

# **Test Report**

**Report No.:** MTi230512009-01E1

**Date of issue:** 2023-07-27

**Applicant:** Hangzhou VeloFox Intelligent Technology Co., Ltd.

**Product:** Display for EPAC

Model(s): DM03

**FCC ID**: 2BB8D-DM03001

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com



The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com



## **Table of contents**

| 1   | Gene                            | eral Description                                                                                                                   | 5     |
|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | 1.1<br>1.2<br>1.3<br>1.4<br>1.5 | Description of the EUT  Description of test modes  Environmental Conditions  Description of support units  Measurement uncertainty | 5<br> |
| 2   | Sum                             | mary of Test Result                                                                                                                | 8     |
| 3   | Test                            | Facilities and accreditations                                                                                                      | 9     |
|     | 3.1                             | Test laboratory                                                                                                                    | g     |
| 4   | List                            | of test equipment                                                                                                                  | 10    |
| 5   | Eval                            | uation Results (Evaluation)                                                                                                        | 13    |
|     | 5.1                             | Antenna requirement                                                                                                                |       |
| 6   | _                               | io Spectrum Matter Test Results (RF)                                                                                               |       |
| •   | 6.1                             | Conducted Emission at AC power line                                                                                                |       |
|     | 6.2                             | Occupied Bandwidth                                                                                                                 |       |
|     | 6.3                             | Maximum Conducted Output Power                                                                                                     |       |
|     | 6.4                             | Power Spectral Density                                                                                                             |       |
|     | 6.5                             | Emissions in frequency bands                                                                                                       |       |
|     | 6.6                             | Band edge emissions (Radiated)                                                                                                     |       |
|     | 6.7                             | Emissions in frequency bands (below 1GHz)                                                                                          |       |
| DI- | 6.8                             | Emissions in frequency bands (above 1GHz)                                                                                          |       |
|     | _                               | aphs of the test setup                                                                                                             |       |
|     | _                               | aphs of the EUT                                                                                                                    |       |
| Аp  | pendi                           | ix A: DTS Bandwidth                                                                                                                | 39    |
| Аp  | pendi                           | ix B: Maximum conducted output power                                                                                               | 41    |
| Аp  | pendi                           | ix C: Maximum power spectral density                                                                                               | 43    |
| Ар  | pendi                           | ix D: Band edge measurements                                                                                                       | 45    |
| Аp  | pendi                           | ix E: Conducted Spurious Emission                                                                                                  | 46    |
| Δn  | nendi                           | ix F: Duty Cycle                                                                                                                   | 50    |



**Test Result Certification** Applicant: Hangzhou VeloFox Intelligent Technology Co., Ltd. Address: Zone 3, 3rd Floor, Building D, No.69, Shanjing Road, XihuDistrict, Hangzhou Manufacturer: Hangzhou VeloFox Intelligent Technology Co., Ltd. Address: Zone 3, 3rd Floor, Building D, No.69, Shanjing Road, XihuDistrict, Hangzhou **Product description** Product name: Display for EPAC Trademark: Velofox Model name: **DM03** Series Model: N/A Standards: FCC 47 CFR Part 15 Subpart C ANSI C63.10-2013 Test method: KDB 558074 D01 15.247 Meas Guidance v05r02 **Date of Test** Date of test: 2023-07-05 to 2023-07-27 Test result: **Pass** 

| Test Engineer | : | Monteent Davy |
|---------------|---|---------------|
|               |   | (Maleah Deng) |
| Reviewed By   |   | leon chen     |
|               |   | (Leon Chen)   |
| Approved By   |   | Tom Xue       |
|               |   | (Tom Xue)     |



## 1 General Description

## 1.1 Description of the EUT

| Product name:              | Display for EPAC           |
|----------------------------|----------------------------|
| Model name:                | DM03                       |
| Series Model:              | N/A                        |
| Model difference:          | N/A                        |
| Electrical rating:         | Input: DC 36V              |
| Accessories:               | N/A                        |
| Hardware version:          | V1.7                       |
| Software version:          | DM03_A00.17.1.1.1_22121413 |
| Test sample(s) number:     | MTi230512009-01S1001       |
| RF specification           |                            |
| Bluetooth version:         | V4.2                       |
| Operating frequency range: | 2402-2480                  |
| Channel number:            | 40                         |
| Modulation type:           | GFSK                       |
| Antenna(s) type:           | Ceramic Antenna            |
| Antenna(s) gain:           | 2.84dBi                    |

## 1.2 Description of test modes

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

| No.   | Emission test modes           |  |
|-------|-------------------------------|--|
| Mode1 | TX-GFSK-1Mbps(CH00,CH19,CH39) |  |



#### 1.2.1 peration channel list

| Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) |
|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|
| 0              | 2402               | 10             | 2422               | 20             | 2442               | 30             | 2462               |
| 1              | 2404               | 11             | 2424               | 21             | 2444               | 31             | 2464               |
| 2              | 2406               | 12             | 2426               | 22             | 2446               | 32             | 2466               |
| 3              | 2408               | 13             | 2428               | 23             | 2448               | 33             | 2468               |
| 4              | 2410               | 14             | 2430               | 24             | 2450               | 34             | 2470               |
| 5              | 2412               | 15             | 2432               | 25             | 2452               | 35             | 2472               |
| 6              | 2414               | 16             | 2434               | 26             | 2454               | 36             | 2474               |
| 7              | 2416               | 17             | 2436               | 27             | 2456               | 37             | 2476               |
| 8              | 2418               | 18             | 2438               | 28             | 2458               | 38             | 2478               |
| 9              | 2420               | 19             | 2440               | 29             | 2460               | 39             | 2480               |

**Note:** The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

| Mode   | Test Software | MacroGiga Test |         |         |
|--------|---------------|----------------|---------|---------|
| iviode | Channel       | 2402MHz        | 2440MHz | 2480MHz |
| BLE_1M | Power setting | 3              | 3       | 3       |

#### The test software:





#### 1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:          | 15°C ~ 35°C      |
|-----------------------|------------------|
| Humidity:             | 20% RH ~ 75% RH  |
| Atmospheric pressure: | 98 kPa ~ 101 kPa |

#### 1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Support equipment list         |                    |                       |              |  |  |  |  |  |
|--------------------------------|--------------------|-----------------------|--------------|--|--|--|--|--|
| Description                    | Model              | Serial No.            | Manufacturer |  |  |  |  |  |
| HUAWEI CHARGE                  | HW-050200C02       | 200C02 K95212KA103561 |              |  |  |  |  |  |
| USB Power supply box           | 1                  | 1                     | Velofox      |  |  |  |  |  |
| Support cable list             | Support cable list |                       |              |  |  |  |  |  |
| Description Length (m) From To |                    |                       |              |  |  |  |  |  |
| 1                              | 1                  | 1                     | 1            |  |  |  |  |  |

## 1.5 Measurement uncertainty

| Measurement                              | Uncertainty |
|------------------------------------------|-------------|
| Conducted emissions (AMN 150kHz~30MHz)   | 3.1dB       |
| Occupied channel bandwidth               | ±3 %        |
| RF output power, conducted               | ±1 dB       |
| Power Spectral Density, conducted        | ±1 dB       |
| Unwanted Emissions, conducted            | ±1 dB       |
| Radiated spurious emissions (1GHz~25GHz) | 5.3dB       |
| Radiated spurious emissions (9kHz~30MHz) | 4.3dB       |
| Radiated spurious emissions (30MHz~1GHz) | 4.7dB       |
| Temperature                              | ±1 °C       |
| Humidity                                 | ± 5 %       |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



## 2 Summary of Test Result

| No. | FCC reference               | Description of test                 | Result |
|-----|-----------------------------|-------------------------------------|--------|
| 1   | § 15.203                    | Antenna requirement                 | Pass   |
| 2   | § 15.207                    | AC power line conducted emissions   | Pass   |
| 3   | § 15.247(d), 15.209, 15.205 | Radiated spurious emissions         | Pass   |
| 4   | § 15.247(a)(2)              | DTS bandwidth                       | Pass   |
| 5   | § 15.247(b)(3)              | Maximum conducted output power      | Pass   |
| 6   | § 15.247(e)                 | Power Spectral Density              | Pass   |
| 7   | § 15.247(d)                 | Conducted emission at the band edge | Pass   |
| 8   | § 15.247(d)                 | Conducted spurious emissions        | Pass   |
| 9   | /                           | Duty Cycle                          | Pass   |



## 3 Test Facilities and accreditations

## 3.1 Test laboratory

| Test laboratory:       | Shenzhen Microtest Co., Ltd.                                                                                                         |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test site location:    | 101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China |  |  |  |  |
| Telephone:             | (86-755)88850135                                                                                                                     |  |  |  |  |
| Fax:                   | (86-755)88850136                                                                                                                     |  |  |  |  |
| CNAS Registration No.: | CNAS L5868                                                                                                                           |  |  |  |  |
| FCC Registration No.:  | 448573                                                                                                                               |  |  |  |  |



## 4 List of test equipment

| NIa | Farriances                             | Manufacturen  | Madal            | Oswiel No  | 0-1 -1-1-  | Cal Dua    |
|-----|----------------------------------------|---------------|------------------|------------|------------|------------|
| No. | Equipment                              | Manufacturer  | Model            | Serial No. | Cal. date  | Cal. Due   |
|     | Conducted Emission at AC power line    |               |                  |            |            |            |
| 1   | EMI Test Receiver                      | Rohde&schwarz | ESCI3            | 101368     | 2023-04-26 | 2024-04-25 |
| 2   | Artificial mains network               | Schwarzbeck   | NSLK 8127        | 183        | 2023-05-05 | 2024-05-04 |
| 3   | Artificial Mains Network               | Schwarzbeck   | NSLK 8127        | 1001       | 2023-05-06 | 2024-05-05 |
|     |                                        | Осси          | pied Bandwidth   |            |            |            |
| 1   | Wideband Radio<br>Communication Tester | Rohde&schwarz | CMW500           | 149155     | 2023-04-26 | 2024-04-25 |
| 2   | ESG Series Analog<br>Ssignal Generator | Agilent       | E4421B           | GB40051240 | 2023-04-25 | 2024-04-24 |
| 3   | PXA Signal Analyzer                    | Agilent       | N9030A           | MY51350296 | 2023-04-25 | 2024-04-24 |
| 4   | Synthesized Sweeper                    | Agilent       | 83752A           | 3610A01957 | 2023-04-25 | 2024-04-24 |
| 5   | MXA Signal Analyzer                    | Agilent       | N9020A           | MY50143483 | 2023-04-26 | 2024-04-25 |
| 6   | RF Control Unit                        | Tonscend      | JS0806-1         | 19D8060152 | 2023-04-26 | 2024-04-25 |
| 7   | Band Reject Filter Group               | Tonscend      | JS0806-F         | 19D8060160 | 2023-05-05 | 2024-05-04 |
| 8   | ESG Vector Signal<br>Generator         | Agilent       | N5182A           | MY50143762 | 2023-04-25 | 2024-04-24 |
| 9   | DC Power Supply                        | Agilent       | E3632A           | MY40027695 | 2023-05-05 | 2024-05-04 |
|     |                                        | Maximum Co    | nducted Output   | Power      |            |            |
| 1   | Wideband Radio<br>Communication Tester | Rohde&schwarz | CMW500           | 149155     | 2023-04-26 | 2024-04-25 |
| 2   | ESG Series Analog<br>Ssignal Generator | Agilent       | E4421B           | GB40051240 | 2023-04-25 | 2024-04-24 |
| 3   | PXA Signal Analyzer                    | Agilent       | N9030A           | MY51350296 | 2023-04-25 | 2024-04-24 |
| 4   | Synthesized Sweeper                    | Agilent       | 83752A           | 3610A01957 | 2023-04-25 | 2024-04-24 |
| 5   | MXA Signal Analyzer                    | Agilent       | N9020A           | MY50143483 | 2023-04-26 | 2024-04-25 |
| 6   | RF Control Unit                        | Tonscend      | JS0806-1         | 19D8060152 | 2023-04-26 | 2024-04-25 |
| 7   | Band Reject Filter Group               | Tonscend      | JS0806-F         | 19D8060160 | 2023-05-05 | 2024-05-04 |
| 8   | ESG Vector Signal<br>Generator         | Agilent       | N5182A           | MY50143762 | 2023-04-25 | 2024-04-24 |
| 9   | DC Power Supply                        | Agilent       | E3632A           | MY40027695 | 2023-05-05 | 2024-05-04 |
|     |                                        | Power         | Spectral Density | /          |            |            |
| 1   | Wideband Radio<br>Communication Tester | Rohde&schwarz | CMW500           | 149155     | 2023-04-26 | 2024-04-25 |
| 2   | ESG Series Analog<br>Ssignal Generator | Agilent       | E4421B           | GB40051240 | 2023-04-25 | 2024-04-24 |
| 3   | PXA Signal Analyzer                    | Agilent       | N9030A           | MY51350296 | 2023-04-25 | 2024-04-24 |
| 4   | Synthesized Sweeper                    | Agilent       | 83752A           | 3610A01957 | 2023-04-25 | 2024-04-24 |

No. **Equipment** Manufacturer Model Serial No. Cal. date Cal. Due 5 MXA Signal Analyzer Agilent N9020A MY50143483 2023-04-26 2024-04-25 RF Control Unit 6 Tonscend JS0806-1 19D8060152 2023-04-26 2024-04-25 7 Band Reject Filter Group Tonscend JS0806-F 19D8060160 2023-05-05 2024-05-04 ESG Vector Signal 8 Agilent N5182A MY50143762 2023-04-25 2024-04-24 Generator 9 DC Power Supply Agilent E3632A MY40027695 2023-05-05 2024-05-04 Emissions in frequency bands Wideband Radio Rohde&schwarz CMW500 149155 2023-04-26 2024-04-25 1 **Communication Tester ESG Series Analog** 2 Agilent E4421B GB40051240 2023-04-25 2024-04-24 Ssignal Generator PXA Signal Analyzer 3 Agilent N9030A MY51350296 2023-04-25 2024-04-24 4 3610A01957 2023-04-25 2024-04-24 Synthesized Sweeper Agilent 83752A 5 MXA Signal Analyzer Agilent N9020A MY50143483 2023-04-26 2024-04-25 6 RF Control Unit Tonscend JS0806-1 19D8060152 2023-04-26 2024-04-25 7 Tonscend JS0806-F 19D8060160 Band Reject Filter Group 2023-05-05 2024-05-04 **ESG Vector Signal** 8 Agilent N5182A MY50143762 2023-04-25 2024-04-24 Generator 9 DC Power Supply Agilent E3632A MY40027695 2023-05-05 2024-05-04 Band edge emissions (Radiated) 1 **EMI Test Receiver** Rohde&schwarz ESC<sub>17</sub> 101166 2023-04-26 2024-04-25 Double Ridged 2 **BBHA 9120 D** 2278 2023-05-26 2024-05-25 schwarabeck Broadband Horn Antenna 3 **Amplifier** Agilent 8449B 3008A01120 2023-05-26 2024-05-25 4 Multi-device Controller TuoPu **TPMDC** 5 N9020A MY54440859 2023-05-05 2024-05-04 MXA signal analyzer Agilent Emissions in frequency bands (below 1GHz) Rohde&schwarz ESC<sub>17</sub> 101166 2023-04-26 2024-04-25 1 **EMI Test Receiver** TRILOG Broadband 2 schwarabeck **VULB 9163** 9163-1338 2023-06-11 2025-06-10 Antenna 3 **Amplifier** Hewlett-Packard 8447F 3113A06184 2023-04-26 2024-04-25 Multi-device Controller 4 TuoPu **TPMDC** / / / 5 Active Loop Antenna Schwarzbeck FMZB 1519 B 00066 2023-06-11 2025-06-10 Emissions in frequency bands (above 1GHz) 1 **EMI Test Receiver** Rohde&schwarz ESC<sub>17</sub> 101166 2023-04-26 2024-04-25 Double Ridged 2 BBHA 9120 D 2278 2023-05-26 2024-05-25 schwarabeck Broadband Horn Antenna



| No. | Equipment               | Manufacturer | Model  | Serial No. | Cal. date  | Cal. Due   |
|-----|-------------------------|--------------|--------|------------|------------|------------|
| 3   | Amplifier               | Agilent      | 8449B  | 3008A01120 | 2023-05-26 | 2024-05-25 |
| 4   | Multi-device Controller | TuoPu        | TPMDC  | 1          | /          | 1          |
| 5   | MXA signal analyzer     | Agilent      | N9020A | MY54440859 | 2023-05-05 | 2024-05-04 |

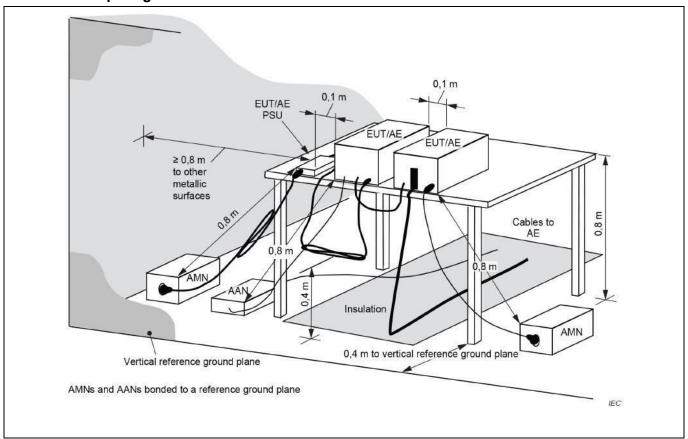


## 5 Evaluation Results (Evaluation)

## 5.1 Antenna requirement

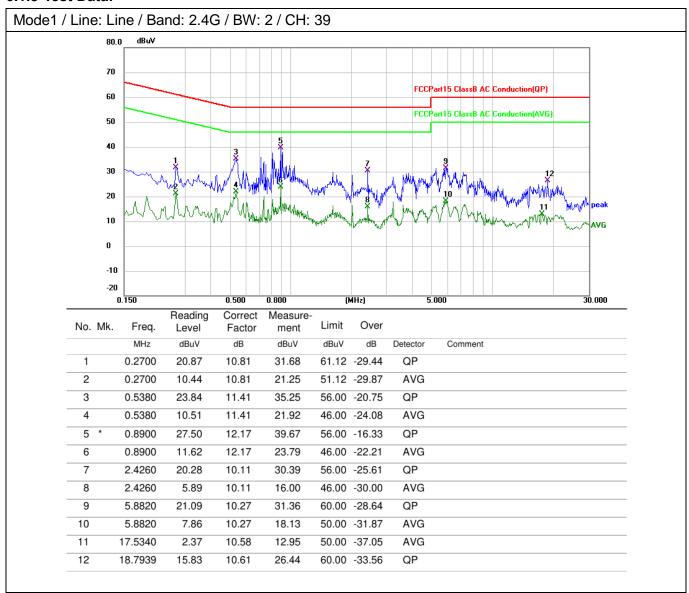
| Test Requirement:                  | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of the antenna of EUT: | The antenna of the EUT is permanently attached.                                                                                                                                                                                                                                                                                                        |
| Conclusion:                        | The EUT complies with the requirement of FCC PART 15.203.                                                                                                                                                                                                                                                                                              |

## 6 Radio Spectrum Matter Test Results (RF)


## 6.1 Conducted Emission at AC power line

| Test Requirement: | Except as shown in paragraphs (radiator that is designed to be conthe radio frequency voltage that if any frequency or frequencies, with exceed the limits in the following line impedance stabilization networks. | nnected to the public ut<br>s conducted back onto<br>thin the band 150 kHz to<br>table, as measured usin | ility (AC) power line<br>the AC power line<br>o 30 MHz, shall no | e,<br>on<br>ot |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------|--|--|--|
| Test Limit:       | Frequency of emission (MHz)                                                                                                                                                                                        | Conducted limit (dBµ\                                                                                    | limit (dBµV)                                                     |                |  |  |  |
|                   |                                                                                                                                                                                                                    | Quasi-peak                                                                                               | Average                                                          |                |  |  |  |
|                   | 0.15-0.5                                                                                                                                                                                                           | 66 to 56*                                                                                                | 56 to 46*                                                        |                |  |  |  |
|                   | 0.5-5                                                                                                                                                                                                              | 56                                                                                                       | 46                                                               |                |  |  |  |
|                   | 5-30                                                                                                                                                                                                               | 50                                                                                                       |                                                                  |                |  |  |  |
|                   | *Decreases with the logarithm of the frequency.                                                                                                                                                                    |                                                                                                          |                                                                  |                |  |  |  |
| Test Method:      | Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices                                                                                 |                                                                                                          |                                                                  |                |  |  |  |

#### 6.1.1 E.U.T. Operation:


| Operating Environment:                                            |      |      |    |  |  |         |  |
|-------------------------------------------------------------------|------|------|----|--|--|---------|--|
| Temperature: 25.2 °C Humidity: 61 % Atmospheric Pressure: 101 kPa |      |      |    |  |  | 101 kPa |  |
| Pre test mode:                                                    | Mode | e1   |    |  |  |         |  |
| Final test mode: Mo                                               |      | Mode | e1 |  |  |         |  |

## 6.1.2 Test Setup Diagram:





#### 6.1.3 Test Data:



11

12

17.3980

20.6180

15.53

1.44

10.59

10.70

26.12

12.14

60.00 -33.88

50.00 -37.86

QP

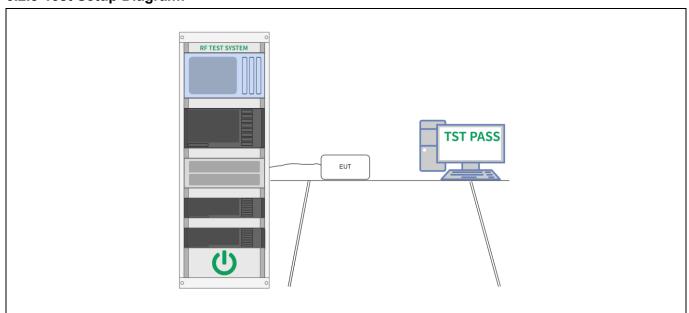
AVG

Report No.: MTi230512009-01E1 Mode1 / Line: Neutral / Band: 2.4G / BW: 2 / CH: 39 dBu∀ 80.0 70 FCCPart15 ClassB AC Conduction(QP) 60 FCCPart15 ClassB AC Conduction(AVG) 50 40 30 20 10 0 -10 -20 0.150 0.500 n snn (MHz) 5.000 30.000 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1659 20.70 10.26 30.96 65.16 -34.20 QP 2 0.1940 8.85 10.59 19.44 53.86 -34.42 AVG QP 3 0.5340 24.20 11.39 56.00 -20.41 35.59 4 0.5380 8.33 11.41 19.74 46.00 -26.26 AVG 5 0.8940 24.58 12.13 36.71 56.00 -19.29 QP 6 0.8940 11.39 12.13 23.52 46.00 -22.48 AVG 7 3.2340 18.12 10.29 28.41 56.00 -27.59 QP 46.00 -29.54 3.2340 10.29 8 6.17 16.46 AVG 60.00 -26.86 QP 5.9020 22.87 10.27 33.14 9 10 5.9500 6.29 10.27 16.56 50.00 -33.44 AVG



## 6.2 Occupied Bandwidth

| Test Requirement: | Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.                                                                                                                                                                                                                                                                   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.                                                                                                                                                                                                                                                   |
| Test Method:      | DTS bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Procedure:        | a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. |


## 6.2.1 E.U.T. Operation:

| Operating Environment: |                                                                 |      |    |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------|------|----|--|--|--|--|--|
| Temperature:           | Temperature: 25 °C Humidity: 58 % Atmospheric Pressure: 101 kPa |      |    |  |  |  |  |  |
| Pre test mode:         |                                                                 | Mode | e1 |  |  |  |  |  |
| Final test mode        | e:                                                              | Mode | e1 |  |  |  |  |  |

#### 6.2.2 Test Data:

Please Refer to Appendix for Details.

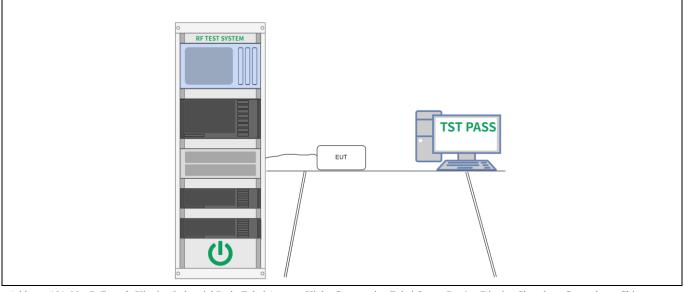
## 6.2.3 Test Setup Diagram:





## 6.3 Maximum Conducted Output Power

| For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.  Test Limit:  For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.  Test Method:  Maximum peak conducted output power |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.  Test Method:  Maximum peak conducted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test Requirement: | and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test Limit:       | and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power |
| Procedure: ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test Method:      | Maximum peak conducted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Procedure:        | ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


## 6.3.1 E.U.T. Operation:

| Operating Environment: |                    |  |    |      |                       |         |  |
|------------------------|--------------------|--|----|------|-----------------------|---------|--|
| Temperature:           | Temperature: 25 °C |  |    | 58 % | Atmospheric Pressure: | 101 kPa |  |
| Pre test mode: Me      |                    |  | e1 |      |                       |         |  |
| Final test mode: Mod   |                    |  | e1 |      |                       |         |  |

## 6.3.2 Test Data:

Please Refer to Appendix for Details.

#### 6.3.3 Test Setup Diagram:

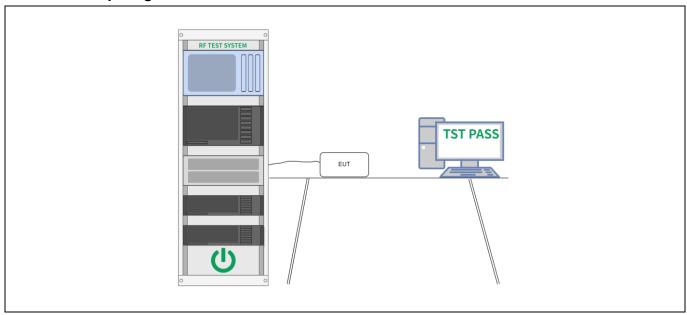


Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com



## 6.4 Power Spectral Density

| Test Requirement: | For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. |
| Test Method:      | Maximum power spectral density level in the fundamental emission                                                                                                                                                                                                                                                                                                                                                                                               |


## 6.4.1 E.U.T. Operation:

| Operating Environment: |  |  |           |      |                       |         |  |  |
|------------------------|--|--|-----------|------|-----------------------|---------|--|--|
| Temperature: 25 °C     |  |  | Humidity: | 58 % | Atmospheric Pressure: | 101 kPa |  |  |
| Pre test mode: Mod     |  |  | e1        |      |                       |         |  |  |
| Final test mode: Mod   |  |  | e1        |      |                       |         |  |  |

#### 6.4.2 Test Data:

Please Refer to Appendix for Details.

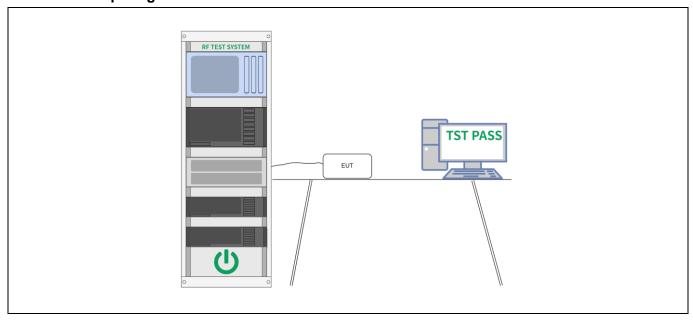
## 6.4.3 Test Setup Diagram:





## 6.5 Emissions in frequency bands

| Test Requirement: | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. |
| Test Method:      | Emissions in nonrestricted frequency bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Procedure:        | ANSI C63.10-2013<br>Section 11.11.1, Section 11.11.2, Section 11.11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |


## 6.5.1 E.U.T. Operation:

| Operating Environment: |       |      |           |      |                       |         |  |
|------------------------|-------|------|-----------|------|-----------------------|---------|--|
| Temperature:           | 25 °C |      | Humidity: | 58 % | Atmospheric Pressure: | 101 kPa |  |
| Pre test mode: M       |       | Mode | e1        |      |                       |         |  |
| Final test mode: M     |       | Mode | e1        |      |                       |         |  |

#### 6.5.2 Test Data:

Please Refer to Appendix for Details.

## 6.5.3 Test Setup Diagram:





## 6.6 Band edge emissions (Radiated)

|                        | Jo addition radiated as   | cianiana vulsiala fall in the maste | sisted benede so defined in  |
|------------------------|---------------------------|-------------------------------------|------------------------------|
| To at Dagwing as a set |                           | nissions which fall in the restr    |                              |
| Test Requirement:      |                           | comply with the radiated emi        | ission limits specified in § |
|                        | 15.209(a)(see § 15.205    |                                     |                              |
| Test Limit:            | Frequency (MHz)           | Field strength                      | Measuremen                   |
|                        |                           | (microvolts/meter)                  | t distance                   |
|                        |                           |                                     | (meters)                     |
|                        | 0.009-0.490               | 2400/F(kHz)                         | 300                          |
|                        | 0.490-1.705               | 24000/F(kHz)                        | 30                           |
|                        | 1.705-30.0                | 30                                  | 30                           |
|                        | 30-88                     | 100 **                              | 3                            |
|                        | 88-216                    | 150 **                              | 3                            |
|                        | 216-960                   | 200 **                              | 3                            |
|                        | Above 960                 | 500                                 | 3                            |
|                        | ** Except as provided i   | n paragraph (g), fundamenta         | I emissions from             |
|                        |                           | erating under this section sha      |                              |
|                        |                           | 2 MHz, 76-88 MHz, 174-216 N         |                              |
|                        |                           | hin these frequency bands is        |                              |
|                        | sections of this part, e. |                                     | •                            |
|                        | §§ 15.231 and 15.241.     | <b>5</b> /                          |                              |
| Test Method:           | Radiated emissions tes    | sts                                 |                              |
| Procedure:             | ANSI C63.10-2013 sec      | etion 6.10.5.2                      |                              |
|                        |                           | Ant. Tower                          | ] 1-4m                       |
|                        | EUT&<br>Support Units     | 3m                                  | Variable                     |
|                        | Turn                      | Absorber                            |                              |
| Test setup:            | 150cm                     | <u> </u>                            | 0                            |
|                        | =                         | Ground Plane                        |                              |
|                        |                           | Spectrum analyzer                   |                              |
|                        |                           |                                     |                              |

## 6.6.1 E.U.T. Operation:

| Operating Envi  | ronment: | •     |              |                |                            |         |
|-----------------|----------|-------|--------------|----------------|----------------------------|---------|
| Temperature:    | 25 °C    |       | Humidity:    | 60 %           | Atmospheric Pressure:      | 101 kPa |
| Pre test mode:  |          | Mode  | e1           |                |                            |         |
| Final test mode | e:       | Mode  | e1           |                |                            |         |
| Note: All other | emission | s are | attenuated 2 | 20dB below the | limit, so does not recorde | ed      |



## 6.6.2 Test Data:

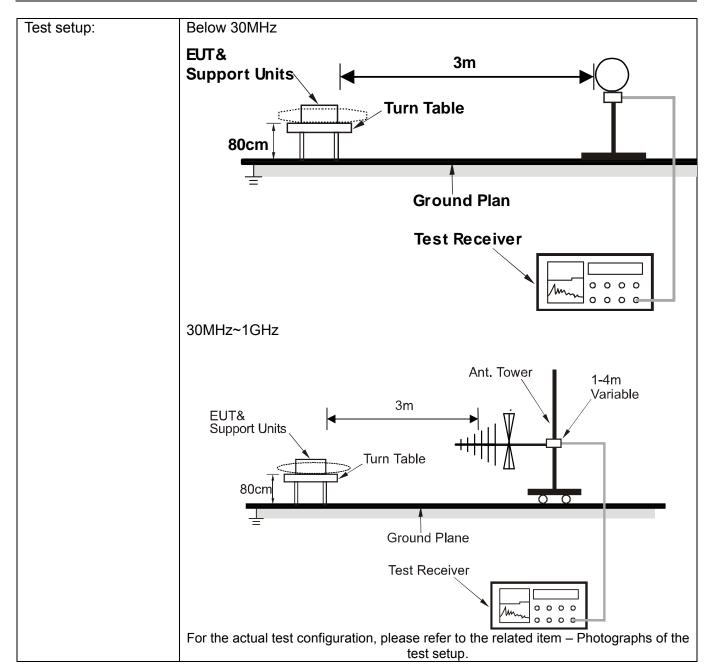
| No. | Mk. | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 2310.000 | 46.89            | -8.08             | 38.81            | 74.00  | -35.19 | peak     |
| 2   |     | 2310.000 | 37.19            | -8.08             | 29.11            | 54.00  | -24.89 | AVG      |
| 3   |     | 2390.000 | 47.92            | -7.71             | 40.21            | 74.00  | -33.79 | peak     |
| 4   | *   | 2390.000 | 37.47            | -7.71             | 29.76            | 54.00  | -24.24 | AVG      |



| <br>NO. | Mk |      | Freq.<br>MHz | Leve |   | Facto | r me | ent   | Limit<br>dBuV/m | Over   | Detector |
|---------|----|------|--------------|------|---|-------|------|-------|-----------------|--------|----------|
|         |    |      | IVIITZ       | иви  | v | uБ    | ави  | V/III | ubu v/III       | uБ     | Detector |
| 1       |    | 2310 | 0.000        | 46.8 | 4 | -8.08 | 38.  | .76   | 74.00           | -35.24 | peak     |
| 2       |    | 2310 | 0.000        | 37.1 | 5 | -8.08 | 29.  | .07   | 54.00           | -24.93 | AVG      |
| 3       |    | 2390 | 0.000        | 46.5 | 3 | -7.71 | 38.  | .82   | 74.00           | -35.18 | peak     |
| 4       | *  | 2390 | 0.000        | 37.4 | 5 | -7.71 | 29.  | .74   | 54.00           | -24.26 | AVG      |
|         |    |      |              |      |   |       |      |       |                 |        |          |
|         |    |      |              |      |   |       |      |       |                 |        |          |



Mode1 / Polarization: Horizontal / Band: 2.4G / BW: 2 / CH: 39 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dΒ dBuV/m Detector 2483.500 46.81 -7.24 39.57 74.00 -34.43 1 peak 2 2483.500 37.56 -7.24 30.32 -23.68 AVG 54.00 3 2500.000 48.48 -7.17 41.31 -32.69 74.00 peak 4 2500.000 38.03 -7.17 30.86 54.00 -23.14 AVG




Mode1 / Polarization: Vertical / Band: 2.4G / BW: 2 / CH: 39 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dΒ Detector 2483.500 47.38 -7.24 40.14 74.00 -33.86 1 peak 2 2483.500 37.67 -7.24 30.43 54.00 -23.57 AVG 3 2500.000 47.08 -7.17 -34.09 39.91 74.00 peak 4 2500.000 37.81 -7.17 30.64 54.00 -23.36 AVG

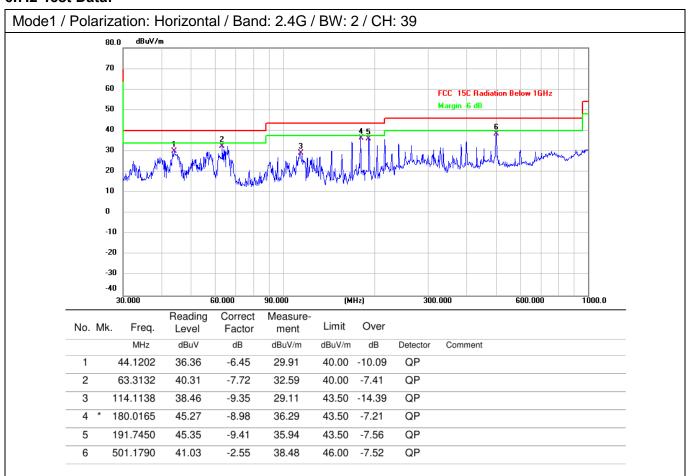


## 6.7 Emissions in frequency bands (below 1GHz)

| Test Requirement: |                                                    | comply with the radiated en                                                                                           | tricted bands, as defined in hission limits specified in § |
|-------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Test Limit:       | Frequency (MHz)                                    | Field strength (microvolts/meter)                                                                                     | Measuremen<br>t distance<br>(meters)                       |
|                   | 0.009-0.490                                        | 2400/F(kHz)                                                                                                           | 300                                                        |
|                   | 0.490-1.705                                        | 24000/F(kHz)                                                                                                          | 30                                                         |
|                   | 1.705-30.0                                         | 30                                                                                                                    | 30                                                         |
|                   | 30-88                                              | 100 **                                                                                                                | 3                                                          |
|                   | 88-216                                             | 150 **                                                                                                                | 3                                                          |
|                   | 216-960                                            | 200 **                                                                                                                | 3                                                          |
|                   | Above 960                                          | 500                                                                                                                   | 3                                                          |
|                   | intentional radiators ope<br>frequency bands 54-72 | n paragraph (g), fundament<br>erating under this section sh<br>MHz, 76-88 MHz, 174-216<br>nin these frequency bands i | nall not be located in the MHz or 470-806 MHz.             |
| Test Method:      | Radiated emissions tes                             | ts                                                                                                                    |                                                            |
| Procedure:        | ANSI C63.10-2013 sec                               | tion 6.6.4                                                                                                            |                                                            |



#### 6.7.1 E.U.T. Operation:


| Operating Enviro | nment: |           |      |                       |         |
|------------------|--------|-----------|------|-----------------------|---------|
| Temperature: 2   | 25 °C  | Humidity: | 60 % | Atmospheric Pressure: | 101 kPa |
| Pre test mode:   | Me     | ode1      |      |                       |         |
| Final test mode: | Me     | ode1      |      |                       |         |

#### Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

#### 6.7.2 Test Data:



192.4186

399.0302

501.1790

4 5

6

39.63

33.66

40.35

-9.54

-3.88

-2.55

30.09

29.78

37.80

Report No.: MTi230512009-01E1 Mode1 / Polarization: Vertical / Band: 2.4G / BW: 2 / CH: 39 70 60 FCC 15C Radi Margin -6 dB 50 40 30 20 10 0 -10 -20 -30 -40 600.000 30.000 60.000 90.000 (MHz) 300.000 1000.0 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 44.4308 40.02 -6.35 33.67 40.00 -6.33 2 51.3005 37.21 -7.51 29.70 40.00 -10.30 QP QP 3 119.8556 38.33 -10.20 28.13 43.50 -15.37

43.50 -13.41

46.00 -16.22

-8.20

46.00

QP

QP

QP



## 6.8 Emissions in frequency bands (above 1GHz)

| Test Requirement: |                                                                                            | sions which fall in the restricte mply with the radiated emission)).`                                                              |                                                          |
|-------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Test Limit:       | Frequency (MHz)                                                                            | Field strength (microvolts/meter)                                                                                                  | Measuremen<br>t distance<br>(meters)                     |
|                   | 0.009-0.490                                                                                | 2400/F(kHz)                                                                                                                        | 300                                                      |
|                   | 0.490-1.705                                                                                | 24000/F(kHz)                                                                                                                       | 30                                                       |
|                   | 1.705-30.0                                                                                 | 30                                                                                                                                 | 30                                                       |
|                   | 30-88                                                                                      | 100 **                                                                                                                             | 3                                                        |
|                   | 88-216                                                                                     | 150 **                                                                                                                             | 3                                                        |
|                   | 216-960                                                                                    | 200 **                                                                                                                             | 3                                                        |
|                   | Above 960                                                                                  | 500                                                                                                                                | 3                                                        |
|                   | intentional radiators opera<br>frequency bands 54-72 M                                     | paragraph (g), fundamental em<br>ating under this section shall n<br>IHz, 76-88 MHz, 174-216 MHz<br>n these frequency bands is per | ot be located in the<br>or 470-806 MHz.                  |
| Test Method:      | Radiated emissions tests                                                                   |                                                                                                                                    |                                                          |
| Procedure:        | ANSI C63.10-2013 section                                                                   | n 6.6.4                                                                                                                            |                                                          |
| Test setup:       | Above 1GHz  EUT& Support Units  Turn Table 150cm  For the actual test configuratest setup. | Ant. Tower  Absorber  Ground Plane  Spectrum analyzer  tion, please refer to the related ite                                       | 1-4m<br>Variable  Pre-amplifier  em – Photographs of the |

## 6.8.1 E.U.T. Operation:

| Operating Envi  | ronment:   |      |              |                  |                                                                    |         |
|-----------------|------------|------|--------------|------------------|--------------------------------------------------------------------|---------|
| Temperature:    | 25 °C      |      | Humidity:    | 59 %             | Atmospheric Pressure:                                              | 101 kPa |
| Pre test mode:  |            | Mode | e1           |                  |                                                                    |         |
| Final test mode | e:         | Mode | e1           |                  |                                                                    |         |
| attenuated mo   | re thán 20 | dB b | elow the lim | its are not repo | itude of spurious emissior<br>orted.<br>d only the worst-case resu |         |



#### 6.8.2 Test Data:

| No. | Mk. | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 4804.000 | 45.94            | 0.74              | 46.68            | 74.00  | -27.32 | peak     |
| 2   |     | 4804.000 | 39.48            | 0.74              | 40.22            | 54.00  | -13.78 | AVG      |
| 3   |     | 7206.000 | 44.96            | 6.02              | 50.98            | 74.00  | -23.02 | peak     |
| 4   | *   | 7206.000 | 37.30            | 6.02              | 43.32            | 54.00  | -10.68 | AVG      |
| 5   |     | 9608.000 | 41.02            | 5.88              | 46.90            | 74.00  | -27.10 | peak     |
| 6   |     | 9608.000 | 34.41            | 5.88              | 40.29            | 54.00  | -13.71 | AVG      |



| MHz dBuV dB             | dBuV/m dBuV/m dB Detector |
|-------------------------|---------------------------|
|                         | 0507/111 0507/111 05      |
| 1 4804.000 44.16 0.74   | 44.90 74.00 -29.10 peal   |
| 2 4804.000 37.48 0.74   | 38.22 54.00 -15.78 AVG    |
| 3 7206.000 42.52 6.02   | 48.54 74.00 -25.46 peal   |
| 4 * 7206.000 36.27 6.02 | 42.29 54.00 -11.71 AVG    |
| 5 9608.000 41.28 5.88   | 47.16 74.00 -26.84 peal   |
| 6 9608.000 35.24 5.88   | 41.12 54.00 -12.88 AVG    |
|                         |                           |



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 4880.000 | 47.72            | 1.04              | 48.76            | 74.00  | -25.24 | peak     |
| 2   |    | 4880.000 | 41.29            | 1.04              | 42.33            | 54.00  | -11.67 | AVG      |
| 3   |    | 7320.000 | 45.31            | 5.93              | 51.24            | 74.00  | -22.76 | peak     |
| 4   | *  | 7320.000 | 39.20            | 5.93              | 45.13            | 54.00  | -8.87  | AVG      |
| 5   |    | 9760.000 | 40.99            | 6.55              | 47.54            | 74.00  | -26.46 | peak     |
| 6   |    | 9760.000 | 34.73            | 6.55              | 41.28            | 54.00  | -12.72 | AVG      |
|     |    |          |                  |                   |                  |        |        |          |



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 4880.000 | 43.76            | 1.04              | 44.80            | 74.00  | -29.20 | peak     |
| 2   |    | 4880.000 | 37.20            | 1.04              | 38.24            | 54.00  | -15.76 | AVG      |
| 3   |    | 7320.000 | 42.97            | 5.93              | 48.90            | 74.00  | -25.10 | peak     |
| 4   | *  | 7320.000 | 36.61            | 5.93              | 42.54            | 54.00  | -11.46 | AVG      |
| 5   |    | 9760.000 | 41.23            | 6.55              | 47.78            | 74.00  | -26.22 | peak     |
| 6   |    | 9760.000 | 34.78            | 6.55              | 41.33            | 54.00  | -12.67 | AVG      |
|     |    |          |                  |                   |                  |        |        |          |



Mode1 / Polarization: Horizontal / Band: 2.4G / BW: 2 / CH: 39 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dΒ dBuV/m Detector 4960.000 47.84 1.50 49.34 74.00 -24.66 1 peak 2 4960.000 41.71 1.50 43.21 54.00 -10.79 AVG 74.00 -25.62 3 7440.000 42.77 5.61 48.38 peak 4 7440.000 36.54 5.61 42.15 54.00 -11.85 AVG 5 9920.000 41.00 6.10 47.10 74.00 -26.90 peak 9920.000 34.96 6.10 41.06 54.00 -12.94 AVG 6



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 4960.000 | 43.80            | 1.50              | 45.30            | 74.00  | -28.70 | peak     |
| 2   |    | 4960.000 | 37.62            | 1.50              | 39.12            | 54.00  | -14.88 | AVG      |
| 3   |    | 7440.000 | 44.04            | 5.61              | 49.65            | 74.00  | -24.35 | peak     |
| 4   | *  | 7440.000 | 37.72            | 5.61              | 43.33            | 54.00  | -10.67 | AVG      |
| 5   |    | 9920.000 | 40.80            | 6.10              | 46.90            | 74.00  | -27.10 | peak     |
| 6   |    | 9920.000 | 34.32            | 6.10              | 40.42            | 54.00  | -13.58 | AVG      |
|     |    |          |                  |                   |                  |        |        |          |



## Photographs of the test setup

Refer to Appendix - Test Setup Photo



## Photographs of the EUT

Refer to Appendix - EUT Photos

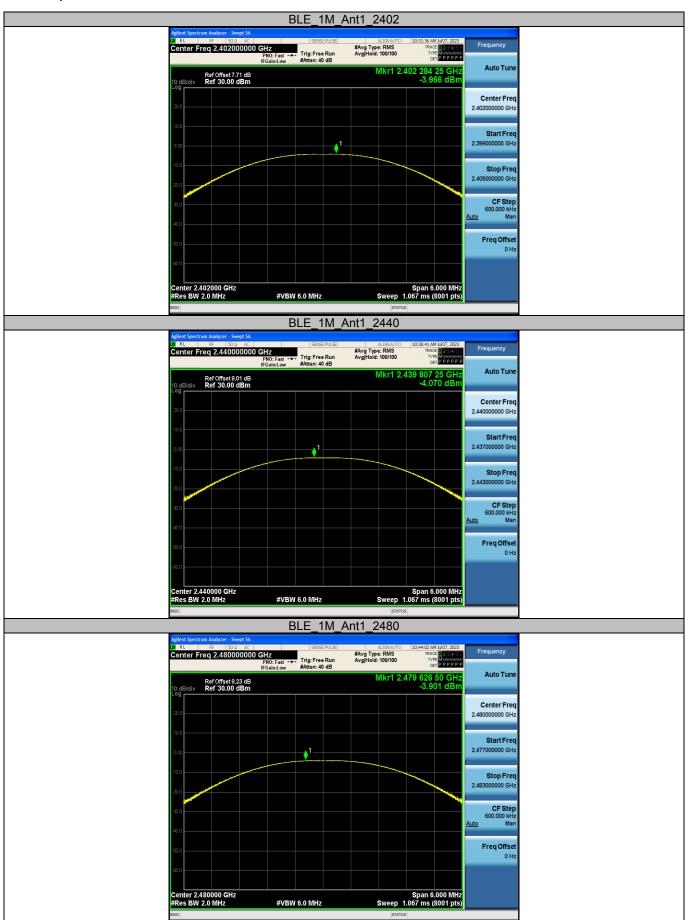


# Appendix A: DTS Bandwidth

#### Test Result

| Test Mode | Antenna | Frequency<br>[MHz] | DTS BW<br>[MHz] | Limit<br>[MHz] | Verdict |
|-----------|---------|--------------------|-----------------|----------------|---------|
| BLE_1M    | Ant1    | 2402               | 0.652           | 0.5            | PASS    |
|           |         | 2440               | 0.696           | 0.5            | PASS    |
|           |         | 2480               | 0.740           | 0.5            | PASS    |





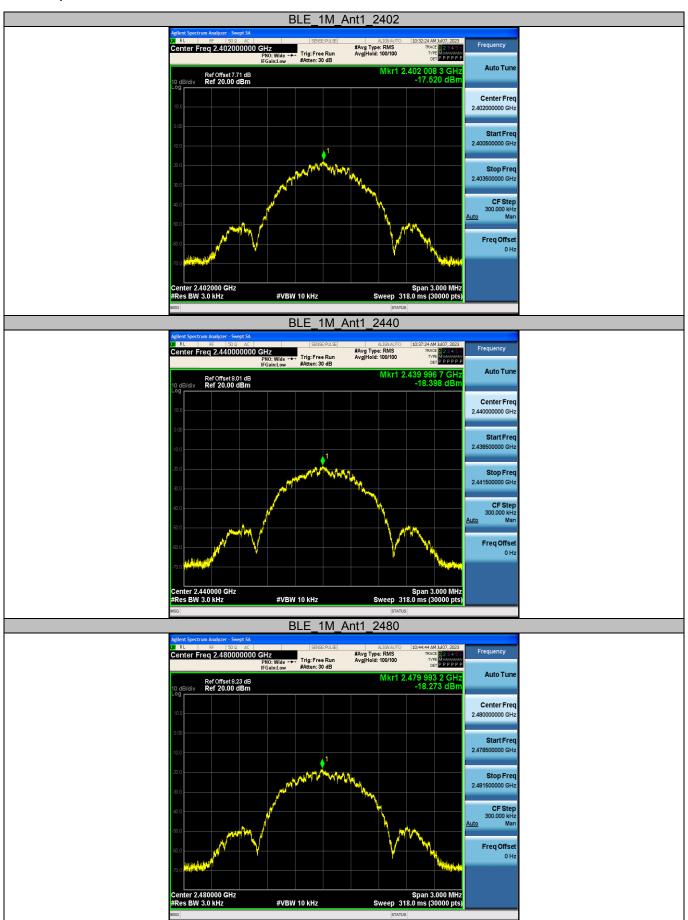

# Appendix B: Maximum conducted output power

#### Test Result-Peak

| Test Mode | Antenna | Frequency<br>[MHz] | Conducted Peak Power [dBm] | Limit<br>[dBm] | Verdict |
|-----------|---------|--------------------|----------------------------|----------------|---------|
| BLE_1M    | Ant1    | 2402               | -3.97                      | ≤30            | PASS    |
|           |         | 2440               | -4.07                      | ≤30            | PASS    |
|           |         | 2480               | -3.9                       | ≤30            | PASS    |

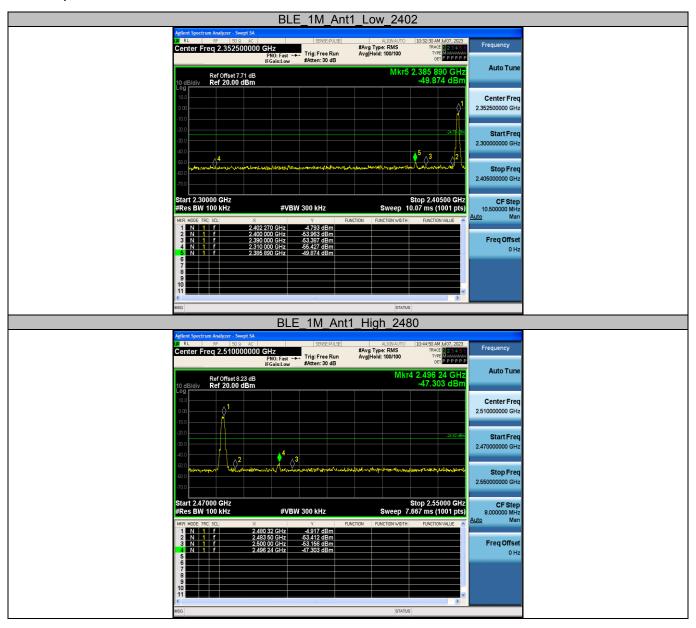







## Appendix C: Maximum power spectral density

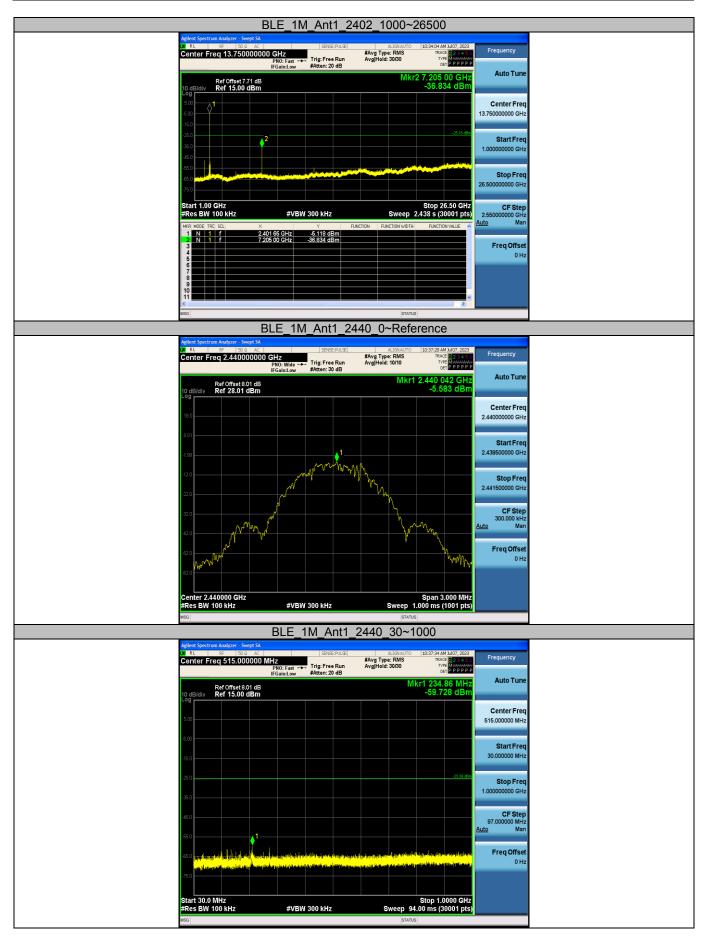
#### Test Result

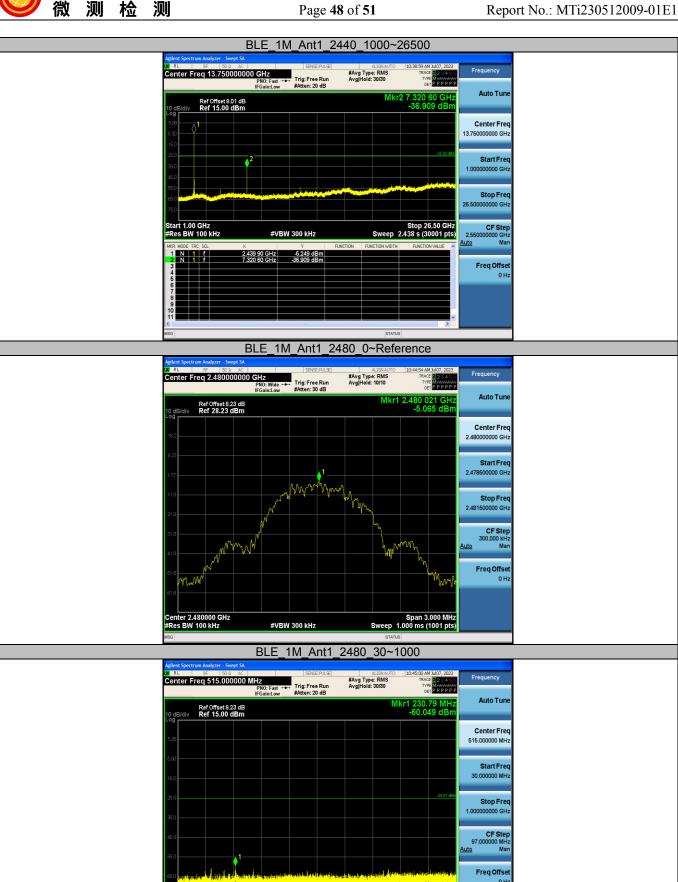

| Test Mode | Antenna | Frequency<br>[MHz] | Result<br>[dBm/3kHz] | Limit<br>[dBm/3kHz] | Verdict |
|-----------|---------|--------------------|----------------------|---------------------|---------|
| BLE_1M    | Ant1    | 2402               | -17.52               | ≤8.00               | PASS    |
|           |         | 2440               | -18.4                | ≤8.00               | PASS    |
|           |         | 2480               | -18.27               | ≤8.00               | PASS    |

Page 44 of 51 Report No.: MTi230512009-01E1



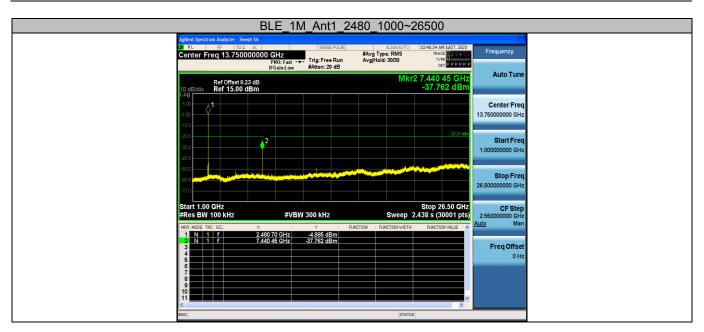



## Appendix D: Band edge measurements






## **Appendix E: Conducted Spurious Emission**








#VBW 300 kHz

Start 30.0 MHz #Res BW 100 kHz





# **Appendix F: Duty Cycle**

#### Test Result

| Test Mode | Antenna | Frequency | ON Time | Period | Duty Cycle | Duty Cycle |
|-----------|---------|-----------|---------|--------|------------|------------|
|           |         | [MHz]     | [ms]    | [ms]   | [%]        | Factor[dB] |
| BLE_1M    | Ant1    | 2402      | 19      | 19     | 100        | 0.00       |
|           |         | 2440      | 19      | 19     | 100        | 0.00       |
|           |         | 2480      | 19      | 19     | 100        | 0.00       |



