

TEST REPORT

Intelligent Blackboard/LCD touch display/ **Product**

Interactive Flat Panel/LCD Interactive Whiteboard/

Intelligent Interactive Panel/Interactive conference Panel/

LCD commercial display/LCD advertising display/

LCD splicing unit

Trade mark OKV/OKView

Model/Type reference Refer to section 5.2

Serial Number N/A

Report Number EED32P80580502 FCC ID 2BA7A-IWB5536

Date of Issue : Jun. 15, 2023

47 CFR Part 15 Subpart E **Test Standards**

Test result PASS

Prepared for:

SHENZHEN OKVIEW TECHNOLOGY CO., LIMITED 202, Building A, No.2Huangdiyin Industrial Zone, Kukeng Community, Guanlan Street, Longhua District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Firazer. Lo

Frazer Li

Reviewed by:

CLUON

Date:

Jun. 15, 2023

Aaron Ma

Check No.: 8102240423

Page 2 of 72

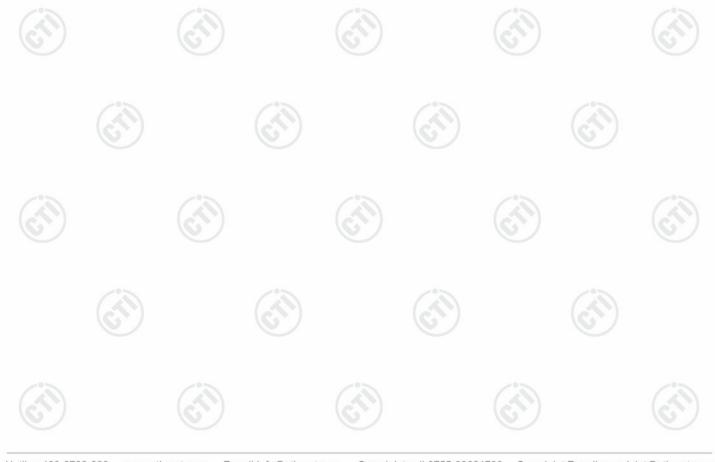
2 Content

1 COVER PAGE		 1
2 CONTENT		 2
3 VERSION		
4 TEST SUMMARY		 4
5 GENERAL INFORMATION		
5.1 CLIENT INFORMATION	OMER	
6 EQUIPMENT LIST	······································	 10
7 RADIO TECHNICAL REQUIREMENTS SPECIFIC	CATION	 13
7.1 ANTENNA REQUIREMENT	D BANDWIDTH	
8 APPENDIX 5G WIFI		 68
PHOTOGRAPHS OF TEST SETUP		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DE	TAILS	 72

Page 3 of 72

Version

Version No.	Date		Description	
00	Jun. 15, 2023		Original	
		(3/2)		


Report No. : EED32P80580502 Page 4 of 72

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS	
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS	10
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
99% Occupied bandwidth	(6,)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS	
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b) PASS		(6
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	

Remark

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Report No. : EED32P80580502 Page 5 of 72

5 General Information

5.1 Client Information

Applicant:	SHENZHEN OKVIEW TECHNOLOGY CO.,LIMITED	
Address of Applicant:	202, Building A, No.2Huangdiyin Industrial Zone, Kukeng Communi Guanlan Street, Longhua District, Shenzhen	
Manufacturer:	SHENZHEN OKVIEW TECHNOLOGY CO.,LIMITED	
Address of Manufacturer:	202, Building A, No.2Huangdiyin Industrial Zone, Kukeng Community Guanlan Street, Longhua District, Shenzhen	
Factory :	SHENZHEN OKVIEW TECHNOLOGY CO.,LIMITED	
Address of Factory :	202, Building A, No.2Huangdiyin Industrial Zone, Kukeng Community, Guanlan Street, Longhua District, Shenzhen	

5.2 General Description of EUT

Product Name:	Intelligent Blackboard/LCD touch display/ Interactive Flat Panel/LCD Interactive Whiteboard/ Intelligent Interactive Panel/Interactive conference Panel/
-05	LCD commercial display/LCD advertising display/ LCD splicing unit
Test Model No.:	IWB5536
Model/Type reference & Mode difference:	IWB5531,IWB5533,IWB5535,IWB5536,IWB5537,IWB5538,IWB5539, IWB5551,IWB5552,IWB5553,IWB5555,IWB5556,IWB5557,IWB5558, IWB5559,V55C1,V55C2,V55C3,V55C5,V55C6,V55C7,V55C8,V55C9, K55V1,K55V2,K55V3,K55V5,K55V6,K55V7,K55V8,K55V9,IWB6531, IWB6533,IWB6535,IWB6536,IWB6537,IWB6538,IWB6539,IWB6551, IWB6552,IWB6553,IWB6555,IWB6556,IWB6557,IWB6558,IWB6559, V65C1,V65C2,V65C3,V65C5,V65C6,V65C7,V65C8,V65C9,K65V1, K65V2,K65V3,K65V5,K65V6,K65V7,K65V8,K65V9,IWB7531,IWB7533, IWB7535,IWB7536,IWB7537,IWB7538,IWB7539,IWB7551,IWB7552, IWB7553,IWB7556,IWB7556,IWB7557,IWB7558,IWB7559,V75C1, V75C2,V75C3,V75C5,V75C6,V75C7,V75C8,V75C9,K75V1,K75V2, K75V3,K75V5,K75V6,K75V7,K75V8,K75V9,IWB8631,IWB8633,IWB8635,IWB8636,IWB8637,IWB8638,IWB8639,IWB8651,IWB8652,IWB8653,IWB8655,IWB8656,IWB8657,IWB8658,IWB8659,V86C1,V86C2,V86C3, V86C5,V86C6,V86C7,V86C8,V86C9,K86V1,K86V2,K86V3,K86V5, K86V6,K86V7,K86V8,K86V9,VW46***(V), VW46***-H (V), VW46***-H (KY), VW46***-H (KY), VW49***-H (KY), VW55***-H (KY), VW55***-H (KY), VW55***-H (KY), VW55***-H (KY), VW55***-H (KY), VW65***-H (KY), VW65
	SM75**,SM8621,SM8622,SM86* * (the "*" in the model number can be
	0-9, A-Z or blank, vacant or - means, different models are only the appearance color, customer code, sales area is different, does not affect

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

the safety and electromagnetic compatibility of the product)

are identical on circuitry design, PCB layout, electrical components

Report No.: EED32P80580502

Page 6 of 72

Trade mark:	used, internal wiring and f which we chose to be test are only the appearance of safety and electromagneti OKV/OKView	functions with the model, item Noted by CTI and only different of color, sales area is different, do it compatibility of the product.	No.:IWB5536 n different models
Product Type: Type of Modulation:	IEEE 802.11a: OFDM (BF IEEE 802.11n(HT20/HT40 IEEE 802.11ac(VHT20/VH 256QAM)	☐ Fix Location PSK, QPSK, 16QAM, 64QAM) D): OFDM (BPSK, QPSK, 16Q. HT40): OFDM (BPSK, QPSK, 40): OFDM (BPSK, QPSK, 160.	AM, 64QAM) 16QAM, 64QAM,
Operating Frequency	U-NII-1: 5150-5250MHz	7.5	
Antenna Type: Antenna Gain:	External antenna 2.46dBi	(31)	(3)
Test voltage:	AC 120V		
Sample Received Date:	Apr. 25, 2023		
Sample tested Date:	May 19, 2023 to Jun 15, 2	2023	

Operation Frequency each of channel

802.11a/802.11n/802.11ac/802.11ax (20MHz)/ Frequency/Channel Operations:

U-NII-1		
Channel	Frequency(MHz)	
36	5180	
40	5200	
44	5220	
48	5240	
) .	(6,)	
-		

802.11n/802.11ac/802.11ax (40MHz) Frequency/Channel Operations:

U-NII-1		
Channel	Frequency(MHz)	
38	5190	
46	5230	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32P80580502 Page 8 of 72

5.3 Test Configuration

EUT Test Software Settings:	
Software:	SecureCRTPortable.exe
EUT Power Grade:	Default
Use test software to set the low transmitting of the EUT.	est frequency, the middle frequency and the highest frequency keep
Test Mode:	
the EUT in transmitting operatio	on and function in typical operation. All the test modes were carried out with on, which was shown in this test report and defined as follows: in lowest channel, and found the follow list which it
was worst case.	in lowest channel, and lound the follow list which it
Mode	Data rate
802.11a	6 Mbps
802.11n(HT2	20) MCS0
802.11n(HT4	40) MCS0
802.11ac(VHT	T20) MCS0
802.11ac(VHT	(T40) MCS0
•	

MCS0

MCS0

5.4 Test Environment

802.11ax(HE20)

802.11ax(HE40)

Operating Environment:			
Radiated Spurious Emissions	:		
Temperature:	22~25.0 °C	(67)	
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
Conducted Emissions:			
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar	(6.)	6
	NT (Normal Temperature)	22~25.0 °C	
Temperature:	LT (Low Temperature)	0 °C	
	HT (High Temperature)	40 °C	
(6,1)	NV (Normal Voltage)	AC120V	(0,0)
Working Voltage of the EUT:	LV (Low Voltage)	AC108V	
	HV (High Voltage)	AC132V	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32P80580502 Page 9 of 72

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	ASUSTek	1	FCC&CE	CTI
Netbook	HP	HP14q-bu101TX	FCC&CE	CTI

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

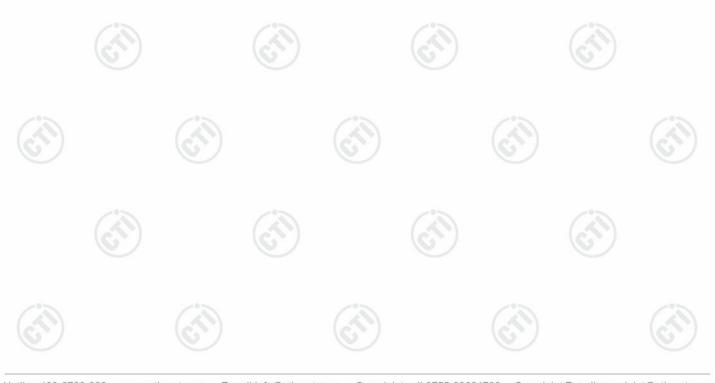
5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)
3 Radiated Spurious emission	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
**	0 100	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
	/ 231	/ 231

Equipment List

RF test system							
Equipment	Manufacturer	Manufacturer Mode No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023		
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023		
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023		
Communication test set R&S		CMW500	169004	03-15-2023	03-14-2024		
RF control unit(power unit) JS Tonscend		JS0806-2	1		16		
Wi-Fi 7GHz Band Stendder JS Tonscend		TS-WF7U2	/		1		
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023		
BT&WI-FI Automatic test JS Tonscend software		JS1120-3	V3.2.22	(di)	(3		

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number			
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024	
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023	
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	07-13-2022	07-12-2023	
ISN	TESEQ	ISN T800	30297	12-29-2022	12-28-2023	
Barometer	changchun	DYM3	1188			
Temperature/ Humidity Indicator	Defu	TH128	/			



Report No.: EED32P80580502 Page 11 of 72

	3M Semi-and	echoic Chamber (2))- Radiated distu	rbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment		SAC-3		05-22-2022	05-21-2025
Receiver	R&S	ESCI7	100938-003	09-28-2022	09-27-2023
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618 9120D-1869	05-22-2022 09-29-2022 04-17-2021	05-21-2023 09-28-2023 04-16-2024
Horn Antenna	Schwarzbeck	BBHA 9120D			
Horn Antenna	A.H.SYSTEMS	SAS-574	374	05-29-2021	05-28-2024
Preamplifier	Agilent	11909A	12-1	03-28-2023	03-27-2024
Preamplifier	EMCI	EMC051845SE	980380	12-23-2022	12-22-2023
Preamplifier	CD	PAP-1840-60	6041.6042	07-05-2022	07-04-2023
Cable line	Fulai(7M)	SF106	5219/6A	- 6)
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		-/:0
Cable line	Fulai(3M)	SF106	5217/6A	(°)	<u>-(67)</u>



Report No. : EED32P80580502 Page 12 of 72

3M full-anechoic Chamber								
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Fully Anechoic Chamber	TDK	TDK FAC-3		01-09-2021	01-08-2024			
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024			
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024			
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024			
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-30-2021	04-29-2024			
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-17-2021	04-16-2024			
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024			
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024			
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023			
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024			
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023			
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024			
RSE Automatic test software	JS Tonscend	JS36-RSE	10166					
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(3))			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002					
Cable line	Times	SFT205-NMSM-2.50M	394812-0003					
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(1)	-(c1)			
Cable line	Times	EMC104-NMNM-1000	SN160710					
Cable line	Times	SFT205-NMSM-3.00M	394813-0001					
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	- (6))			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001					
Cable line	Times	HF160-KMKM-3.00M	393493-0001					
· · · · · · · · · · · · · · · · · · ·	100		·	/ 201				

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

47 CFR Part 15C Section 15.203

7 Radio Technical Requirements Specification

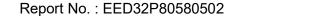
7.1 Antenna Requirement Standard requirement: 47

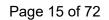
15.203 requirement:
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the
responsible party shall be used with the device. The use of a permanently attached antenna or of an
antenno that was a unique accurling to the intentional realistant the manufacturer many decises the smit

antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

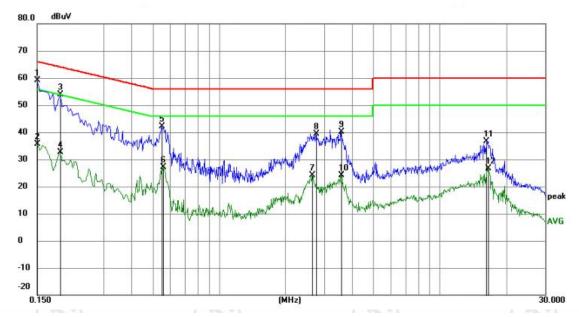
The antenna is Extranal antenna. The best case gain of the antenna is 2.46dBi.




Report No. : EED32P80580502 Page 14 of 72

7.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.	207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limit:	[Limit (d	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithr	n of the frequency.					
	Power Supply L.I.S.N.	⋖ ────0.8m	Support Equipment 10 cm				
	Ground Reference Plane						
Test Made:	 The mains terminal disturbance voltage test was conducted in a shielde room. The EUT was connected to AC power source through a LISN 1 (Lin Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. Impedance with the same way as the LISN 1 for the unit being measured. Impedance with the same way as the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was betwee the closest points of the LISN 1 and the EUT. All other units of the EU and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test Mode:	All modes were tested, only the recorded in the report.	ie worst case or 3240N	MIL OF FINZUSISO WAS				
	recorded in the report.						


Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	49.26	9.87	59.13	66.00	-6.87	QP	
2		0.1500	25.72	9.87	35.59	56.00	-20.41	AVG	
3		0.1905	44.07	9.87	53.94	64.01	-10.07	QP	
4		0.1905	22.68	9.87	32.55	54.01	-21.46	AVG	
5		0.5505	32.06	10.01	42.07	56.00	-13.93	QP	
6		0.5595	17.01	10.02	27.03	46.00	-18.97	AVG	
7		2.6475	14.41	9.79	24.20	46.00	-21.80	AVG	
8		2.7554	29.67	9.79	39.46	56.00	-16.54	QP	
9		3.5745	30.34	9.78	40.12	56.00	-15.88	QP	
10		3.5745	14.47	9.78	24.25	46.00	-21.75	AVG	
11		16.2870	26.74	9.94	36.68	60.00	-23.32	QP	
12		16.5120	16.72	9.94	26.66	50.00	-23.34	AVG	-

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

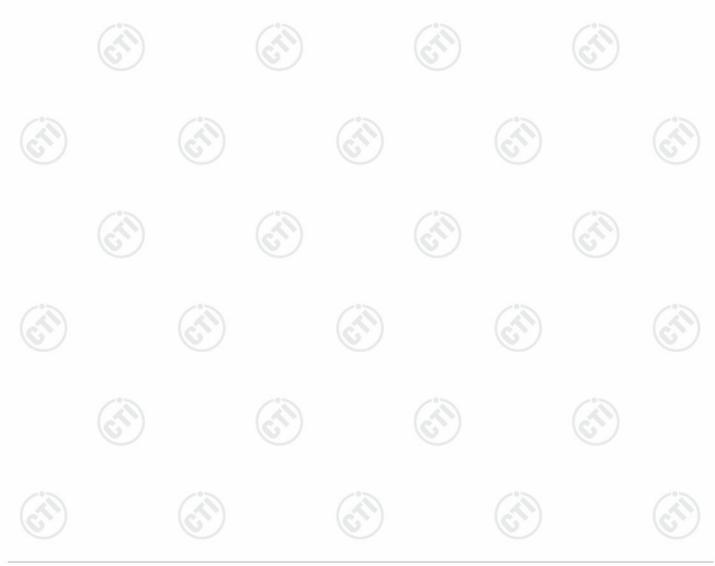
Neutral line: 80.0 70 60 50 40 30 20 10 -10

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1590	45.97	9.87	55.84	65.52	-9.68	peak	
2		0.5639	32.45	10.03	42.48	56.00	-13.52	peak	
3		1.7250	24.87	9.80	34.67	56.00	-21.33	peak	
4		3.3225	31.32	9.79	41.11	56.00	-14.89	peak	
5		17.6279	24.11	9.95	34.06	60.00	-25.94	peak	
6		7.4895	19.48	9.79	29.27	60.00	-30.73	peak	
7		0.1545	25.29	9.87	35.16	55.75	-20.59	AVG	
8		0.5730	19.98	10.04	30.02	46.00	-15.98	AVG	
9		1.8600	9.01	9.80	18.81	46.00	-27.19	AVG	
10		3.5835	13.53	9.78	23.31	46.00	-22.69	AVG	
11		8.8350	7.38	9.78	17.16	50.00	-32.84	AVG	
12		16.7055	13.91	9.94	23.85	50.00	-26.15	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32P80580502 Page 17 of 72


7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E
Test Setup:	
	Control Congruer Power pod(b) Power pot Table RF test System Instrument
Test Procedure:	The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E.2.d) Method SA-2 (trace averaging across on and off times of the EUT transmissions, followe d by duty cycle correction). The procedure for this method is as follows: (i) Measure the duty cycle, x, of the transmitter output signal. (ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
	 (iii) Set RBW = 1 MHz. (iv) Set VBW ≥ 3 MHz. (v) Number of points in sweep ≥ 2 × span / RBW. (This ensures that bin-to-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.) (vi) Sweep time = auto. (vii) Detector = power averaging (rms), if available. Otherwise, use sample d
	etector mode. (viii) Do not use sweep triggering. Allow the sweep to "free run." (ix) Trace average at least 100 traces in power averaging (rms) mode; howe ver, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter. (x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal. (xi) Add 10 log (1/x), where x is the duty cycle, to the measured power in ord er to compute the average power during the actual transmission times
	(because the measurement represents an average over both the on and off times of the transmission). For example, add 10log (1/0.25) = 6 dB if the duty cycle is 25%.

Report No. : EED32P80580502 Page 18 of 72

Limit:					
	Frequency band (MHz)	Limit			
	5150-5250	≤1W(30dBm) for master device			
		≤250mW(24dBm) for client device ≤250mW(24dBm) for client device or 11dBm+10logB*			
	5250-5350				
	5470-5725	≤250mW(24dBm) for client device or 11dBm+10logB*			
	5725-5850	≤1W(30dBm)			
	Remark:	* Where B is the 26dB emission bandwidth in MHz The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms- equivalent voltage.			
Test Mode:	Transmitting mode	with modulation			
Test Results:	Refer to Appendix 5	5G WIFI			

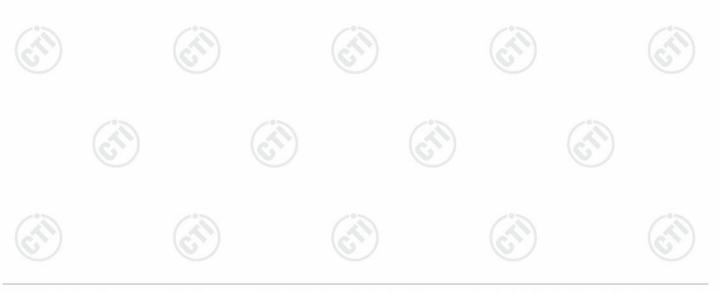


7.4 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D						
Test Setup:							
	Control Compouler Power Power Power Power Table RF test System System Instrument Table						
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.						
Limit:	No restriction limits						
Test Mode:	Transmitting mode with modulation						
Test Results:	Refer to Appendix 5G WIFI						

7.5 Maximum Power Spectral Density

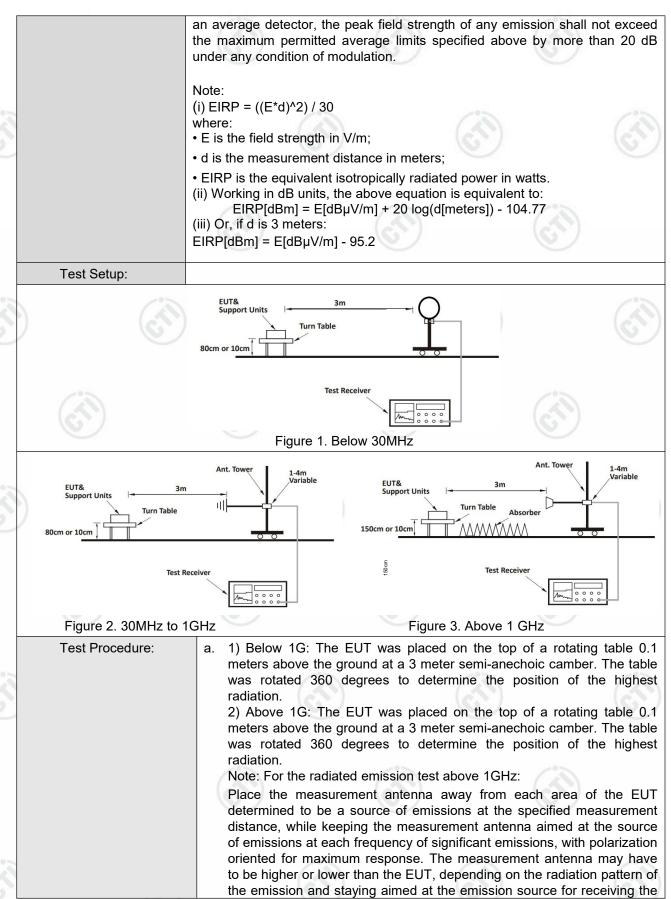
Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))					
Test Method:	KDB789033 D02 G	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F						
Test Setup:	(é	(55)	(6/1)					
	Control Computer Computer Computer Power Supply TEMPERATURE CABI	Attenuator	RF test - System Instrument					
		I						
	Remark: Offset=Cable loss+ attenuation factor.							
Test Procedure: Limit:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweeps	RBW = 510 kHz/1 MS. s to continue unti	receiver span to view the MHz, VBW ≥ 3*RBW, Solution I the trace stabilizes. Setermine the maximum and the ma	weep time =				
LIIIIII.	Frequency band Limit (MHz)							
	5150-5250	≤17dBm in 1MHz for master device						
	(6)	≤11dBm in 1MHz for client device						
	5250-5350	≤11dBm in 1Mh	n in 1MHz for client device					
	5470-5725	≤11dBm in 1MHz for client device						
	5725-5850	≤30dBm in 500	kHz					
	Remark: The maximum power spectral density is measured a conducted emission by direct connection of a calibrated test instrument to the equipment under							
	Transmitting mode with modulation							
Test Mode:	Transmitting mode	with modulation						



7.6 Frequency Stability

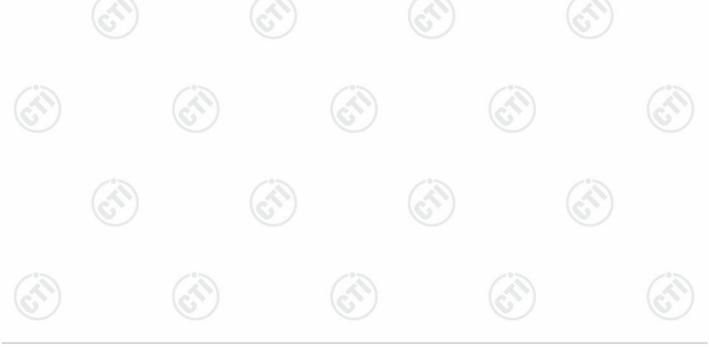
Test Requirement:	47 CFR Part 15C Section 15.407	(g)						
Test Method:	ANSI C63.10: 2013	(3)	(3)					
Test Setup:	(6.75)	(85)						
	Control Computes Power Poole) Power Supply TEMPERATURE CABNET Table	RF test System Instrument						
	1 1							
	Remark: Offset=Cable loss+ atten	uation factor.						
Test Procedure:	1.The EUT was placed inside the by nominal AC/DC voltage. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the ch specified. d. Allow sufficient time (of the chamber to stabilize. 4. Repeat step 2 and 3 with the te temperature. 5. The test chamber was allowed of 30 minutes. The supply voltage 115% and the frequency record.	output to a spectrum namber to the highest approximately 30 min mperature chamber so stabilize at +20 deg was then adjusted or	analyzer. temperature n) for the temperature set to the lowest gree C for a minimum n the EUT from 85% to					
Limit:	frequency over a temperature ventormal supply voltage, and for a	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.						
Test Mode:	Transmitting mode with modulation	n						
Test Results:	Refer to Appendix 5G WIFI)	(0,)					




Report No. : EED32P80580502 Page 22 of 72

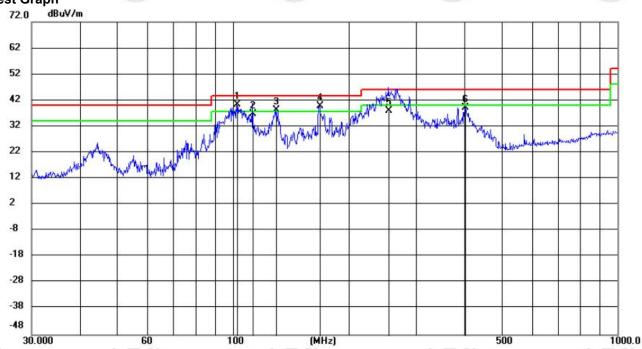
7.7 Radiated Emission

Test Requirement:	47 CED Dort 15C Soct	ion 1	5 200 and 1	5 407 (b)							
•	47 CFR Part 15C Section 15.209 and 15.407 (b) ANSI C63.10 2013 Measurement Distance: 3m (Semi-Anechoic Chamber)										
Test Method:		2	. (Carai Araa	haia Char		-\	(1)				
Test Site:	163	e. SII	<u>`</u>	160	-	<u> </u>	- (6 ³)				
Receiver Setup:	Frequency	/	Detector	RBV		VBW	Remark				
	0.009MHz-0.090MH		Peak	10kH		30kHz 30kHz	Peak				
	0.009MHz-0.090MH		Average		10kHz		Average				
	0.090MHz-0.110MH		Quasi-pea			30kHz	Quasi-peak				
	0.110MHz-0.490MH	łz	Peak	10kH	Ηz	30kHz	Peak				
	0.110MHz-0.490MHz 0.490MHz -30MHz		Average	10kH	Ηz	30kHz	Average				
			Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak				
	30MHz-1GHz	10	Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak				
	Above 1GHz		Peak	1MH	łz	3MHz	Peak				
	Above Toriz		Peak	1MH	łz	10kHz	Average				
Limit:											
	Frequency		ld strength ovolt/meter)	Limit (dBuV/m)	R	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	24	00/F(kHz)	-		- 6	300				
	0.490MHz-1.705MHz 24000/F(kHz)		-		-	30					
	1.705MHz-30MHz		30	-		-	30				
	30MHz-88MHz	IHz-88MHz		40.0	Qu	asi-peak	3				
	88MHz-216MHz	1	150	43.5	Qu	asi-peak	3				
	216MHz-960MHz		200	46.0	Qu	asi-peak	3				
	960MHz-1GHz		500	54.0 Q		asi-peak	3				
	Above 1GHz		500	54.0	Α	verage	3				
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz is (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall is above or below the basedge increasing linear the band edge, and f linearly to a level of 27 Remark: The emission measurements employed frequency bands 9-9 emission limits in these	5.35 eratii band ppera 5.725 eratii beend eratii goe lin and ly to rom dBn bying 0kHz	GHz band ng in the 5.25 shall not excepting in the GHz band ng in the 5.72 nited to a level of 15 5 MHz above n/MHz at the mits shown a CISPR 2, 110-490kb	shall not shall not seed an e.i 5.47-5.72 shall no 25-5.85 Ging linearlom 25 Millon om 25 Millon shand edgin the quasi-peadz and a	z bai.r.p. 5 G t ex the state of the state o	ceed an and: All em of -27 dE GHz band: ceed an old and: n/MHz at 7 10 dBm/Mabove or bat 5 MHz are band edetector edecare 1000 M	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the MHz. Radiated				



Page 24 of 72 Report No.: EED32P80580502

Test Mode: Test Results:	Transmitting mode with modulation Pass
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.



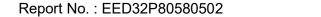
Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

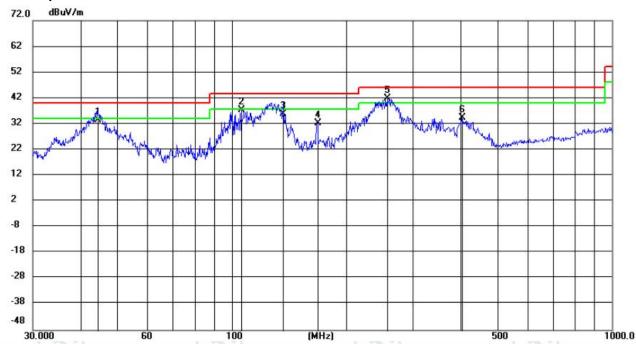
Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

Horizontal:

Test Graph

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	102.6832	26.58	13.66	40.24	43.50	-3.26	QP	199	300	
2		112.8206	24.56	12.24	36.80	43.50	-6.70	QP	199	300	
3	!	129.5586	28.69	9.68	38.37	43.50	-5.13	QP	199	175	
4	!	168.0008	28.70	10.97	39.67	43.50	-3.83	QP	199	155	
5		254.5497	22.22	15.68	37.90	46.00	-8.10	QP	100	79	
6		402.0498	19.65	19.43	39.08	46.00	-6.92	QP	100	7	





Vertical:

Test Graph

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.5009	19.19	14.41	33.60	40.00	-6.40	QP	100	322	
2		106.2918	24.30	13.15	37.45	43.50	-6.05	QP	100	281	
3		136.9391	26.52	9.28	35.80	43.50	-7.70	QP	100	270	
4		168.1777	21.13	10.99	32.12	43.50	-11.38	QP	100	156	
5	*	257.2417	26.14	15.76	41.90	46.00	-4.10	QP	100	352	
6		403.6036	14.86	19.47	34.33	46.00	-11.67	QP	100	10	

Report No.: EED32P80580502 Page 27 of 72

Transmitter Emission above 1GHz

Mode	:	80	02.11 a Tran	smitting		Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2040.7041	4.80	38.13	42.93	68.20	25.27	PASS	Horizontal	PK
2	3045.6546	6.67	37.39	44.06	68.20	24.14	PASS	Horizontal	PK
3	4257.9758	10.59	34.26	44.85	68.20	23.35	PASS	Horizontal	PK
4	8383.2192	-10.72	50.64	39.92	68.20	28.28	PASS	Horizontal	PK
5	11899.52	-5.44	49.86	44.42	68.20	23.78	PASS	Horizontal	PK
6	17115.0308	1.83	47.93	49.76	68.20	18.44	PASS	Horizontal	PK
7	2101.2101	5.03	38.35	43.38	68.20	24.82	PASS	Vertical	PK
8	3392.1892	7.56	37.04	44.60	68.20	23.60	PASS	Vertical	PK
9	4519.2519	11.49	35.66	47.15	68.20	21.05	PASS	Vertical	PK
10	8927.1964	-9.04	50.74	41.70	68.20	26.50	PASS	Vertical	PK
11	11967.9484	-5.03	48.93	43.90	68.20	24.30	PASS	Vertical	PK
12	16510.6755	0.50	47.95	48.45	68.20	19.75	PASS	Vertical	PK

Mode	:	8	302.11 n(HT2	0) Transmitti	ng	Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1393.2893	1.42	38.67	40.09	68.20	28.11	PASS	Horizontal	PK
2	2090.209	5.01	38.34	43.35	68.20	24.85	PASS	Horizontal	PK
3	3367.9868	7.52	37.42	44.94	68.20	23.26	PASS	Horizontal	PK
4	9238.2869	-7.67	49.08	41.41	68.20	26.79	PASS	Horizontal	PK
5	11961.0481	-5.07	49.07	44.00	68.20	24.20	PASS	Horizontal	PK
6	16925.2713	2.71	46.78	49.49	68.20	18.71	PASS	Horizontal	PK
7	1432.8933	1.48	39.84	41.32	68.20	26.88	PASS	Vertical	PK
8	2107.8108	4.96	37.71	42.67	68.20	25.53	PASS	Vertical	PK
9	3205.1705	6.99	37.09	44.08	68.20	24.12	PASS	Vertical	PK
10	9072.1036	-8.58	49.10	40.52	68.20	27.68	PASS	Vertical	PK
11	11243.9872	-6.09	49.73	43.64	68.20	24.56	PASS	Vertical	PK
12	16458.9229	0.13	48.39	48.52	68.20	19.68	PASS	Vertical	PK

Report No.: EED32P80580502 Page 28 of 72

_		100		16.4		10.0			C4 /	
	Mode	:	8	02.11 ac(VH	HT20) Trans	mitting	Channe	el:	5180MHz	
0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	1466.9967	1.54	38.20	39.74	68.20	28.46	PASS	Horizontal	PK
4	2	2106.7107	4.98	37.89	42.87	68.20	25.33	PASS	Horizontal	PK
	3	2938.3938	6.39	38.24	44.63	68.20	23.57	PASS	Horizontal	PK
	4	7602.9051	-10.55	50.23	39.68	68.20	28.52	PASS	Horizontal	PK
	5	12432.5716	-4.09	49.11	45.02	68.20	23.18	PASS	Horizontal	PK
	6	17007.5004	2.91	46.76	49.67	68.20	18.53	PASS	Horizontal	PK
	7	1515.4015	1.71	38.49	40.20	68.20	28.00	PASS	Vertical	PK
	8	2036.8537	4.78	39.20	43.98	68.20	24.22	PASS	Vertical	PK
	9	3317.3817	7.42	37.35	44.77	68.20	23.43	PASS	Vertical	PK
4	10	7594.8547	-10.57	50.83	40.26	68.20	27.94	PASS	Vertical	PK
9	11	10302.6651	-6.25	48.23	41.98	68.20	26.22	PASS	Vertical	PK
	12	17127.1064	2.05	46.49	48.54	68.20	19.66	PASS	Vertical	PK

Mode	:	80	02.11 ax(HE	20) Transmit	tting	Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1421.8922	1.47	38.67	40.14	68.20	28.06	PASS	Horizontal	PK
2	2072.0572	4.93	37.93	42.86	68.20	25.34	PASS	Horizontal	PK
3	3341.5842	7.47	36.94	44.41	68.20	23.79	PASS	Horizontal	PK
4	7571.2786	-10.75	49.67	38.92	68.20	29.28	PASS	Horizontal	PK
5	10709.2105	-6.17	48.39	42.22	68.20	25.98	PASS	Horizontal	PK
6	16999.45	3.02	46.43	49.45	68.20	18.75	PASS	Horizontal	PK
7	1428.4928	1.48	38.51	39.99	68.20	28.21	PASS	Vertical	PK
8	1863.0363	3.90	38.46	42.36	68.20	25.84	PASS	Vertical	PK
9	3173.2673	6.93	37.86	44.79	68.20	23.41	PASS	Vertical	PK
10	7384.3942	-11.45	51.04	39.59	68.20	28.61	PASS	Vertical	PK
11	9240.012	-7.67	49.27	41.60	68.20	26.60	PASS	Vertical	PK
12	17106.4053	1.66	48.05	49.71	68.20	18.49	PASS	Vertical	PK

Page	\sim	~£	70
Pane	74	m	1/

		1 1 1				1 1	76.7		100	
	Mode	:		802.11 a Tran	smitting		Chann	el:	5220MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
- 1	1	1573.7074	2.22	37.75	39.97	68.20	28.23	PASS	Horizontal	PK
	2	2039.604	4.79	38.49	43.28	68.20	24.92	PASS	Horizontal	PK
~	3	2457.0957	4.83	58.28	63.11	68.20	5.09	PASS	Horizontal	PK
	4	8205.5353	-10.88	50.17	39.29	68.20	28.91	PASS	Horizontal	PK
	5	12457.2979	-4.16	49.93	45.77	68.20	22.43	PASS	Horizontal	PK
	6	17004.6252	2.95	46.50	49.45	68.20	18.75	PASS	Horizontal	PK
	7	1876.2376	4.00	37.88	41.88	68.20	26.32	PASS	Vertical	PK
	8	2932.8933	6.38	37.97	44.35	68.20	23.85	PASS	Vertical	PK
	9	4036.8537	9.49	34.97	44.46	68.20	23.74	PASS	Vertical	PK
ونر	10	8804.1402	-9.10	49.10	40.00	68.20	28.20	PASS	Vertical	PK
A	11	11904.6952	-5.42	50.05	44.63	68.20	23.57	PASS	Vertical	PK
U	12	17663.6082	4.33	44.58	48.91	68.20	19.29	PASS	Vertical	PK

Mode	e :	8	02.11 n(HT2	0) Transmitti	ng	Channe	el:	5220MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1981.8482	4.54	37.61	42.15	68.20	26.05	PASS	Horizontal	PK
2	2853.1353	6.11	37.66	43.77	68.20	24.43	PASS	Horizontal	PK
3	4545.6546	11.58	35.11	46.69	68.20	21.51	PASS	Horizontal	PK
4	7399.345	-11.49	51.90	40.41	68.20	27.79	PASS	Horizontal	PK
5	11250.3125	-6.15	49.83	43.68	68.20	24.52	PASS	Horizontal	PK
6	16536.5518	0.74	48.25	48.99	68.20	19.21	PASS	Horizontal	PK
7	1311.8812	1.18	39.52	40.70	68.20	27.50	PASS	Vertical	PK
8	2039.0539	4.78	37.45	42.23	68.20	25.97	PASS	Vertical	PK
9	3391.0891	7.56	37.09	44.65	68.20	23.55	PASS	Vertical	PK
10	7606.3553	-10.57	50.86	40.29	68.20	27.91	PASS	Vertical	PK
11	10255.5128	-6.59	49.60	43.01	68.20	25.19	PASS	Vertical	PK
12	17648.0824	4.07	45.75	49.82	68.20	18.38	PASS	Vertical	PK

Page	30	∩f	72
raue	.)()	()I	1/

М	ode	:	8	02.11 ac(VH	T20) Transr	nitting	Channe	el:	5220MHz	
N	O	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1251.9252	0.99	40.68	41.67	68.20	26.53	PASS	Horizontal	PK
	2	2083.0583	4.98	37.60	42.58	68.20	25.62	PASS	Horizontal	PK
	3	3424.0924	7.58	36.87	44.45	68.20	23.75	PASS	Horizontal	PK
-	4	7372.3186	-11.41	50.76	39.35	68.20	28.85	PASS	Horizontal	PK
	5	10436.6468	-6.36	50.17	43.81	68.20	24.39	PASS	Horizontal	PK
	6	17121.9311	1.95	47.27	49.22	68.20	18.98	PASS	Horizontal	PK
	7	1192.5193	0.81	39.60	40.41	68.20	27.79	PASS	Vertical	PK
	8	2078.1078	4.96	37.92	42.88	68.20	25.32	PASS	Vertical	PK
!	9	3393.8394	7.56	36.69	44.25	68.20	23.95	PASS	Vertical	PK
1	0	7319.991	-11.25	50.96	39.71	68.20	28.49	PASS	Vertical	PK
1	1	10264.7132	-6.53	49.05	42.52	68.20	25.68	PASS	Vertical	PK
1	2	17152.4076	2.52	47.31	49.83	68.20	18.37	PASS	Vertical	PK

Mode):	80	02.11 ax(HE	ting	Channel:		5220MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1255.2255	1.01	39.03	40.04	68.20	28.16	PASS	Horizontal	PK
2	2102.3102	5.02	37.97	42.99	68.20	25.21	PASS	Horizontal	PK
3	3208.4708	7.00	37.09	44.09	68.20	24.11	PASS	Horizontal	PK
4	7543.1022	-10.96	50.69	39.73	68.20	28.47	PASS	Horizontal	PK
5	11251.4626	-6.16	49.37	43.21	68.20	24.99	PASS	Horizontal	PK
6	17109.8555	1.72	47.56	49.28	68.20	18.92	PASS	Horizontal	PK
7	1834.4334	3.67	37.82	41.49	68.20	26.71	PASS	Vertical	PK
8	3188.1188	6.96	38.44	45.40	68.20	22.80	PASS	Vertical	PK
9	4508.2508	11.45	34.81	46.26	68.20	21.94	PASS	Vertical	PK
10	9625.2813	-7.39	49.72	42.33	68.20	25.87	PASS	Vertical	PK
11	13934.5467	-1.10	46.04	44.94	68.20	23.26	PASS	Vertical	PK
12	17120.206	1.92	47.33	49.25	68.20	18.95	PASS	Vertical	PK

D	04	- 4 70	
Page	31	OI/2	

				1 / 1						
Mod	e:	80	02.11 a Tran	smitting		Channe	el:	5240MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1426.8427	1.48	38.54	40.02	68.20	28.18	PASS	Horizontal	PK	
2	2092.4092	5.02	37.86	42.88	68.20	25.32	PASS	Horizontal	PK	
3	3047.8548	6.67	37.58	44.25	68.20	23.95	PASS	Horizontal	PK	
4	7368.8684	-11.40	50.66	39.26	68.20	28.94	PASS	Horizontal	PK	
5	9269.3385	-7.62	48.77	41.15	68.20	27.05	PASS	Horizontal	PK	
6	17002.9001	2.97	46.62	49.59	68.20	18.61	PASS	Horizontal	PK	
7	1439.4939	1.50	39.25	40.75	68.20	27.45	PASS	Vertical	PK	
8	1922.4422	4.29	38.49	42.78	68.20	25.42	PASS	Vertical	PK	
9	3084.1584	6.77	37.59	44.36	68.20	23.84	PASS	Vertical	PK	
10	7341.2671	-11.32	50.61	39.29	68.20	28.91	PASS	Vertical	PK	
11	9827.1164	-7.12	48.63	41.51	68.20	26.69	PASS	Vertical	PK	
12	17009.2255	2.88	46.65	49.53	68.20	18.67	PASS	Vertical	PK	

Mode	:	80	802.11 n(HT20) Transmitting			Channel:		5240MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1260.176	1.02	38.67	39.69	68.20	28.51	PASS	Horizontal	PK
2	2065.4565	4.90	38.22	43.12	68.20	25.08	PASS	Horizontal	PK
3	3342.1342	7.47	36.61	44.08	68.20	24.12	PASS	Horizontal	PK
4	7407.9704	-11.47	50.88	39.41	68.20	28.79	PASS	Horizontal	PK
5	11194.5347	-5.75	49.69	43.94	68.20	24.26	PASS	Horizontal	PK
6	17104.6802	1.62	47.28	48.90	68.20	19.30	PASS	Horizontal	PK
7	1267.8768	1.05	38.70	39.75	68.20	28.45	PASS	Vertical	PK
8	2007.1507	4.65	38.17	42.82	68.20	25.38	PASS	Vertical	PK
9	3317.3817	7.42	36.74	44.16	68.20	24.04	PASS	Vertical	PK
10	7594.8547	-10.57	50.03	39.46	68.20	28.74	PASS	Vertical	PK
11	9602.8551	-7.34	48.51	41.17	68.20	27.03	PASS	Vertical	PK
12	17652.1076	4.14	45.58	49.72	68.20	18.48	PASS	Vertical	PK

Page	22	_of	72
rauc	JZ.	OI	1 _

Mode	:		802.11 ac(VH	T20) Transm	nitting	Channe	el:	5240MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1279.978	1.08	38.90	39.98	68.20	28.22	PASS	Horizontal	PK
2	2014.8515	4.68	38.37	43.05	68.20	25.15	PASS	Horizontal	PK
3	3389.989	7.56	36.50	44.06	68.20	24.14	PASS	Horizontal	PK
4	7336.0918	-11.29	50.89	39.60	68.20	28.60	PASS	Horizontal	PK
5	10377.9939	-6.26	48.39	42.13	68.20	26.07	PASS	Horizontal	PK
6	16533.6767	0.72	49.11	49.83	68.20	18.37	PASS	Horizontal	PK
7	1403.7404	1.44	38.86	40.30	68.20	27.90	PASS	Vertical	PK
8	2093.5094	5.02	37.55	42.57	68.20	25.63	PASS	Vertical	PK
9	3452.1452	7.60	36.91	44.51	68.20	23.69	PASS	Vertical	PK
10	7547.7024	-10.92	51.04	40.12	68.20	28.08	PASS	Vertical	PK
11	11955.8728	-5.10	49.01	43.91	68.20	24.29	PASS	Vertical	PK
12	17029.9265	2.58	46.54	49.12	68.20	19.08	PASS	Vertical	PK

Mode	:	8	02.11ax(HE2	20) Transmitt	ing	Channe	el:	5240MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1337.7338	1.26	39.38	40.64	68.20	27.56	PASS	Horizontal	PK
2	1956.5457	4.43	38.96	43.39	68.20	24.81	PASS	Horizontal	PK
3	3189.769	6.96	37.22	44.18	68.20	24.02	PASS	Horizontal	PK
4	7438.4469	-11.41	51.98	40.57	68.20	27.63	PASS	Horizontal	PK
5	9816.1908	-7.14	49.01	41.87	68.20	26.33	PASS	Horizontal	PK
6	14460.123	-0.24	46.22	45.98	68.20	22.22	PASS	Horizontal	PK
7	1339.934	1.27	38.94	40.21	68.20	27.99	PASS	Vertical	PK
8	2052.2552	4.84	38.12	42.96	68.20	25.24	PASS	Vertical	PK
9	3452.6953	7.60	36.13	43.73	68.20	24.47	PASS	Vertical	PK
10	7348.1674	-11.33	50.61	39.28	68.20	28.92	PASS	Vertical	PK
11	9743.1622	-7.39	48.73	41.34	68.20	26.86	PASS	Vertical	PK
12	17032.8016	2.53	46.37	48.90	68.20	19.30	PASS	Vertical	PK

Page	22	Ωf	72
Faue	.).)	()I	1/

				1 1 1		1. 11			201	
N	/lode	:		802.11 n(HT40) Transmitting			Channel:		5190MHz	
1	0	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1267.3267	1.04	39.47	40.51	68.20	27.69	PASS	Horizontal	PK
	2	2102.8603	5.01	37.99	43.00	68.20	25.20	PASS	Horizontal	PK
	3	3200.7701	6.97	37.14	44.11	68.20	24.09	PASS	Horizontal	PK
	4	7582.7791	-10.66	49.66	39.00	68.20	29.20	PASS	Horizontal	PK
	5	10281.3891	-6.40	49.26	42.86	68.20	25.34	PASS	Horizontal	PK
	6	17090.8795	1.67	47.46	49.13	68.20	19.07	PASS	Horizontal	PK
	7	1277.7778	1.08	39.66	40.74	68.20	27.46	PASS	Vertical	PK
	8	2102.8603	5.01	37.79	42.80	68.20	25.40	PASS	Vertical	PK
	9	3334.9835	7.45	36.96	44.41	68.20	23.79	PASS	Vertical	PK
0.1	10	7382.0941	-11.44	50.70	39.26	68.20	28.94	PASS	Vertical	PK
	11	10813.8657	-6.22	49.74	43.52	68.20	24.68	PASS	Vertical	PK
	12	16590.0295	1.25	48.76	50.01	68.20	18.19	PASS	Vertical	PK

Mode	:	3	302.11 ac(VH	T40) Transr	nitting	Channe	əl:	5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1370.187	1.35	39.76	41.11	68.20	27.09	PASS	Horizontal	PK
2	2092.9593	5.02	37.58	42.60	68.20	25.60	PASS	Horizontal	PK
3	3204.0704	6.99	37.45	44.44	68.20	23.76	PASS	Horizontal	PK
4	7555.1778	-10.86	49.72	38.86	68.20	29.34	PASS	Horizontal	PK
5	10244.0122	-6.69	48.58	41.89	68.20	26.31	PASS	Horizontal	PK
6	17024.7512	2.65	45.89	48.54	68.20	19.66	PASS	Horizontal	PK
7	1279.978	1.08	39.95	41.03	68.20	27.17	PASS	Vertical	PK
8	2100.11	5.05	37.57	42.62	68.20	25.58	PASS	Vertical	PK
9	3047.3047	6.67	37.92	44.59	68.20	23.61	PASS	Vertical	PK
10	7571.2786	-10.75	50.13	39.38	68.20	28.82	PASS	Vertical	PK
11	10790.8645	-6.18	48.56	42.38	68.20	25.82	PASS	Vertical	PK
12	17111.0056	1.74	47.43	49.17	68.20	19.03	PASS	Vertical	PK

Report No. : EED32P80580502 Page 34 of 72

	1 1 1 1 1 1		1 (6.9)		1 1	0.1	- /	671	
Mode	Mode:		02.11 ax(HE	40) Transmit	tting	Channel:		5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1314.6315	1.19	38.49	39.68	68.20	28.52	PASS	Horizontal	PK
2	2029.703	4.75	37.98	42.73	68.20	25.47	PASS	Horizontal	PK
3	3316.8317	7.42	36.72	44.14	68.20	24.06	PASS	Horizontal	PK
4	7265.9383	-11.39	51.35	39.96	68.20	28.24	PASS	Horizontal	PK
5	9219.311	-7.69	48.77	41.08	68.20	27.12	PASS	Horizontal	PK
6	16985.0743	2.96	46.53	49.49	68.20	18.71	PASS	Horizontal	PK
7	1520.352	1.75	39.24	40.99	68.20	27.21	PASS	Vertical	PK
8	2015.4015	4.68	38.02	42.70	68.20	25.50	PASS	Vertical	PK
9	3218.3718	7.05	38.07	45.12	68.20	23.08	PASS	Vertical	PK
10	7616.7058	-10.64	50.33	39.69	68.20	28.51	PASS	Vertical	PK
11	10934.6217	-6.21	48.86	42.65	68.20	25.55	PASS	Vertical	PK
12	17638.8819	3.92	45.41	49.33	68.20	18.87	PASS	Vertical	PK

Mode:			802.11 n(HT4	0) Transmitt	ting	Channel:		5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1620.462	2.57	37.61	40.18	68.20	28.02	PASS	Horizontal	PK
2	2064.3564	4.90	38.10	43.00	68.20	25.20	PASS	Horizontal	PK
3	3234.8735	7.11	37.29	44.40	68.20	23.80	PASS	Horizontal	PK
4	7322.2911	-11.26	50.70	39.44	68.20	28.76	PASS	Horizontal	PK
5	11274.4637	-6.36	49.59	43.23	68.20	24.97	PASS	Horizontal	PK
6	17028.7764	2.60	46.91	49.51	68.20	18.69	PASS	Horizontal	PK
7	1398.7899	1.44	38.62	40.06	68.20	28.14	PASS	Vertical	PK
8	1920.7921	4.28	38.74	43.02	68.20	25.18	PASS	Vertical	PK
9	2844.8845	6.07	38.40	44.47	68.20	23.73	PASS	Vertical	PK
10	7395.3198	-11.47	51.53	40.06	68.20	28.14	PASS	Vertical	PK
11	10300.365	-6.25	49.53	43.28	68.20	24.92	PASS	Vertical	PK
12	17029.3515	2.59	46.56	49.15	68.20	19.05	PASS	Vertical	PK

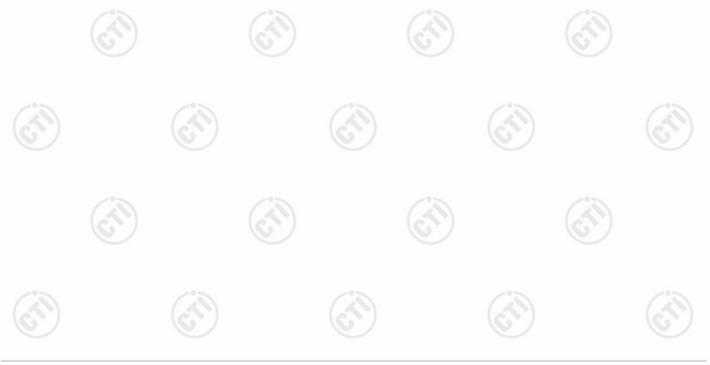
Report No.: EED32P80580502 Page 35 of 72

	1 1 1 1 1 1		1 6 9		1 1	0.1	- /	671	
Mode	Mode:		02.11 ac(VH	T40) Transr	nitting	Channel:		5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1403.7404	1.44	38.35	39.79	68.20	28.41	PASS	Horizontal	PK
2	2040.154	4.80	38.19	42.99	68.20	25.21	PASS	Horizontal	PK
3	3367.4367	7.51	37.14	44.65	68.20	23.55	PASS	Horizontal	PK
4	7321.7161	-11.26	50.71	39.45	68.20	28.75	PASS	Horizontal	PK
5	9720.736	-7.49	49.85	42.36	68.20	25.84	PASS	Horizontal	PK
6	17068.4534	2.01	47.58	49.59	68.20	18.61	PASS	Horizontal	PK
7	1420.7921	1.47	39.06	40.53	68.20	27.67	PASS	Vertical	PK
8	1985.6986	4.56	38.06	42.62	68.20	25.58	PASS	Vertical	PK
9	3375.6876	7.53	36.91	44.44	68.20	23.76	PASS	Vertical	PK
10	9276.2388	-7.62	48.94	41.32	68.20	26.88	PASS	Vertical	PK
11	12457.2979	-4.16	48.93	44.77	68.20	23.43	PASS	Vertical	PK
12	17017.8509	2.76	46.18	48.94	68.20	19.26	PASS	Vertical	PK

Mode:			802.11 ax(HE	40) Transmi	itting	Channel:		5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1132.0132	0.72	39.66	40.38	68.20	27.82	PASS	Horizontal	PK
2	2027.5028	4.74	38.27	43.01	68.20	25.19	PASS	Horizontal	PK
3	3051.1551	6.68	38.61	45.29	68.20	22.91	PASS	Horizontal	PK
4	7605.2053	-10.56	49.44	38.88	68.20	29.32	PASS	Horizontal	PK
5	9669.5585	-7.49	48.67	41.18	68.20	27.02	PASS	Horizontal	PK
6	11936.3218	-5.22	50.44	45.22	68.20	22.98	PASS	Horizontal	PK
7	1333.3333	1.24	39.41	40.65	68.20	27.55	PASS	Vertical	PK
8	1950.495	4.40	37.85	42.25	68.20	25.95	PASS	Vertical	PK
9	3176.0176	6.93	37.99	44.92	68.20	23.28	PASS	Vertical	PK
10	7525.8513	-11.09	50.82	39.73	68.20	28.47	PASS	Vertical	PK
11	10616.0558	-6.40	48.71	42.31	68.20	25.89	PASS	Vertical	PK
12	16997.7249	3.01	46.10	49.11	68.20	19.09	PASS	Vertical	PK

Report No.: EED32P80580502 Page 36 of 72

Mode:		CO-LOCA	TED	Channel:		2462MHz(ANT A)+5260MHz(ANT B)+ 2462MHz(ANT C)+5240MHz(ANT D)			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1283.8284	1.09	39.34	40.43	68.20	27.77	PASS	Horizontal	PK
2	2582.5083	5.14	37.65	42.79	68.20	25.41	PASS	Horizontal	PK
3	3051.1551	6.68	38.61	45.29	68.20	22.91	PASS	Horizontal	PK
4	8860.493	-9.21	49.50	40.29	68.20	27.91	PASS	Horizontal	PK
5	11437.7719	-6.07	49.98	43.91	68.20	24.29	PASS	Horizontal	PK
6	15370.3935	-0.77	47.41	46.64	68.20	21.56	PASS	Horizontal	PK
7	1262.9263	1.02	39.14	40.16	68.20	28.04	PASS	Vertical	PK
8	2078.6579	4.96	36.72	41.68	68.20	26.52	PASS	Vertical	PK
9	3176.0176	6.93	37.49	44.42	68.20	23.78	PASS	Vertical	PK
10	9605.1553	-7.34	48.34	41.00	68.20	27.20	PASS	Vertical	PK
11	10616.0558	-6.40	49.21	42.81	68.20	25.39	PASS	Vertical	PK
12	14400.32	0.64	43.83	44.47	68.20	23.73	PASS	Vertical	PK

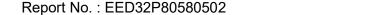

Note:

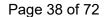
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Only the worst case data was recorded in the report.




Report No. : EED32P80580502 Page 37 of 72

7.8 Radiated Emission which fall in the restricted bands

Tes	t Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)					
Tes	t Method:	ANSI C63.10 2013								
Tes	t Site:	Measurement Distance	e: 3m	n (Semi-Aned	choic Char	nbe	r)	(67.)		
Rec	eiver Setup:	Frequency Detector			RBV	٧	VBW	Remark		
		0.009MHz-0.090MH	Ιz	Peak	10kF	łz	30kHz	Peak		
		0.009MHz-0.090MH	łz	Average	10kF	łz	30kHz	Average		
		0.090MHz-0.110MH	łz	Quasi-pea	k 10kF	łz	30kHz	Quasi-peak		
		0.110MHz-0.490MH	łz	Peak	10kH	łz	30kHz	Peak		
		0.110MHz-0.490MH	łz	Average	10kF	łz	30kHz	Average		
		0.490MHz -30MHz	<u> </u>	Quasi-pea	k 10kH	łz	30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak		
		Above 1GHz		Peak	1MH	lz	3MHz	Peak		
		Above 10112		Peak	1MH	lz	10kHz	Average		
Limi	it:	Frequency		ld strength ovolt/meter)	Limit (dBuV/m)	R	Remark	Measurement distance (m)		
		0.009MHz-0.490MHz	24	00/F(kHz)	-		-	300		
		0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30		
		1.705MHz-30MHz		30 -		-		30		
		30MHz-88MHz	("	100	40.0	Quasi-peak		3		
		88MHz-216MHz		150	43.5	Qu	asi-peak	3		
		216MHz-960MHz		200	46.0	Qu	asi-peak	3		
		960MHz-1GHz		500	54.0	Qu	asi-peak	3		
		Above 1GHz		500	54.0	Α	verage	3		
		*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz because of the 5.47-5 dBm/MHz. (4) For transmitters op outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the because or below the because increasing linear the band edge, and folinearly to a level of 27 Remark: The emission outside of the 5.47-5 dBm/MHz.	erational eration of the second of the secon	GHz band ng in the 5.25 shall not excepting in the 5.75 nited to a level of 15 5 MHz above mits shown	shall not 5-5.35 GH seed an e.i 5.47-5.72 shall no 25-5.85 Gl rel of -27 d ing linearl om 25 Ml 5.6 dBm/M re or belo band edg- in the s	ex z ba i.r.p. 5 G t ex Hz b dBm y to Hz a Hz a w th e.	ceed an and: All em of -27 dB BHZ band: ceed an and: n/MHz at 7 10 dBm/Mabove or bat 5 MHz ane band e	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on		
		measurements emplo frequency bands 9-9								

emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

- (i) EIRP = $((E*d)^2) / 30$
- where:
- E is the field strength in V/m;
- · d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.
- (ii) Working in dB units, the above equation is equivalent to: EIRP[dBm] = $E[dB\mu V/m] + 20 \log(d[meters]) 104.77$
- (iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

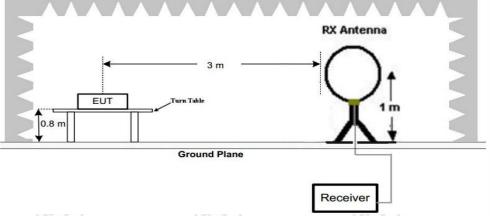
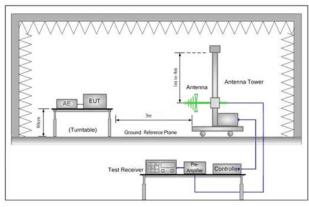



Figure 1. Below 30MHz

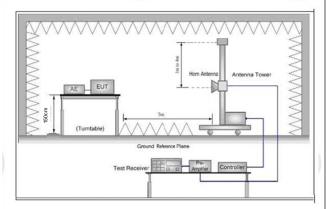


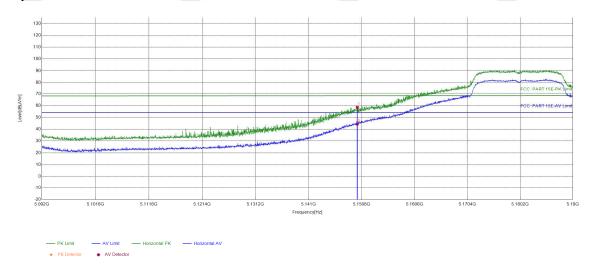
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

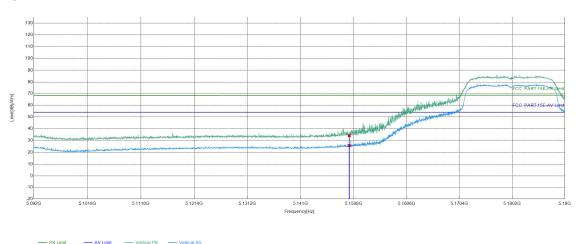
- j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: EED32P80580502 Page 39 of 72



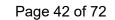
Test Data:

EUT_Name	(0)	Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark	(3)	CD.	(1)

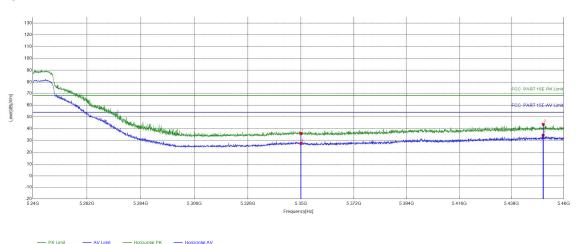

Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	-15.08	73.67	58.59	68.38	9.79	PASS	Horizontal	PK
2	5150	-15.08	59.53	44.45	54.00	9.55	PASS	Horizontal	AV

Dage	11	of 70	
Paue	4 I	of 72	

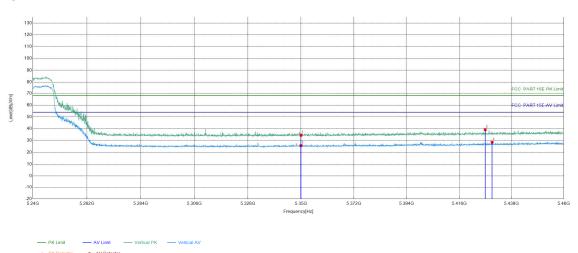
0 /			
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark	(3)	(3)	



Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	-15.08	49.19	34.11	68.38	34.27	PASS	Vertical	PK
2	5150	-15.08	40.80	25.72	54.00	28.28	PASS	Vertical	AV



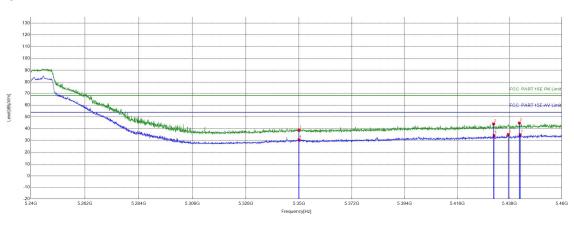
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5240MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark	(3)	(3)	


Suspec	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5350	-14.67	50.53	35.86	68.20	32.34	PASS	Horizontal	PK	
2	5451.3628	-14.53	58.26	43.73	68.20	24.47	PASS	Horizontal	PK	
3	5350	-14.67	42.12	27.45	54.00	26.55	PASS	Horizontal	AV	
4	5451.3078	-14.53	49.07	34.54	54.00	19.46	PASS	Horizontal	AV	

Pag	_	12	٥f	72
Pau	е	43	OI	12

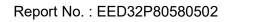
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5240MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark	(3)	(3)	(1)

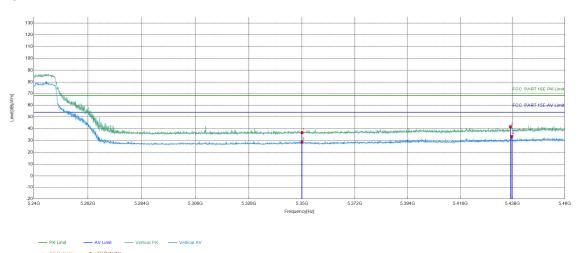
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5350	-14.67	49.16	34.49	68.20	33.71	PASS	Vertical	PK
2	5426.8817	-14.53	53.81	39.28	68.20	28.92	PASS	Vertical	PK
3	5350	-14.67	40.34	25.67	54.00	28.33	PASS	Vertical	AV
4	5429.7974	-14.53	43.06	28.53	54.00	25.47	PASS	Vertical	AV



<i>2 1</i>			- W /
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5240MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark	(4)	(3)	(40)

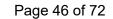
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5350	-14.67	53.50	38.83	68.20	29.37	PASS	Horizontal	PK		
2	5431.2828	-14.53	58.68	44.15	68.20	24.05	PASS	Horizontal	PK		
3	5442.1205	-14.53	59.42	44.89	68.20	23.31	PASS	Horizontal	PK		
4	5350	-14.67	45.26	30.59	54.00	23.41	PASS	Horizontal	AV		
5	5431.4479	-14.53	48.70	34.17	54.00	19.83	PASS	Horizontal	AV		
6	5437.4444	-14.53	49.64	35.11	54.00	18.89	PASS	Horizontal	AV		
7	5442.4506	-14.53	49.49	34.96	54.00	19.04	PASS	Horizontal	AV		

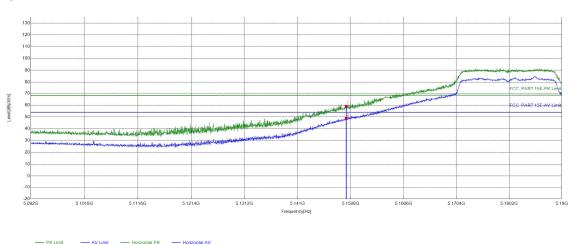


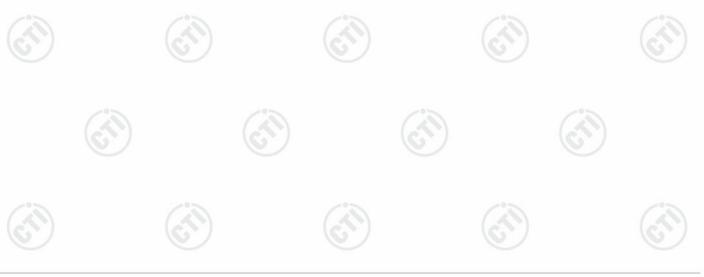


		103	
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5240MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark	(1)		(3)

Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5350	-14.67	51.34	36.67	68.20	31.53	PASS	Vertical	PK		
2	5437.1143	-14.53	56.31	41.78	68.20	26.42	PASS	Vertical	PK		
3	5350	-14.67	43.34	28.67	54.00	25.33	PASS	Vertical	AV		
4	5437.6644	-14.53	48.04	33.51	54.00	20.49	PASS	Vertical	AV		

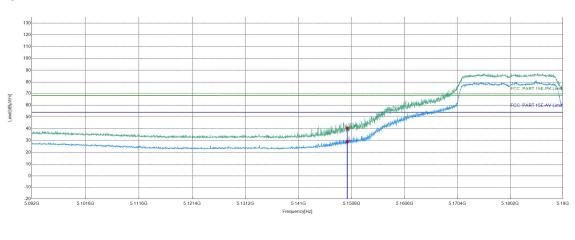


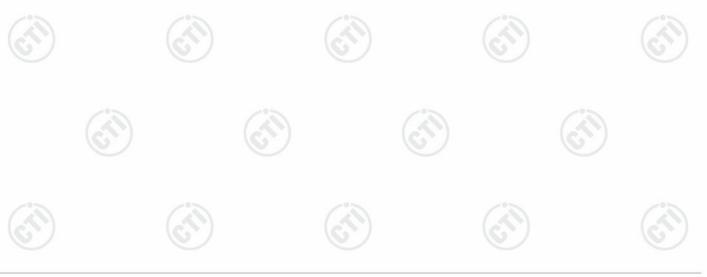




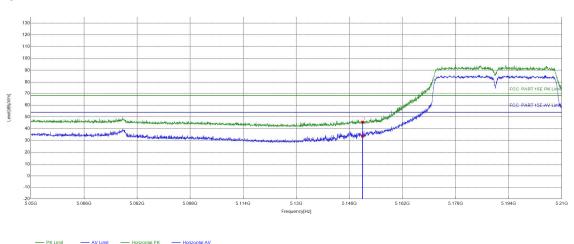
2 /			
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark	(3)	(3)	(4)

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	-15.08	74.16	59.08	68.38	9.30	PASS	Horizontal	PK		
2	5150	-15.08	63.95	48.87	54.00	5.13	PASS	Horizontal	AV		

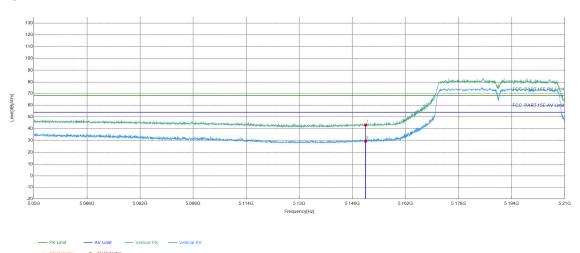


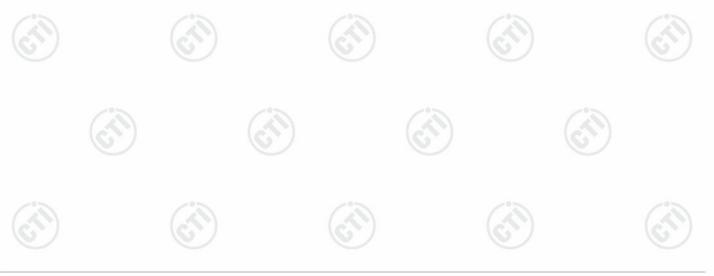



9 /			
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/20
Remark		(3)	(4)

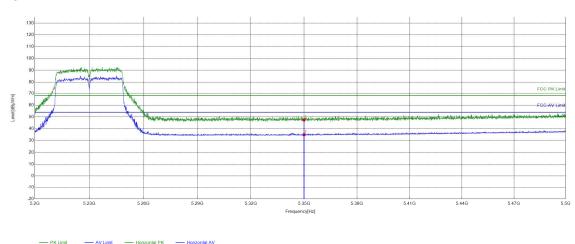

Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	-15.08	55.65	40.57	68.38	27.81	PASS	Vertical	PK	
2	5150	-15.08	44.27	29.19	54.00	24.81	PASS	Vertical	AV	

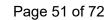
<i>3</i>			
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/22
Remark	(ii)		(4)
	A TANK	TATA Y	

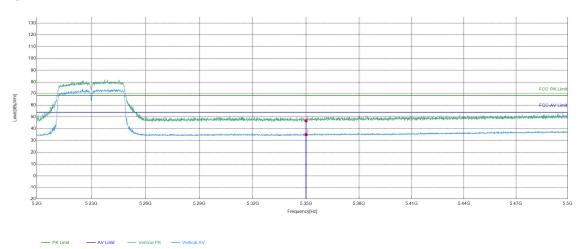

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	12.35	33.24	45.59	68.20	22.61	PASS	Horizontal	PK
2	5150	12.35	21.33	33.68	54.00	20.32	PASS	Horizontal	AV

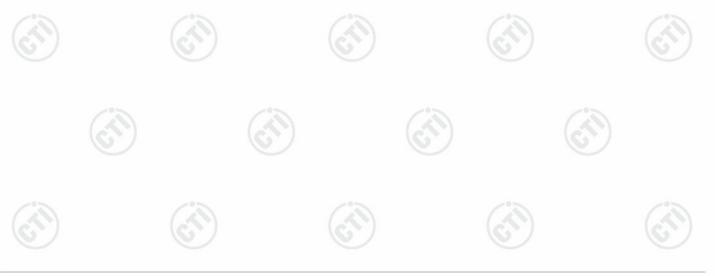


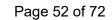

	Test_Model	
802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
yusongwei	Test_Date	2023/05/22
(ii)		(in)
	Transmitting	802.11 n(HT40) Transmitting Test_Frequency

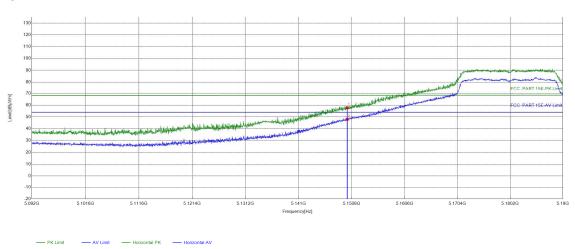

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	12.35	30.82	43.17	68.20	25.03	PASS	Vertical	PK
2	5150	12.35	17.21	29.56	54.00	24.44	PASS	Vertical	AV

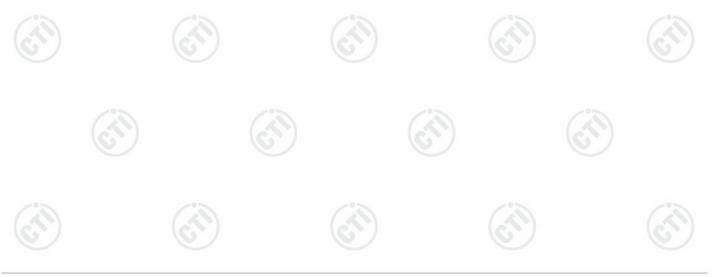

EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5230MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/22
Remark	(4)	(4)	(3)

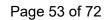

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5350	12.73	34.79	47.52	68.20	20.68	PASS	Horizontal	PK		
2	5350	12.73	22.19	34.92	54.00	19.08	PASS	Horizontal	AV		

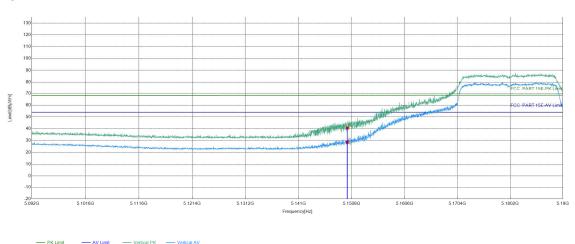



EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5230MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/22
Remark	(4)	(4)	(3)


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5350	12.73	33.97	46.70	68.20	21.50	PASS	Vertical	PK
2	5350	12.73	22.30	35.03	54.00	18.97	PASS	Vertical	AV

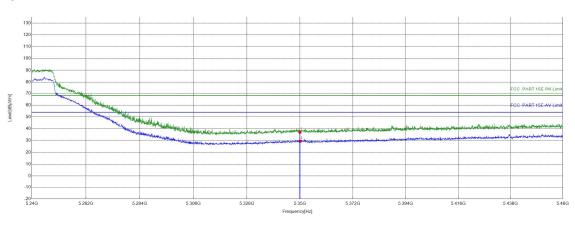



2_/			
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/22
Remark	(4)		(3)
	167.77	10.7	10.7

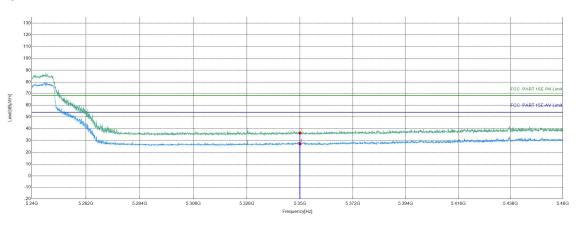

Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	-15.08	72.90	57.82	68.38	10.56	PASS	Horizontal	PK
2	5150	-15.08	63.11	48.03	54.00	5.97	PASS	Horizontal	AV

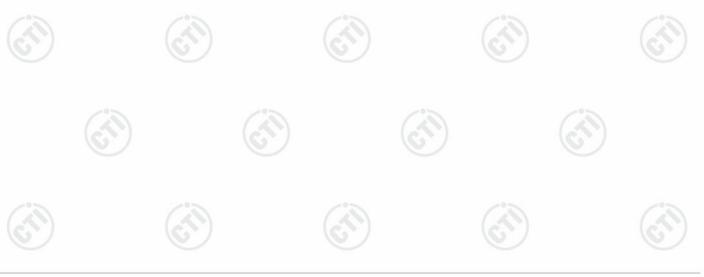
2_/			
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	yusongwei	Test_Date	2023/05/22
Remark	(4)		(3)
	167.77	10.7	10.7

Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	-15.08	55.66	40.58	68.38	27.80	PASS	Vertical	PK	
2	5150	-15.08	43.49	28.41	54.00	25.59	PASS	Vertical	AV	

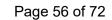



	1707 7	102
	Test_Model	
802.11 ac(VHT20) Transmitting	Test_Frequency	5240MHz
yusongwei	Test_Date	2023/05/22
(4)	(3)	
	Transmitting	802.11 ac(VHT20) Transmitting Test_Frequency

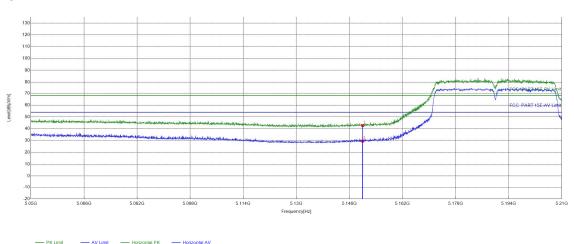

Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5350	-14.67	51.77	37.10	68.20	31.10	PASS	Horizontal	PK	
2	5350	-14.67	44.07	29.40	54.00	24.60	PASS	Horizontal	AV	



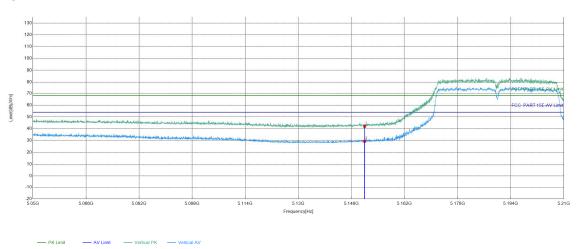
	Test_Model	
802.11 ac(VHT20) Transmitting	Test_Frequency	5240MHz
yusongwei	Test_Date	2023/05/22
(ii)		(1)
	Transmitting	802.11 ac(VHT20) Transmitting Test_Frequency



Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5350	-14.67	51.11	36.44	68.20	31.76	PASS	Vertical	PK	
2	5350	-14.67	41.90	27.23	54.00	26.77	PASS	Vertical	AV	



100 /			
	Test_Model		
802.11 ac(VHT40) Transmitting	Test_Frequency	5190MHz 2023/05/22	
yusongwei	Test_Date		
(ii)		(1)	
	Transmitting	802.11 ac(VHT40) Transmitting Test_Frequency	


Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	12.35	30.36	42.71	68.20	25.49	PASS	Horizontal	PK
2	5150	12.35	17.21	29.56	54.00	24.44	PASS	Horizontal	AV

9 /				
EUT_Name		Test_Model		
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5190MHz	
Tset_Engineer	yusongwei	Test_Date	2023/05/22	
Remark	(3)	(3)	(3)	

Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	12.35	29.70	42.05	68.20	26.15	PASS	Vertical	PK
2	5150	12.35	17.01	29.36	54.00	24.64	PASS	Vertical	AV

