

Test Report No....::

	IEST REPORT
FCC ID::	2BAHU2023008

TCT230904E021

Date of issue.....: Sep. 11, 2023

Testing laboratory:: SHENZHEN TONGCE TESTING LAB

Testing location/ address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103,

People's Republic of China

Applicant's name.....: DIALN PRODUCTS INC.

Address.....: 8312 Page Ave, Saint Louis, Missouri 63130, United States

Manufacturer's name ...: SHENZHEN JREN TECHNOLOGY CO., LTD

FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01

Standard(s) : KDB 002911 D01 Multiple Transmitter Output v02101 KDB 789033 D02 General U-NII Test Procedures New Rules

v02r01

Product Name.....: LTE Tablet

Trade Mark: DIALN

Model/Type reference.....: X10G, X10M

Rating(s).....: Refer to EUT description of page 3

Date of receipt of test item
Dec. 22, 2022

Date (s) of performance of test.....:

Dec. 22, 2022 - Sep. 11, 2023

Tested by (+signature) ... : Rleo LIU

Check by (+signature)....: Beryl ZHAO

Approved by (+signature): Tomsin

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

	t Information		
1.1. EUT description	on	(20)	3
1.2. Model(s) list			3
	sy		
2. Test Result Sun	nmary		5
3. General Informa	ation		6
	ent and mode		
3.2. Description of	Support Units		7
4. Facilities and A	ccreditations		8
4.1. Facilities	(40)	<u>(</u> ()	8
4.2. Location			8
	Uncertainty		
5. Test Results an	d Measurement Data	(0)	9
5.1. Antenna requi	rement		9
5.2. Conducted En	nission		10
5.3. Maximum Con	ducted Output Power		14
5.4. 6dB Emission	Bandwidth		16
	Ith and 99% Occupied Bandw		
5.6. Power Spectra	al Density		18
	issions		
5.9. Frequency Sta	ability Measurement		45
Appendix A: Test I	Result of Conducted Test	t	
Appendix B: Photo	ographs of Test Setup		
Appendix C: Photo	ographs of EUT		

1. General Product Information

1.1. EUT description

Product Name:	LTE Tablet	(3)
Model/Type reference:	X10G	
Sample Number:	TCT230904E009-0101	
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz	
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM	1)
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	PIFA Antenna	
Antenna Gain:	Band 1: -1.44dBi Band 3: -1.32dBi	
Rating(s):	Adapter Information: MODEL: BOS050200-01A INPUT: AC 100-240V, 50/60Hz, 0.45A OUTPUT: DC 5V, 2000mA Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1 /	X10G	
Other models	X10M	

Note: X10G is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of X10G can represent the remaining models.

Page 3 of 126

1.3. Test Frequency

Band 1

20N	20MHz		40MHz		MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 3

20N	1Hz	40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 126

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz,EUT meet the requirements of 15.407(a)(ii).

Page 5 of 126

3. General Information

3.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Software:	
Software Information:	Engineering Mode
Power Level:	16
Test Mode:	
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps

Report No.: TCT230904E021

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1 (0)	1 (6)) / (6) /	(c)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 126

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

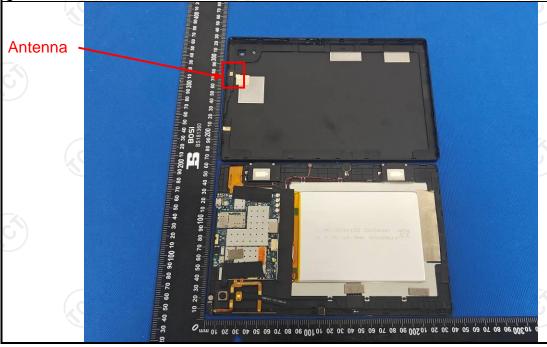
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT230904E021

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is PIFA antenna which permanently attached, and the maximum gain of the antenna is -1.32dBi at UNII-B3.

Page 9 of 126

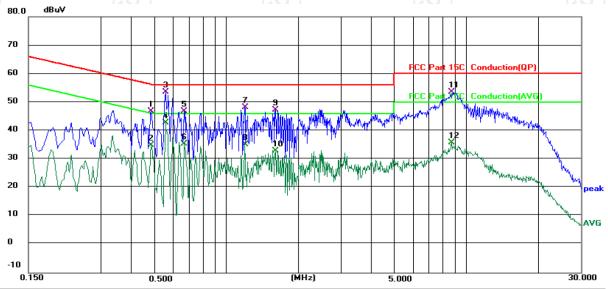
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto	
Limits:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50			
Test Setup:	Reference Plane 40cm 80cm LISN Filter AC power Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Mode:	Charging + Transmitting Mode			
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test Result:	PASS			

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment Manufacturer Model Serial Number Calibration Du								
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024				
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024				
Line-5	TCT	CE-05	/	Jul. 03, 2024				
EMI Test Software	Shurple Technology	EZ-EMC	1 (6)	1 6				



5.2.3. Test data

Report No.: TCT230904E021

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 23.5 (°C)

Humidity: 52 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/ 60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.4858	37.32	9.47	46.79	56.24	-9.45	QP	
2		0.4858	25.36	9.47	34.83	46.24	-11.41	AVG	
3	*	0.5580	44.06	9.40	53.46	56.00	-2.54	QP	
4		0.5580	33.33	9.40	42.73	46.00	-3.27	AVG	
5		0.6700	37.55	9.29	46.84	56.00	-9.16	QP	
6		0.6700	25.95	9.29	35.24	46.00	-10.76	AVG	
7		1.1938	38.22	9.98	48.20	56.00	-7.80	QP	
8		1.1938	25.23	9.98	35.21	46.00	-10.79	AVG	
9		1.6060	37.33	9.99	47.32	56.00	-8.68	QP	
10		1.6060	22.79	9.99	32.78	46.00	-13.22	AVG	
11		8.6899	43.33	10.14	53.47	60.00	-6.53	QP	
12		8.6899	25.57	10.14	35.71	50.00	-14.29	AVG	

Note:

Freq. = Emission frequency in MHz

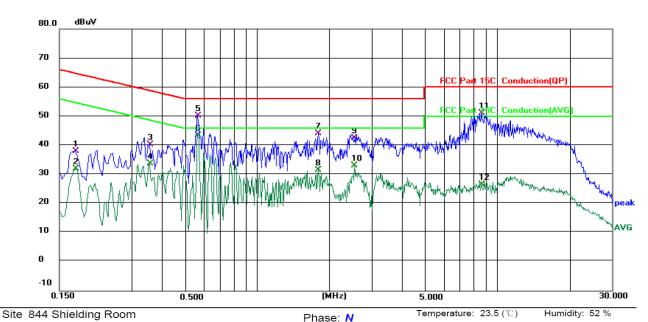
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/ 60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1739	27.93	10.13	38.06	64.77	-26.71	QP	
2		0.1739	21.72	10.13	31.85	54.77	-22.92	AVG	
3		0.3539	30.61	9.59	40.20	58.87	-18.67	QP	
4		0.3539	24.14	9.59	33.73	48.87	-15.14	AVG	
5		0.5658	40.77	9.39	50.16	56.00	-5.84	QP	
6	*	0.5658	33.99	9.39	43.38	46.00	-2.62	AVG	
7		1.7980	34.13	10.01	44.14	56.00	-11.86	QP	
8		1.7980	21.49	10.01	31.50	46.00	-14.50	AVG	
9		2.5459	32.48	10.02	42.50	56.00	-13.50	QP	
10		2.5459	22.99	10.02	33.01	46.00	-12.99	AVG	
11		8.6180	41.04	10.14	51.18	60.00	-8.82	QP	
12		8.6180	16.36	10.14	26.50	50.00	-23.50	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

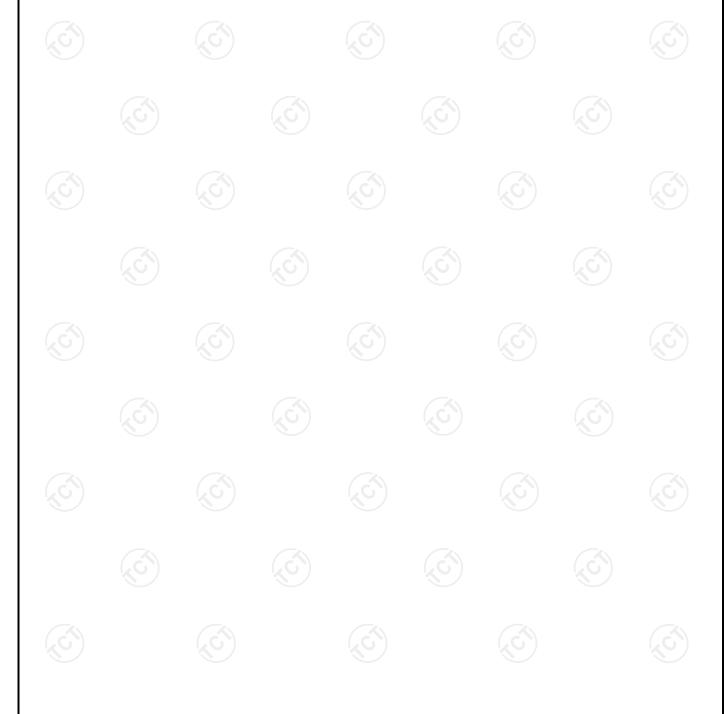
Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Lowest channel and 802.11ac(VHT20)) was submitted only.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section			
Test Method:		ultiple Transmitter Output v02r01 eneral UNII Test Procedures New n E			
	Frequency Band (MHz)	Limit			
	5180 - 5240	24dBm(250mW) for client device			
Limit:	5260 - 5320 5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz			
	5745 - 5825	30dBm(1W)			
Test Setup:	Power meter	EUT			
Test Mode:	Transmitting mode w	vith modulation			
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS				
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power			

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2024
Power Sensor	Agilent	8481A	MY41091497	Jun. 27, 2024
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024	
Combiner Box	Ascentest	AT890-RFB	1 (6)	/ (3	

Page 16 of 126

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

2.3.1. Test opecification	
Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024	
Combiner Box	Ascentest	AT890-RFB	1	1	

Page 17 of 126

5.6. Power Spectral Density

5.6.1. Test Specification

1					
Test Requirement:	FCC Part15 E Section 15.407 (a)				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F				
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 				
Test Result:	PASS				

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024	
Combiner Box	Ascentest	AT890-RFB			

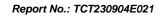
Page 18 of 126

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407	ÇČ				
Test Method:	ANSI C63.10 20	013						
	In un-restricted ba For Band 1&2A&2 For Band 3:		z	(61)				
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
	< 5650	-27	5850~5855	27~15.6				
Limit:	5650~5700	-27~10	5855~5875	15.6~10				
Lilling.	5700~5720	10~15.6	5875~5925	10~-27				
	5720~5725	15.6~27	> 592	-27				
	E[dBµV/m] = EIR In restricted band:		/					
	Detec		Limit@					
	Peal		74dBµ					
	AVG	j	54dBµ	IV/m				
Test Setup:	(Turmatio)							
Test Mode:	Transmitting mo	ode with modu	ulation					
Test Procedure:	meters above the was rotated 360 highest radiation 2. The EUT was interference-red the top of a vari 3. The antenna meters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 demaximum readi	Transmitting mode with modulation 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect						

Report No.: TCT230904E021



Mode.

Report No.: TCT230904E021

6. If the emission level of the EUT in peak mode was

	10dB lo stopped reported 10dB m quasipe	ower than the pland the pl	ne limit spe eak values se the emis d be re-tes age metho	cified, ther of the EU sions that ted one by	n testing co I would be did not hav one using	uld be e peak,
Result:	PASS		(c')			
		10dB lostopped reported 10dB m quasiped 10dB m quas	and the preported. Otherwise 10dB margin would quasipeak or average reported in a data. Result: PASS Application of the preported of the preported in a data. PASS Application of the preported in a data. PASS Application of the preported in a data. Application of the preported	10dB lower than the limit spe stopped and the peak values reported. Otherwise the emis 10dB margin would be re-tes quasipeak or average metho reported in a data sheet. PASS Result: PASS	10dB lower than the limit specified, ther stopped and the peak values of the EU reported. Otherwise the emissions that 10dB margin would be re-tested one by quasipeak or average method as specif reported in a data sheet. PASS PASS O O O O O O O O O O O O	Result: PASS 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

5.7.2. Test Instruments

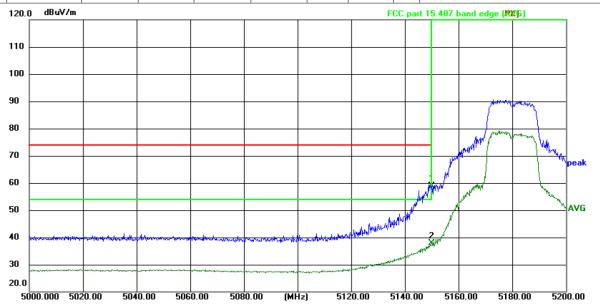
Radiated Emission Test Site (966)											
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due							
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024							
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024							
Spectrum Analyzer	Agilent	N9020A	MY49100619	Feb. 20, 2024							
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 20, 2024							
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jun. 27, 2024							
Pre-amplifier	HP	8447D	2727A05017	Jul. 02, 2024							
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 01, 2024							
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Feb. 24, 2024							
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jun. 29, 2024							
Coaxial cable	SKET	RC-18G-N-M) 1	Feb. 24, 2024							
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024							
Antenna Mast	Keleto	CC-A-4M	(0)	1 (6)							
EMI Test Software	Shurple Technology	EZ-EMC	/	(6)							

5.7.3. Test Data AC20-5180

Site: #3 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 23.8(°C)


Humidity: 54 %

Report No.: TCT230904E021

Limit: FCC part 15.407 band edge (PK)

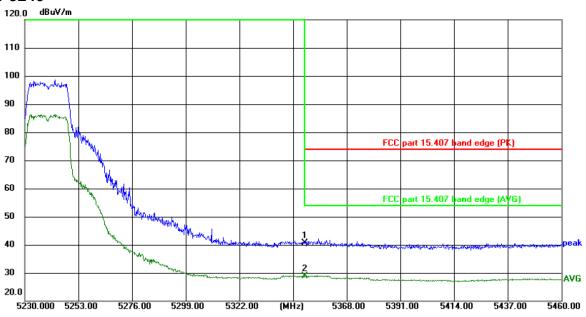
Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	72.83	-8.63	64.20	74.00	-9.80	peak	Р	
2 *	5150.000	52.84	-8.63	44.21	54.00	-9.79	AVG	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

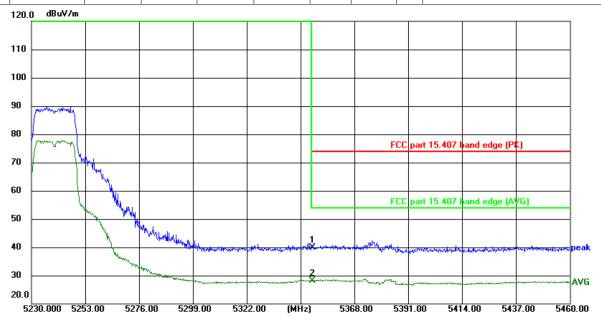
Temperature: 23.8(℃)


Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5150.000	67.41	-8.63	58.78	74.00	-15.22	peak	Р	
2	5150.000	46.54	-8.63	37.91	54.00	-16.09	AVG	Р	

AC20-5240



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

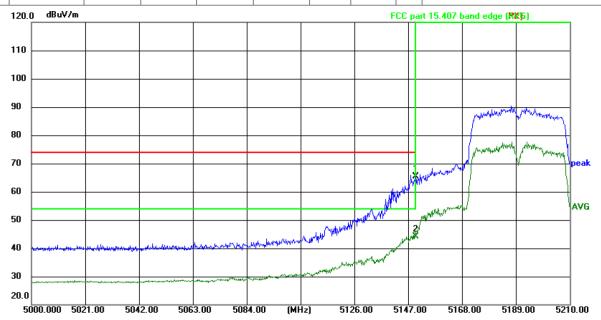
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5350.000	48.87	-8.22	40.65	74.00	-33.35	peak	Р	
ſ	2 *	5350.000	36.99	-8.22	28.77	54.00	-25.23	AVG	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	48.06	-8.22	39.84	74.00	-34.16	peak	Р	
2 *	5350.000	36.39	-8.22	28.17	54.00	-25.83	AVG	Р	

AC40-5190

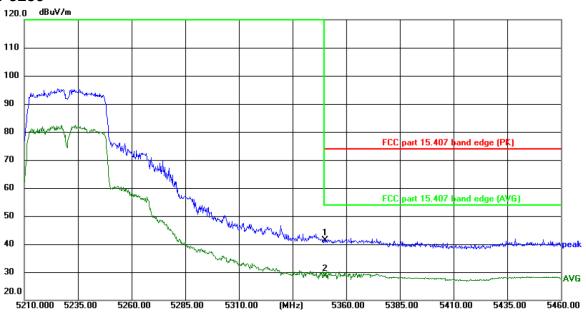


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 3.7 V

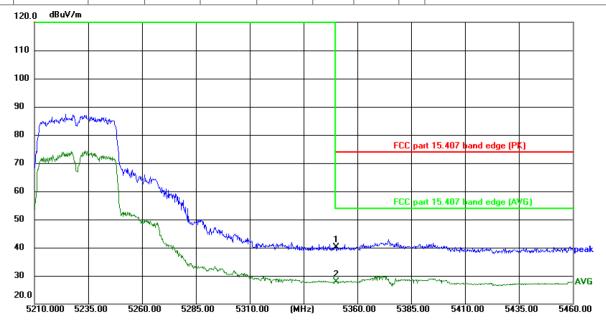
İ	No.	Frequency (MHz)	Reading (dBuV)	l .	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
Ì	1 *	5150.000	78.05	-8.63	69.42	74.00	-4.58	peak	Р	
Ì	2	5150.000	57.70	-8.63	49.07	54.00	-4.93	AVG	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(℃) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK) Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	74.08	-8.63	65.45	74.00	-8.55	peak	Р	
2	5150.000	52.67	-8.63	44.04	54.00	-9.96	AVG	Р	

AC40-5230

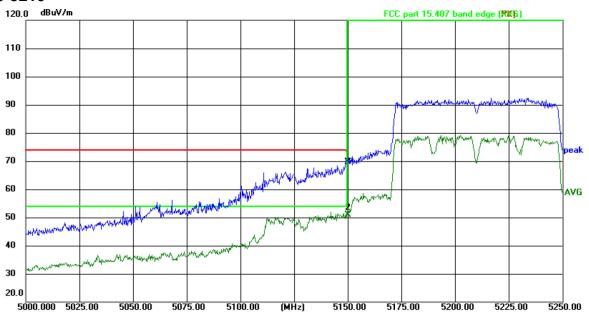


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

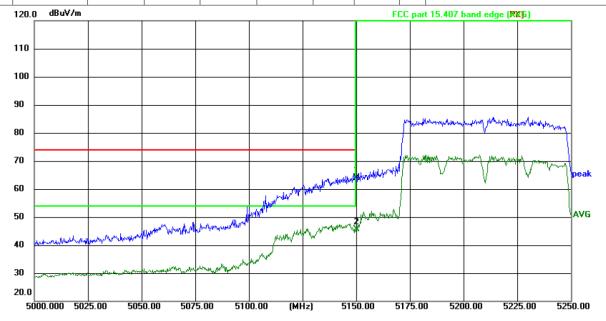
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	49.51	-8.22	41.29	74.00	-32.71	peak	Р	
2 *	5350.000	36.88	-8.22	28.66	54.00	-25.34	AVG	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(℃) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	48.34	-8.22	40.12	74.00	-33.88	peak	Р	
2 *	5350.000	36.00	-8.22	27.78	54.00	-26.22	AVG	Р	

AC80-5210

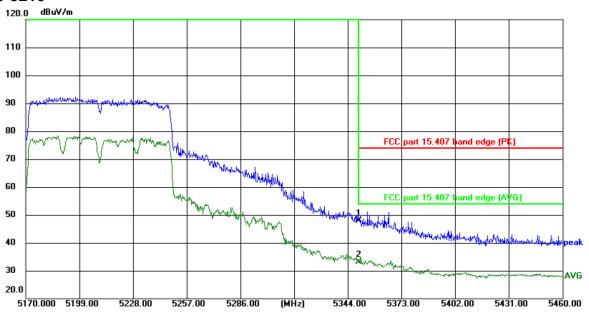


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(℃) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

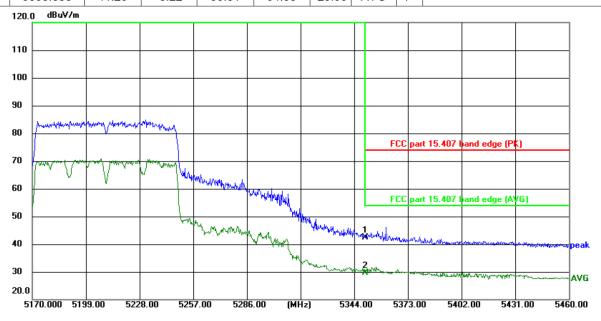
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5150.000	78.38	-8.63	69.75	74.00	-4.25	peak	Р	
ľ	2 *	5150.000	59.62	-8.63	50.99	54.00	-3.01	AVG	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	72.61	-8.63	63.98	74.00	-10.02	peak	Р	
2 *	5150.000	54.25	-8.63	45.62	54.00	-8.38	AVG	Р	

AC80-5210

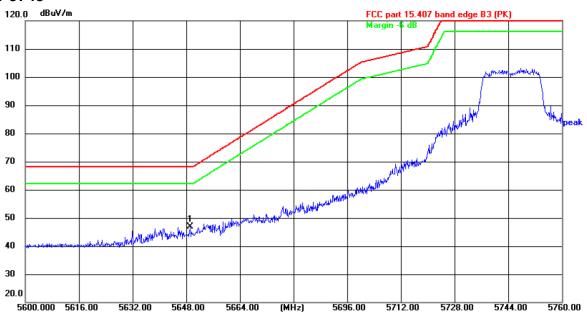


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(℃) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5350.000	56.19	-8.22	47.97	74.00	-26.03	peak	Р	
Γ	2 *	5350.000	41.23	-8.22	33.01	54.00	-20.99	AVG	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	50.55	-8.22	42.33	74.00	-31.67	peak	Р	
2 *	5350.000	37.97	-8.22	29.75	54.00	-24.25	AVG	Р	

AC20-5745

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 23.8(℃)

Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

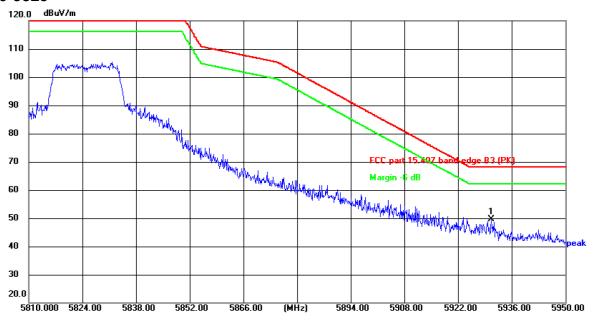
Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
1 *	5649 120	54 37	-7 56	46 81	68 20	-21 39	neak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 23.8(℃)


Humidity: 54 %

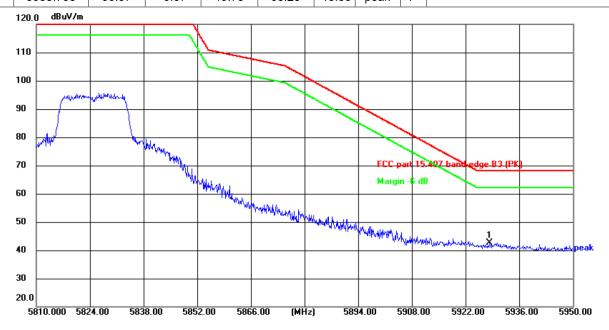
Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5630.800	52.37	-7.61	44.76	68.20	-23.44	peak	Р	

AC20-5825

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 23.8(℃)

Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

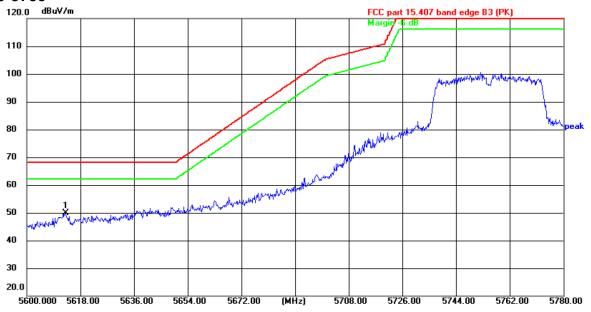
Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5930.750	56.57	-6.87	49.70	68.20	-18.50	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

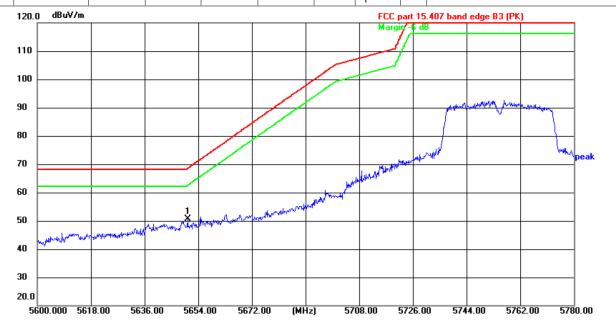
Temperature: 23.8(℃)


Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5928.370	49.40	-6.87	42.53	68.20	-25.67	peak	Р	

AC40-5755



Site: #3 3m Anechoic Chamber Polarization: *Horizontal*

Limit: FCC part 15.407 band edge B3 (PK) Power:DC 3.7 V

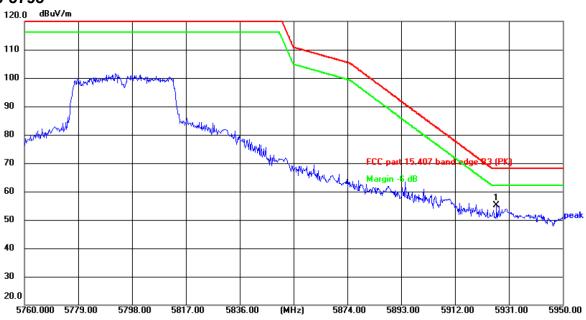
ontal Temperature: 23.8(℃) Humidity: 54 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5612.960	57.45	-7.64	49.81	68.20	-18.39	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 23.8(℃)


Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5650.490	58.11	-7.55	50.56	68.56	-18.00	peak	Р	

AC40-5795

Site: #3 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 23.8(℃)

Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

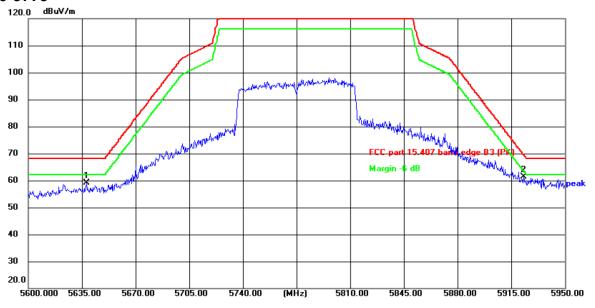
Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5926,630	61.98	-6.88	55.10	68.20	-13.10	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

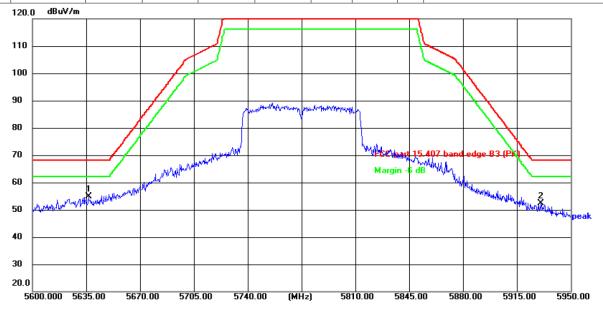
Temperature: 23.8(℃)


Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5929.860	54.45	-6.87	47.58	68.20	-20.62	peak	Р	

AC80-5775



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 3.7 V

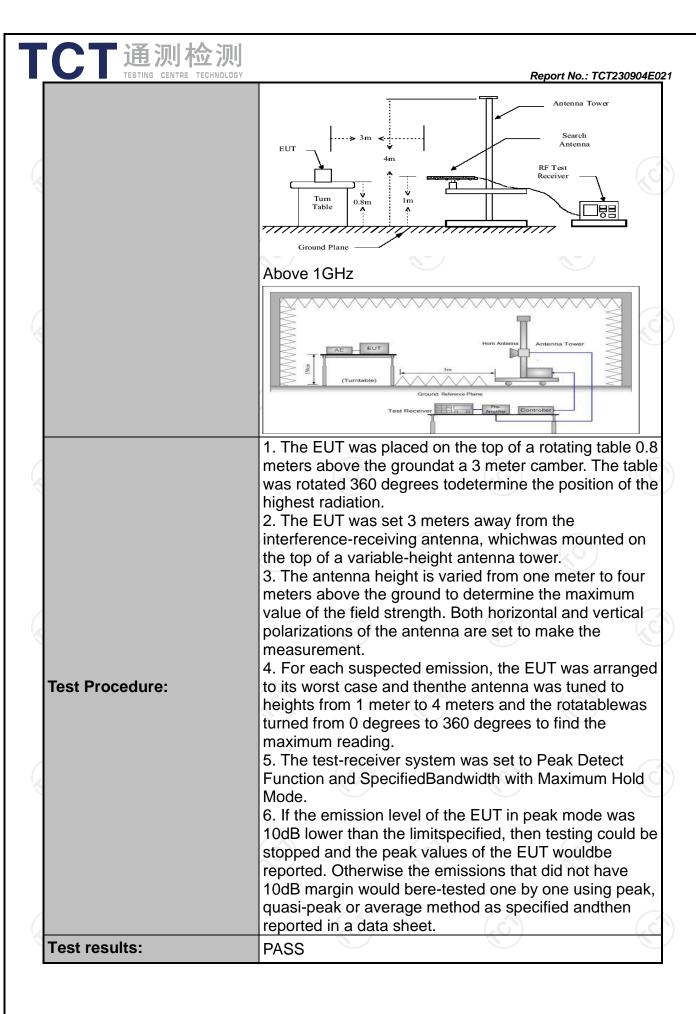
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5638.150	66.67	-7.58	59.09	68.20	-9.11	peak	Р	
2 *	5923.050	68.37	-6.89	61.48	69.64	-8.16	peak	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK) Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5636.400	62.49	-7.58	54.91	68.20	-13.29	peak	Р	
2	5930.925	59.35	-6.87	52.48	68.20	-15.72	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

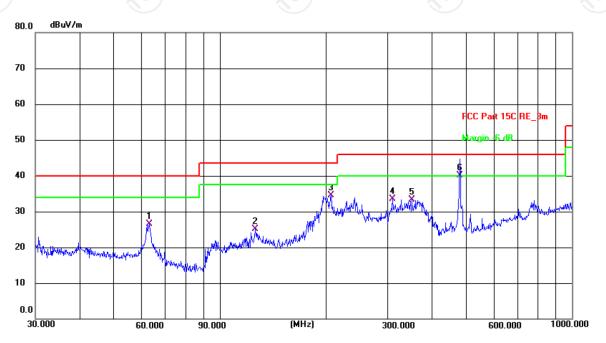

TESTING CENTRE TECHNOLOGY

Report No.: TCT230904E021

5.8. Unwanted Emissions

5.8.1 Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.205							
Test Method:	KDB 789033 D02 v02r01							
Frequency Range:	9kHz to 40GHz							
Measurement Distance:	3 m							
Antenna Polarization:	Horizontal & Vertical							
Operation mode:	Transmitting							
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz	Detector Quasi-pea Quasi-pea Quasi-pea Peak Peak	k 9kHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value			
Limit:	per FCC Par	t15.205 s I strength bands: ncy IG	Detection Detection I limits seed and I limits s	y with the store k	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 3 3 3 3			
Test setup:	For radiated	Distance = 3m Turn table	s below 30	OMHz	Computer Pre -Amplifier Receiver			



5.8.2. Test Data

Please refer to following diagram for individual

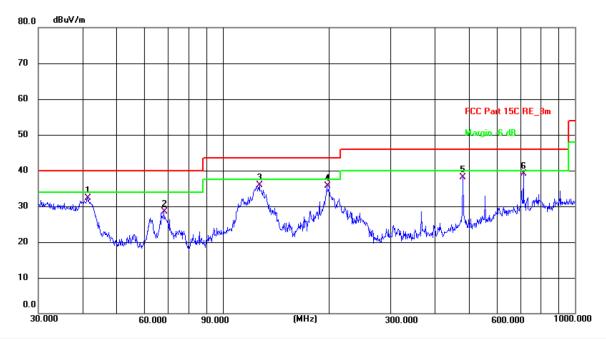
Below 1GHz

Horizontal:



Site #2 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(C) Humidity: 54 %

Power: DC 3.7 V


Limit: FCC Part 15C RE_3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	63.0915	13.63	12.81	26.44	40.00	-13.56	QP	Р	
2	126.3285	11.53	13.67	25.20	43.50	-18.30	QP	Р	
3	207.1225	23.34	11.15	34.49	43.50	-9.01	QP	Р	
4	309.9977	18.57	15.02	33.59	46.00	-12.41	QP	Р	
5	351.7078	17.53	15.85	33.38	46.00	-12.62	QP	Р	
6 *	480.5276	21.14	18.96	40.10	46.00	-5.90	QP	Р	

Vertical:

Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 24.1(C) Humidity: 54 %

Limit: FCC Part 15C RE_3m Power: DC 3.7 V

		_			•				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	41.2765	18.03	14.22	32.25	40.00	-7.75	QP	Р	
2	68.1514	17.05	11.53	28.58	40.00	-11.42	QP	Р	
3	127.2176	22.31	13.62	35.93	43.50	-7.57	QP	Р	
4	197.8928	24.81	10.85	35.66	43.50	-7.84	QP	Р	
5	480.5276	19.16	18.96	38.12	46.00	-7.88	QP	Р	
6 '	714.1733	15.99	23.09	39.08	46.00	-6.92	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Lowest channel and 802.11ac(VHT20)) was submitted only.

 Both AC mode and Internal battery mode have been tested, only the Internal battery mode which is worse reported.
- 3.Measurement (dBμV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			N	/lodulation 1	Гуре: Band	1			
					: 5180MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
					(dBµV/m)	(dBµV/m)			
10360	H	38.36		8.02	46.38		68.2		-21.82
15540	H	38.9		9.87	48.77	Z\	74	54	-5.23
	(H.)		-120		&	<u> </u>		(<u>G</u> -')	
10360	V	38.27		8.02	46.29		68.2		-21.91
15540	V	38.15		9.87	48.02		74	54	-5.98
	V								
	-	1201		11a CH40:	: 5200MHz		201		120
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)		AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
10400	Н	39.04		7.97	47.01		68.2		-21.19
15600	Н	38.37		9.83	48.2		74	54	-5.8
	Н			(\\				<u> </u>
		(0)	•				(0)		NO.
10400	V	40.85		7.97	48.82		68.2		-19.38
15600	V	38.61		9.83	48.44		74	54	-5.56
	V		X		/	<u></u>			
				11a CH48:	: 5240MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor	Emission Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
, ,		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)				, ,
10480	Н	38.57		7.97	46.54		68.2		-21.66
15720	Н	37.93		9.83	47.76		74	54	-6.24
	Н								
	(.c)		(c)			.c'\		(c)	
10480	V	38.16		7.97	46.13	<u> </u>	68.2		-22.07
15720	V	36.27		9.83	46.1		74	54	-7.9
	V								
				n(HT20) CH	136: 5180N	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1011 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(αΒμ ۷/111)	(ub)
10360	Н	41.45	-120	8.02	49.47	(O)	68.2	(C_{α})	-18.73
15540	H	37.8		9.87	47.67		74	54	-6.33
	Н								
					X1				
10360	V	42.74		8.02	50.76		68.2		-17.44
15540	V	37.51		9.87	47.38		74	54	-6.62
10040									

Report No.: TCT230904E021 11n(HT20) CH40: 5200MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.48 10400 Η 7.97 48.45 68.2 -19.7515600 Н 38.02 9.83 47.85 -6.15 74 54 Н ---V 40.27 10400 ---7.97 48.24 68.2 ----19.96 ٧ 15600 37.13 9.83 46.96 74 54 -7.04 11n(HT20) CH48: 5240MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 10480 41.26 Н 7.97 49.23 68.2 -18.9715720 Н 39.83 9.83 74 -4.34 49.66 54 Η ------٧ 10480 40.69 7.97 48.66 68.2 -19.5415720 39.38 9.83 ٧ ---49.21 ---74 54 -4.79٧ -------11n(HT40) CH38: 5190MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m)$ $(dB\mu V/m)$ 10380 Η 39.85 7.75 47.6 68.2 -20.6 15570 Η 37.31 ---9.87 47.18 ---74 54 -6.82Η 10380 ٧ 40.72 7.75 68.2 48.47 ----19.73 V 15570 37.49 9.87 47.36 74 54 -6.64 ------/---------11n(HT40) CH46: 5230MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 Н 41.92 7.97 49.89 68.2 -18.31 Н 15690 38.03 9.83 47.86 74 54 -6.14 Н ----4-1-----------4.1 ---10460 ٧ 41.56 7.97 49.53 68.2 -18.6715690 ٧ 38.71 ---9.83 48.54 74 54 -5.46٧

10380

15570

٧

٧

٧

38.14

38.62

Report No.: TCT230904E021 11ac(VHT20) CH36: 5180MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.27 10360 Η 8.02 48.29 68.2 -19.9115540 Н 37.63 9.87 47.5 74 54 -6.5 Н ------V 10360 38.95 ---8.02 46.97 68.2 ----21.23 15540 ٧ 39.5 9.87 49.37 74 54 -4.63 11ac(VHT20) CH40: 5200MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 10400 7.97 Н 39.27 47.24 68.2 -20.9615600 Н 38.49 9.83 74 48.32 54 -5.68 Η ---٧ 10400 39.62 7.97 47.59 68.2 -20.6115600 38.34 9.83 ٧ ---48.17 ---74 54 -5.83٧ -------11ac(VHT20) CH48:5240 Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10480 Η 37.6 7.97 45.57 68.2 -22.6315720 Η 37.91 ---9.83 47.74 ---74 54 -6.26Η 10480 ٧ 38.27 7.97 68.2 46.24 ----21.96 15720 V 38.58 9.83 48.41 74 54 -5.59 ------/------11ac(VHT40) CH38:5190 Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Н 40.25 7.75 68.2 -20.2 48 Н 15570 39.70 9.87 49.57 74 54 -4.43 Н -4-1--------------4.1 ---

-22.31

-5.51

68.2

74

54

7.75

9.87

45.89

48.49

	TESTING CENTRE TECHNOLOGY Report No.: TCT230904E02									
			11	1ac(VHT40) CH46:523	30				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	Emission Level		AV limit	Margin	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(aBµv/m)	(dBµV/m)	(dB)	
10460	Н	38.24		7.97	46.21		68.2		-21.99	
15690	Н	38.37		9.83	48.2		74	54	-5.8	
	Н									
10460	V	39.45	40	7.97	47.42	G``)	68.2	(2G-)	-20.78	
15690	>	37.62		9.83	47.45	<u> </u>	74	54	-6.55	
	V									
			11	1ac(VHT80) CH42:521	0				
Frequency	Ant. Pol.	I reading I reading I		Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)	
10420	Н	41.82		7.96	49.78		68.2	-4	-18.42	
15630	H	39.67	-40	9.84	49.51)	74	54	-4.49	
	Н									
10420	V	41.39		7.96	49.35		68.2		-18.85	
15630	V	39.86		9.84	49.7		74	54	-4.3	
	1.7									

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 40 of 126

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

			N	1odulation 1	Гуре: Band	3			
				11a CH149	• •				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	37.49		8.09	45.58		74	54	-8.42
17235	Н	37.86		9.67	47.53		68.2		-20.67
	Ĥ		(()		(())		(.)	
11490	V	40.37		8.09	48.46		74	54	-5.54
17235	V	38.05		9.67	47.72		68.2		-20.48
	V	((,c	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
				11a CH157	': 5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissio Peak	on Level AV	Peak limit (dBµV/m)		Margin (dB)
		, , ,	` ' '	, ,	(dBµV/m)	(dBµV/m)			
11570	Н	39.72		8.10	47.82		74	54	-6.18
17355	Н	38.16		9.65	47.81		68.2		-20.39
	Н				<u> </u>				
(C)		(40.)		KC))		(C)		KO.
11570	V	38.94		8.10	47.04		74	54	-6.96
17355	V	39.05		9.65	48.7		68.2		-19.5
	V							-	
				11a CH165	: 5825MHz				
Fraguenay	Ant. Pol.	Peak	AV	Correctio	Emissic	n Level	Peak limit	AV limit	Morain
Frequency (MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV		(dBµV/m)	Margin (dB)
44050		07.00		0.40	(dBµV/m)	(dBµV/m)	<	- 4	'0.0
11650	H	37.68		8.12	45.8		74	54	-8.2
17475	Н	36.13		9.62	45.75		68.2		-22.45
	Н								
11650	V	20.72	-(c)	0.10	10.04		7.4		7.40
11650 17475	V	38.72 38.46		8.12	46.84	<i>)</i>	74	54	-7.16
	V	30.40		9.62	48.08		68.2		-20.12
	V								
		Deel		(HT20) CH	149: 5745N I	/IHZ			
Frequency		Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	(H)	38.92	+20	8.09	47.01	C	74	54	-6.99
17235	+	38.54		9.67	48.21	<u></u>	68.2		-19.99
	Н								
					70.				
11490	V	39.88		8.09	47.97		74	54	-6.03
17235	V	37.21		9.67	46.88		68.2		-21.32
	V								

			11n	(HT20) CH	157: 5785N	ИHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit	AV limit (dBµV/m)	Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΒμν/ιιι)	(αΒμ ۷/ΙΙΙ)	(ub)
11570	Н	38.46		8.10	46.56		74	54	-7.44
17355	Н	39.73		9.65	49.38		68.2		-18.82
	H							<u></u>	
	(C)		(c)			<u>G')</u>		(G)	
11570	V	38.11		8.10	46.21	<u> </u>	74	54	-7.79
17355	V	39.59		9.65	49.24		68.2		-18.96
	V								
				<u>, , , , , , , , , , , , , , , , , , , </u>	165: 5825N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	ission Level Peak lim			Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	38.67	-10	8.12	46.79)	74	54	-7.21
17475	I	37.13		9.62	46.75		68.2		-21.45
	Н								
					Ž)				
11650	V	38.92		8.12	47.04		74	54	-6.96
17475	V	39.46		9.62	49.08		68.2		-19.12
	V	-							
			11n	(HT40) CH	151: 5755N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	40.03		8.09	48.12		74	54	-5.88
17265	Н	37.16		9.67	46.83		68.2		-21.37
	Н								
			L					<u>. </u>	
11510	V	41.28	(-)	8.09	49.37		74	54	-4.63
17265	V	38.94		9.67	48.61	<u> </u>	68.2	(22)	-19.59
	V								
			11n	(HT40) CH	159: 5795N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
					Doole	AV	(dBµV/m)	(dBµV/m)	(dB)
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)				
(MHz)		(dBµV)		, ,	(dBµV/m)	(dBµV/m)	74	54	-7 37
(MHz) 11590	Н	(dBµV) 38.53		8.10	(dBµV/m) 46.63	(dBµV/m)	74 68.2	54	-7.37 -19.77
(MHz) 11590 17385	Н	(dBµV) 38.53 38.78		8.10 9.65	(dBµV/m) 46.63 48.43	(dBµV/m)	68.2	54	-19.77
(MHz) 11590	Н	(dBµV) 38.53		8.10	(dBµV/m) 46.63	(dBµV/m)		(G_{\bullet})	
(MHz) 11590 17385 	H	(dBµV) 38.53 38.78		8.10 9.65	(dBµV/m) 46.63 48.43	(dBµV/m)	68.2	()	-19.77
(MHz) 11590 17385	Н	(dBµV) 38.53 38.78		8.10 9.65	(dBµV/m) 46.63 48.43	(dBµV/m)	68.2	(G_{\bullet})	-19.77

Report No.: TCT230904E021 11ac(VHT20) CH149: 5745MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.12 11490 Η 8.09 48.21 74 54 -5.7917235 Н 37.48 9.67 -21.05 47.15 68.2 Н ---V 40.29 11490 ---8.09 48.38 -5.6274 54 17235 ٧ 38.61 9.67 48.28 68.2 -19.9211ac(VHT20) CH157: 5785MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV $(dB\mu V/m) \mid (dB\mu V/m)$ 11570 Н 38.39 8.10 46.49 74 54 -7.51 17355 Н 36.88 9.65 68.2 46.53 -21.67 Η ------٧ 11570 37.57 8.10 45.67 74 54 -8.33 17355 9.65 ٧ 38.91 ---48.56 ---68.2 ----19.64٧ ---11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m) \mid (dB\mu V/m)$ 11650 Η 40.64 8.12 48.76 -5.2474 54 17475 Η 38.13 ---9.62 47.75 ---68.2 ----20.45Η 11650 ٧ 38.72 8.12 46.84 ---74 54 -7.16 17475 V 40.06 9.62 49.68 68.2 -18.52---------/------------11ac(VHT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11510 Н 39.42 8.09 -6.4947.51 74 54 17265 Н 37.85 9.67 47.52 68.2 -20.68 Н -4-1-----------------11510 ٧ 40.77 8.09 48.86 74 54 -5.14 17265 ٧ 36.14 ---9.67 45.81 68.2 ----22.39٧

		CENTRE TECHNO	_				Rep	ort No.: TCT2	30904E021
			11ac	(VHT40) C	H159: 5795	MHz	· · ·		
Frequency (MHz)	Ant. Pol. H/V	l reading l		Correctio n Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1011 12)	Γ1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμν/π)	(GD)
11590	Н	40.36		8.10	48.46		74	54	-5.54
17385	Н	37.05		9.65	46.7		68.2		-21.5
	Н								
11590	V	39.72	+20	8.10	47.82	G``)	74	54	-6.18
17385	V	38.49		9.65	48.14	<u> </u>	68.2		-20.06
	V								
			11ac	(VHT80) C	H155: 5775	MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11550	Н	40.61		8.09	48.7		74	54	-5.3
17325	H	38.99	-40	9.66	48.65)	68.2	()/	-19.55
	Н								
			1	1	1-	1			
11550	V	41.00		8.09	49.09		74	54	-4.91
17325	\/	38 58		9.66	48 24		68.2		-19 96

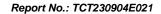
Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
ANSI C63.10: 2013
The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Spectrum Analyzer EUT AC/DC Power supply
The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. but Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. It is the test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
PASS
Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.

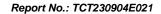

Report No.: TCT230904E021

Test plots as follows:

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	5180
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	Result
Temperature (C)	voitage(vDC)	Frequen	cy(MHz)	Frequency(F	Hz)
45		5179	9.98	-20000	PASS
35		5179	9.98	-20000	PASS
25	2.7\/	3.7V 518		0	PASS
15	3.7 V	5179	9.98	-20000	PASS
5		5179	9.98	-20000	PASS
0		5179	9.96	-40000	PASS
	3.5V	5179	9.96	-40000	PASS
25	3.7V	5179	9.96	-40000	PASS
	4.2V	5179	9.96	-40000	PASS

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	5200		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	D	lesult	
remperature (C)	voitage(vDC)	Frequen	icy(MHz)	Frequency(H	łz)	esuit	
45		519	9.96	-40000	F	PASS	
35		519	9.98	-20000	F	PASS	
25	3.7V	519	9.98	-20000	F	PASS	
15	3.7 V	519	9.98	-20000	F	PASS	
5		52	:00	0	F	PASS	
0	C.	519	9.98	-20000	(c)F	PASS	
	3.5V	519	9.98	-20000	F	PASS	
25	3.7V	52	:00	0	F	PASS	
	4.2V	519	9.98	-20000	F	PASS	

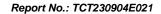
Test mode:	802.1	1ac(H	HT20)	Freque	ency(MHz):	5240		
Temperature (°C)	Voltage(VD	C)	Measurement Frequency(MHz)		Delta Frequency(Hz)		Result	
45		(0)	5240		10 0		PASS	
35			5239	9.98	-20000		PASS	
25	3.7V		52	40	0		PASS	
15	3.7 V		5240		0		PASS	
5			5239.96		-40000		PASS	
0			5239	9.98	-20000		PASS	
	3.5V		52	40	0		PASS	
25	3.7V		52	40	0		PASS	
	4.2V		5239	9.98	-20000		PASS	



Test mode:		802.11ac(HT20)	Freque	ency(M	Hz):	5745		
Temperature (°C)	Voltage(VDC)		Measu	Measurement		Delta		Result	
remperature (C)	VO	ilage(VDC)	Frequency(MHz		Frequency(Hz))		
45			5744.98		-20000			PASS	
35			574	4.98	-2	-20000		PASS	
25	2.7\/		574	5745.02		0000		PASS	
15		3.7V	5744.98		-2	20000		PASS	
5			57	45	$G^{\prime\prime}$	0	(20	PASS	
0			574	4.96	-4	10000		PASS	
		3.5V	574	4.98	-2	20000		PASS	
25		3.7V	574	4.96	-4	-40000		PASS	
(C)	K	4.2V	574	4.98	-2	20000		PASS	(\mathcal{O}_{i})

Test mode:	802.11ac(HT20) Freque	ency(MHz):	5785
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5784.98	-20000	PASS
35		5784.96	-40000	PASS
25	3.7V	5784.96	-40000	PASS
15	3.7 V	5784.96	-40000	PASS
5		5785	0	PASS
0		5784.98	-20000	PASS
(, (, ')	3.5V	5784.96	-40000	PASS
25	3.7V	5784.98	-20000	PASS
	4.2V	5785	0	PASS

Test mode:	802.11ac	HT20) Freque	ency(MHz):	5825
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5824.98	-20000	PASS
35		5824.96	-40000	PASS
25	3.7V	5824.96	-40000	PASS
15	3.7 V	5824.96	-40000	PASS
5		5824.98	-20000	PASS
0		5824.98	-20000	PASS
	3.5V	5824.98	-20000	PASS
25	3.7V	5824.98	-20000	PASS
	4.2V	5824.98	-20000	PASS



Test mode:	802.11ac	(HT40)	Frequency(MHz):		5190		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)			
45		518	9.96	-40000		PASS	-11
35		518	9.96	-40000	/	PASS	
25	3.7V	5189.96		-40000		PASS	
15	3.7 V	5189	9.96	-40000		PASS	
5		518	9.96	-40000		PASS	
0		5189	9.96	-40000		PASS	
	3.5V	5189	9.96	-40000		PASS	
25	3.7V	518	9.96	-40000		PASS	7
(C)	4.2V	51	90	0,0)	PASS	(,C

Test mode:	802.11ac(02.11ac(HT40) Frequency(MHz):		5230
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5230	0	PASS
35		5230	0	PASS
25	3.7V	5230	0	PASS
15	3.7 V	5230	0	PASS
5		5229.96	-40000	PASS
0		5229.96	-40000	PASS
(C)	3.5V	5229.96	-40000	PASS
25	3.7V	5229.96	-40000	PASS
	4.2V	5230.04	40000	PASS

Test mode:	802.11ac	(HT40) Frequ	ency(MHz):	5755
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5754.96	-40000	PASS
35		5754.96	-40000	PASS
25	3.7V	5754.96	-40000	PASS
15	3.7 V	5754.96	-40000	PASS
5		5754.92	-80000	PASS
0		5755	0	PASS
	3.5V	5755	0	PASS
25	3.7V	5754.96	-40000	PASS
	4.2V	5754.96	-40000	PASS

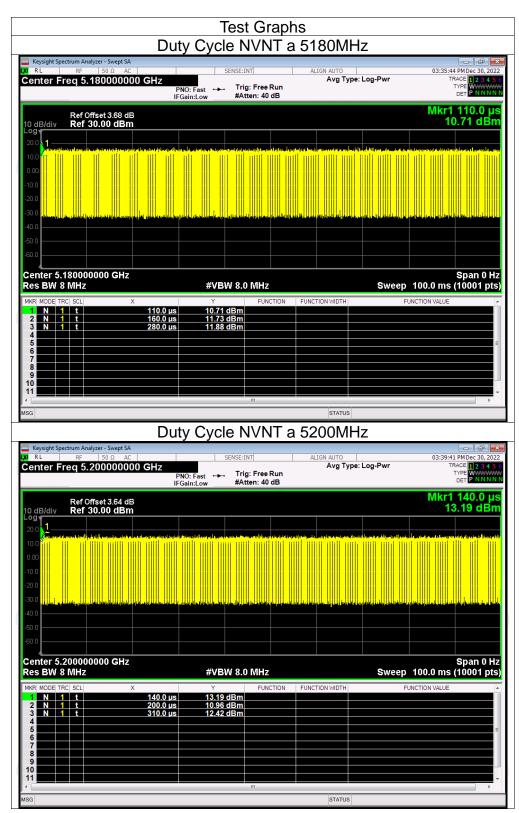
Test mode:	802.11ac	(HT40)	Freque	ency(MHz):): 5795		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
Temperature (C)	voitage(vDC)	Frequen	cy(MHz)	Frequency(Hz)			
45		57	95	0		PASS	
35		579	4.96	-40000		PASS	
25	2.7\/	579	4.96	-40000		PASS	
15	3.7V	57	95	0		PASS	
5		57	95	0		PASS	
0		579	4.96	-40000		PASS	
	3.5V	579	4.96	-40000		PASS	
25	3.7V	579	4.96	-40000		PASS	7
(C_{i})	4.2V	579	4.96	-40000)	PASS	$\mathcal{O}_{\mathcal{I}}$

Test mode:		802.11ac(V	/HT80)	Frequency(MHz):		5210	
Temperature (°C)	Vc	oltage(VDC)	Measurement Frequency(MHz)		Delta Frequency(Hz)		Result
45			520		-80000	,	PASS
45			520	9.92	-00000		
35			5209.92		-80000		PASS
25	2 7/		5210		0		PASS
15		3.7V	5210		0		PASS
5	5		520	9.92	-80000		PASS
0			520	9.92	-80000		PASS
		3.5V	520	9.92	-80000		PASS
25 3		3.7V	520	9.92	-80000		PASS
		4.2V	520	9.92	-80000		PASS

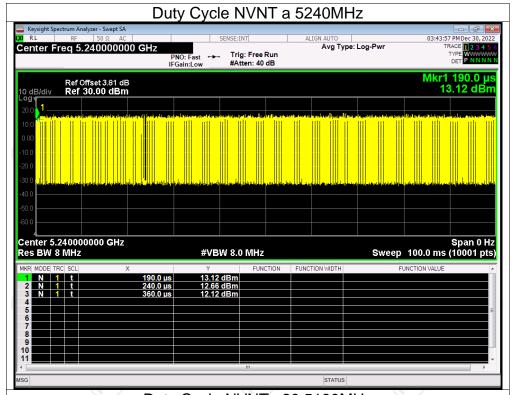
Test mode:	802.11ac(\	/HT80)	Freque	ency(MHz):	5775
Temperature (°C)	Voltage(VDC)	Measurement		Delta	Result
remperature (0)	voltage(vbo)	Frequenc	y(MHz)	Frequency(H	z) Tesuit
45		5774	.92	-80000	PASS
35		5774	.84	-160000	PASS
25	3.7V	5774.92		-80000	PASS
15	3.7 V	5774	.92	-80000	PASS
5		5774	.92	-80000	PASS
0		5774	.92	-80000	PASS
	3.5V	5774	.92	-80000	PASS
25	3.7V	5774	.92	-80000	PASS
$(\mathcal{L}_{\mathcal{L}})$	4.2V	5774	.76	-240000	PASS

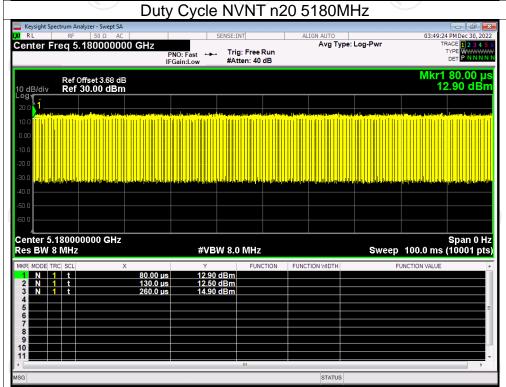
Report No.: TCT230904E021

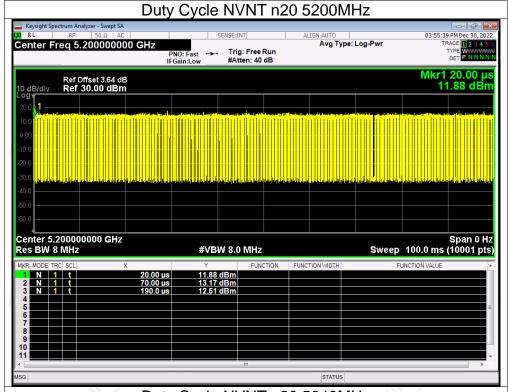
Appendix A: Test Result of Conducted Test

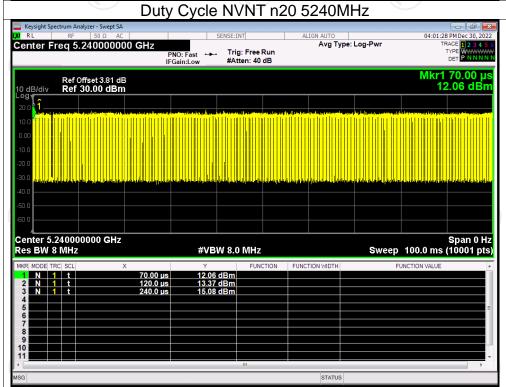

Duty Cycle

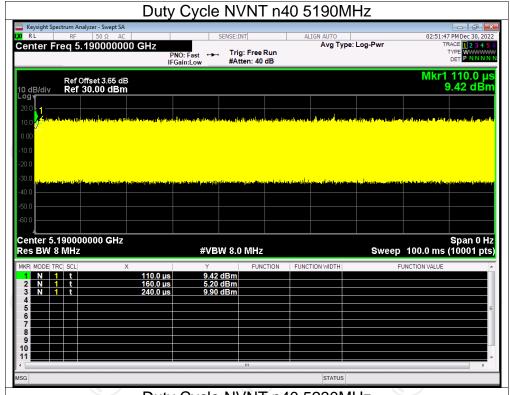
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	74.03	1.31
NVNT	а	5200	75.39	1.23
NVNT	а	5240	70.44	1.52
NVNT	n20	5180	75.26	1.23
NVNT	n20	5200	74.77	1.26
NVNT	n20	5240	75.42	1.22
NVNT	n40	5190	67.41	1.71
NVNT	n40	5230	67.82	1.69
NVNT	ac20	5180	73.88	1.31
NVNT	ac20	5200	76.30	1.17
NVNT	ac20	5240	76.29	1.18
NVNT	ac40	5190	68.93	1.62
NVNT	ac40	5230	66.80	1.75
NVNT	ac80	5210	63.70	1.96
NVNT	а	5745	75.84	1.20
NVNT	а	5785	74.18	1.30
NVNT	а	5825	75.20	1.24
NVNT	n20	5745	74.49	1.28
NVNT	n20	5785	73.19	1.36
NVNT	n20	5825	74.42	1.28
NVNT	n40	5755	66.63	1.76
NVNT	n40	5795	66.58	1.77
NVNT	ac20	5745	75.12	1.24
NVNT	ac20	5785	75.14	1.24
NVNT	ac20	5825	75.20	1.24
NVNT	ac40	5755	68.35	1.65
NVNT	ac40	5795	68.52	1.64
NVNT	ac80	5775	62.59	2.03

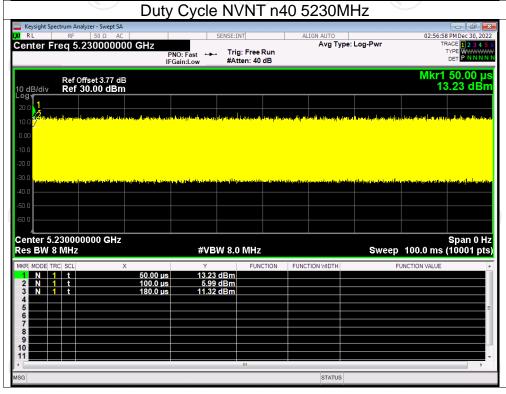


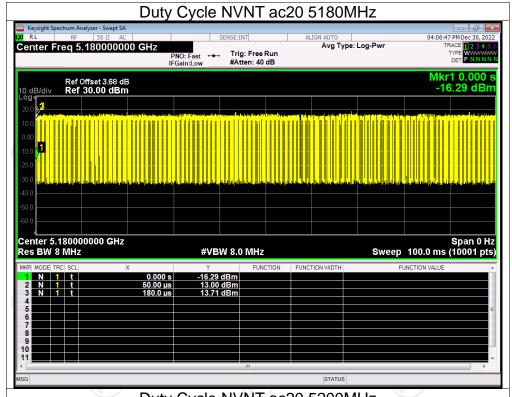


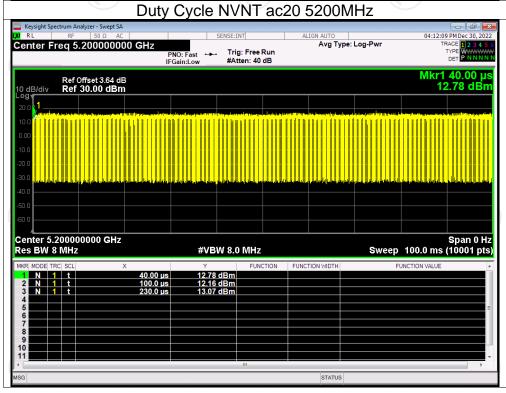


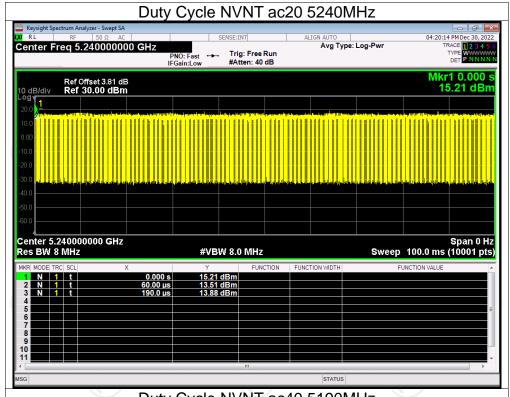


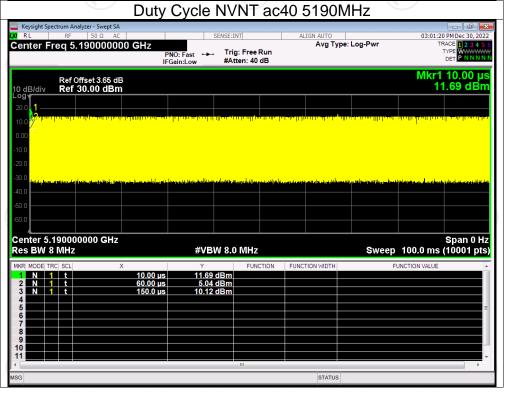


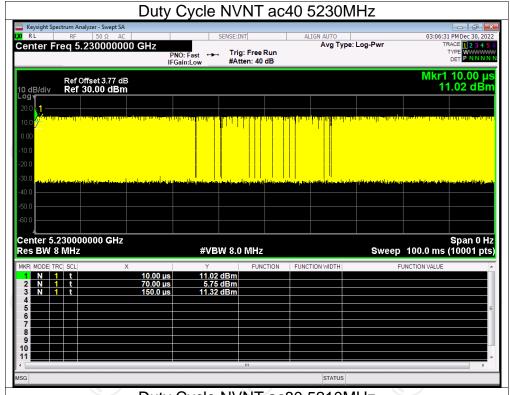


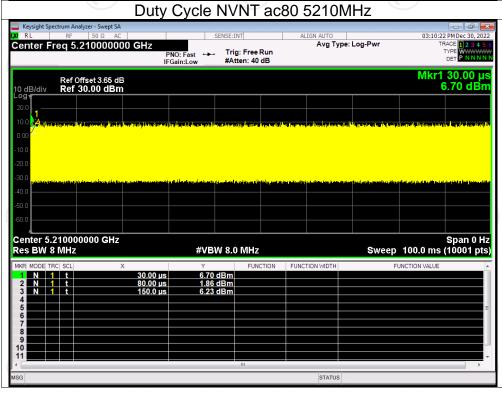


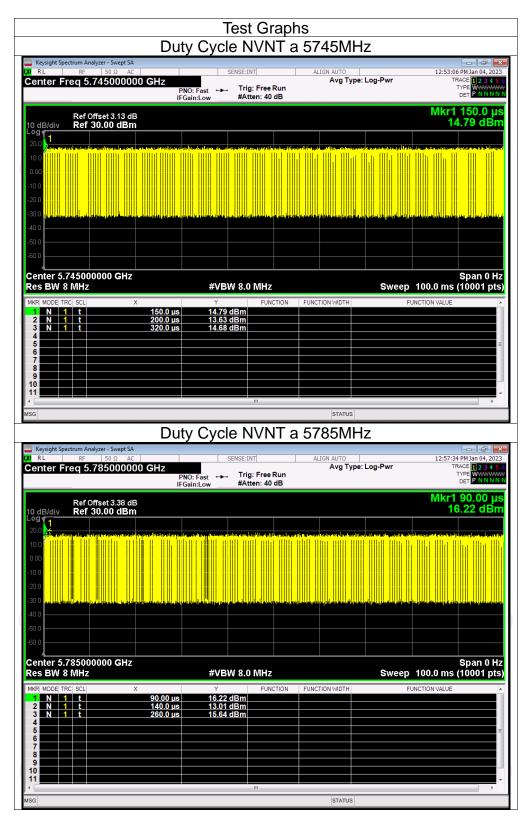


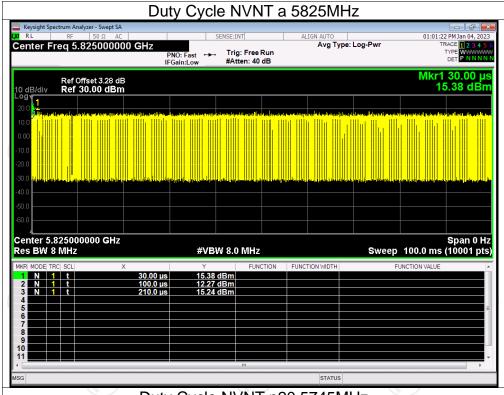


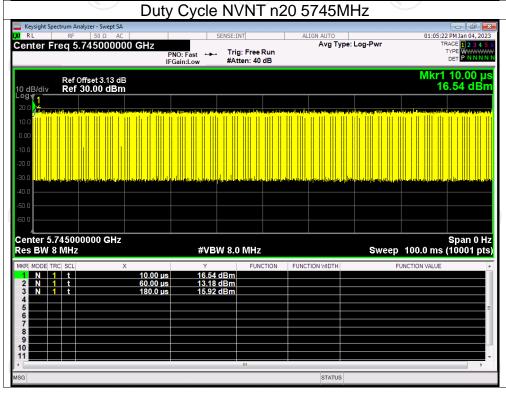


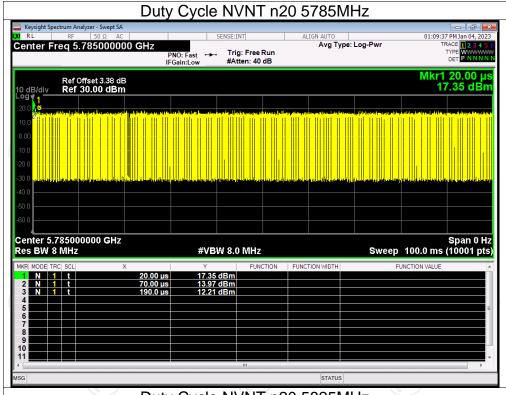


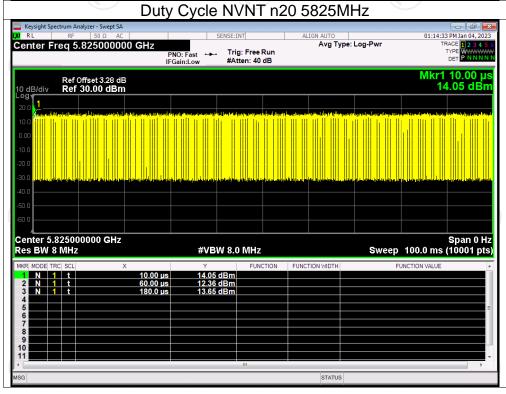


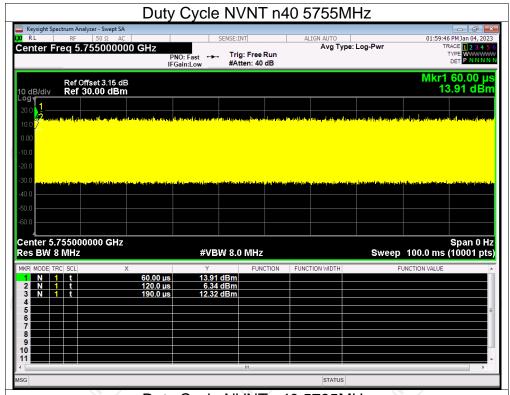


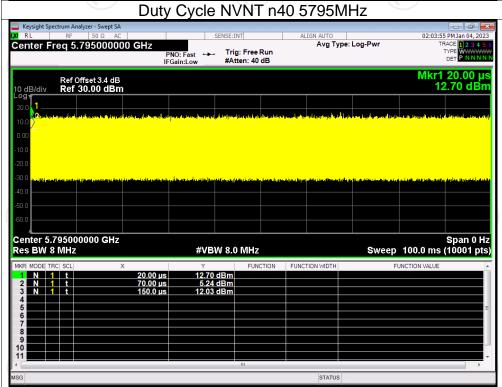


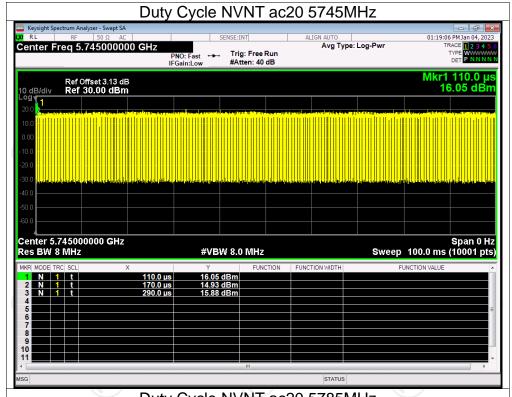


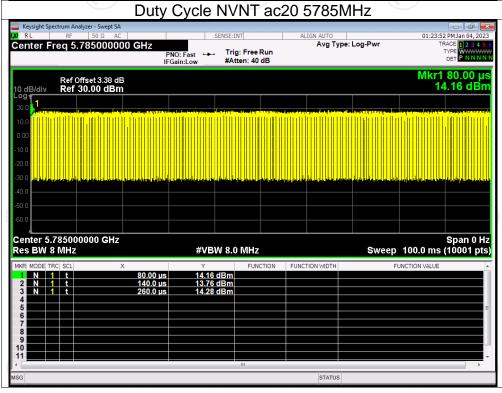


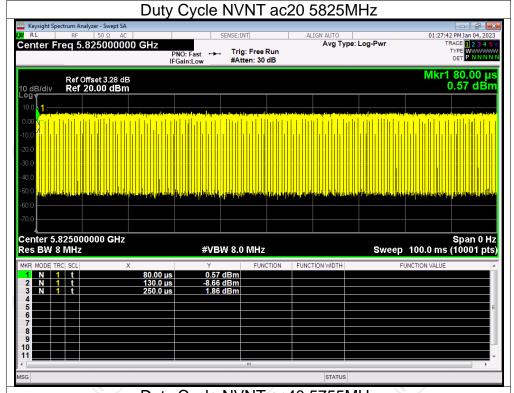


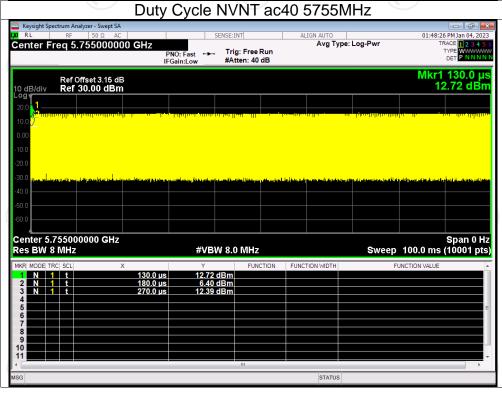


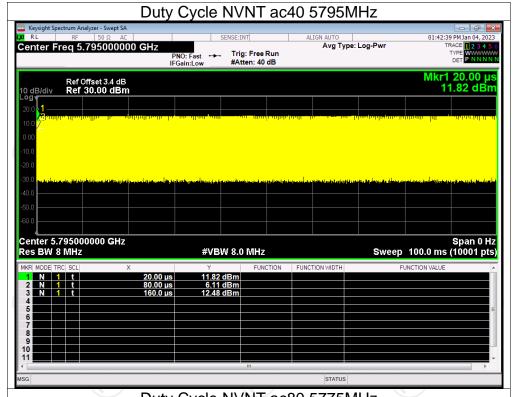


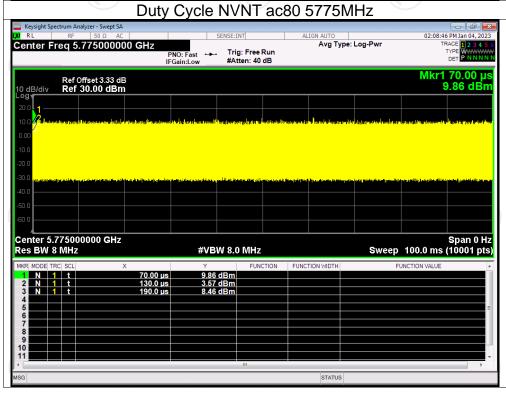


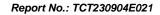




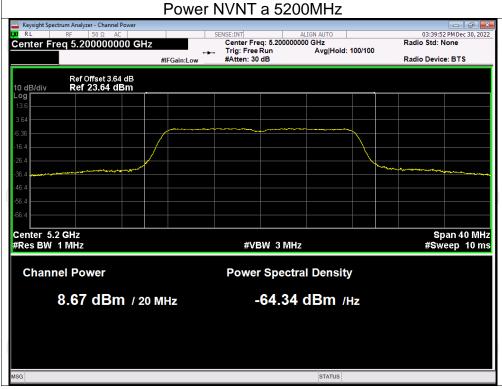









Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	a	5180	9.06	1.31	10.37	24	Pass
NVNT	a	5200	8.67	1.23	9.90	24	Pass
NVNT	_ a	5240	9.66	1.52	11.18	24	Pass
NVNT	n20	5180	9.31	1.23	10.54	24	Pass
NVNT	n20	5200	9.35	1.26	10.61	24	Pass
NVNT	n20	5240	10.30	1.22	11.52	24	Pass
NVNT	n40	5190	8.49	1.71	10.20	24	Pass
NVNT	n40	5230	9.07	1.69	10.76	24	Pass
NVNT	ac20	5180	9.84	1.31	11.15	24	Pass
NVNT	ac20	5200	9.54	1.17	10.71	24	Pass
NVNT	ac20	5240	10.40	1.18	11.58	24	Pass
NVNT	ac40	5190	8.81	1.62	10.43	24	Pass
NVNT	ac40	5230	9.06	1.75	10.81	24	Pass
NVNT	ac80	5210	8.54	1.96	10.50	24	Pass
NVNT	а	5745	10.84	1.20	12.04	30	Pass
NVNT	а	5785	10.53	1.30	11.83	30	Pass
NVNT	а	5825	9.47	1.24	10.71	30	Pass
NVNT	n20	5745	11.15	1.28	12.43	30	Pass
NVNT	n20	5785	11.04	1.36	12.40	30	Pass
NVNT	n20	5825	9.98	1.28	11.26	30	Pass
NVNT	n40	5755	10.52	1.76	12.28	30	Pass
NVNT	n40	5795	10.04	1.77	11.81	30	Pass
NVNT	ac20	5745	11.61	1.24	12.85	30	Pass
NVNT	ac20	5785	11.14	1.24	12.38	30	Pass
NVNT	ac20	5825	10.10	1.24	11.34	30	Pass
NVNT	ac40	5755	10.67	1.65	12.32	30	Pass
NVNT	ac40	5795	10.12	1.64	11.76	30	Pass
NVNT	ac80	5775	9.75	2.03	11.78	30	Pass

