak
2483.50	ETING WHUAN	-5.65	TWG / STAVE	54	1 TING	AVG
2500.00	52.11	-5.65	46.46	74	-27.54	peak
2500.00	1	-5.65	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.8. Antenna Requirement

Standard Applicable

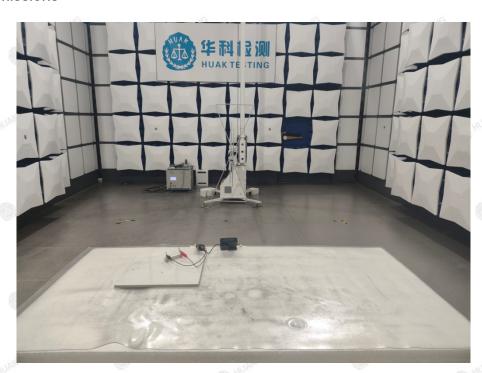
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

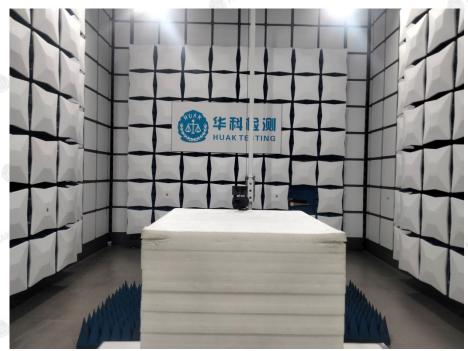
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a FPC Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1.66dBi.


Antenna



5. Test Setup Photos of the EUT

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com