

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiaxitang Community, Fenghuang Street, Guangming District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: GRCTR230502003-01

FCC ID.....: 2BA64-SAQ001

Compiled by

(position+printed name+signature)..: Testing Engineer Jimmy Wang

Supervised by

(position+printed name+signature)..: Project Engineer Kelley Zhang

Approved by

(position+printed name+signature)..: Manager Sam Wang

Date of issue.....: May. 20, 2023

Testing Laboratory Name.....: Shenzhen GUOREN Certification Technology Service Co., Ltd.

Address.....: 101#, Building K & Building T, The Second Industrial Zone, Jiaxitang Community, Fenghuang Street, Guangming District, Shenzhen, China

Applicant's name.....: Xiaowei Acoustic Technology (Shenzhen) Co., Ltd

Address.....: A452, 4th Floor, Building 2, No. 309 Ping'an Avenue (Red Star Macalline Mall), Longgang District, Shenzhen City, Guangdong Province

Test specification.....:

Standard.....: FCC Part 15.247

Shenzhen GUOREN Certification Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen GUOREN Certification Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen GUOREN Certification Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Bluetooth hearing aid

Trade Mark.....: XIAOWEI

Manufacturer.....: Xiaowei Acoustic Technology (Shenzhen) Co., Ltd

Model/Type reference.....: SAQ001

Listed Models: /

Firmware Version.....: Realtone I ITC HD_v101036

Hardware Version.....: V3

Modulation: GFSK, Π/4DQPSK,8DPSK

Frequency.....: From 2402MHz to 2480MHz

Rating.....: 5.0V---1.0A(charged by DC 5V Power Adapter)

Result.....: **PASS**

TEST REPORT

Equipment under Test : Bluetooth hearing aid

Model /Type : SAQ001

Listed Models : /

Applicant : **Xiaowei Acoustic Technology (Shenzhen) Co., Ltd**

Address : A452, 4th Floor, Building 2, No. 309 Ping'an Avenue (Red Star Macalline Mall), Longgang District, Shenzhen City, Guangdong Province

Manufacturer : **Xiaowei Acoustic Technology (Shenzhen) Co., Ltd**

Address : A452, 4th Floor, Building 2, No. 309 Ping'an Avenue (Red Star Macalline Mall), Longgang District, Shenzhen City, Guangdong Province

Test Result:	PASS
---------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	4
2 SUMMARY	5
2.1 General Remarks	5
2.2 Product Description	5
2.3 Equipment Under Test	5
2.4 Short description of the Equipment under Test (EUT)	5
2.5 EUT operation mode	6
2.6 Block Diagram of Test Setup	6
2.7 Related Submittal(s) / Grant (s)	6
2.8 Modifications	6
3 TEST ENVIRONMENT	7
3.1 Address of the test laboratory	7
3.2 Test Facility	7
3.3 Environmental conditions	7
3.4 Summary of measurement results	8
3.5 Statement of the measurement uncertainty	8
3.6 Equipments Used during the Test	9
4 TEST CONDITIONS AND RESULTS	10
4.1 AC Power Conducted Emission	10
4.2 Radiated Emission	13
4.3 Maximum Peak Output Power	19
4.4 20dB Bandwidth	20
4.5 Frequency Separation	27
4.6 Number of hopping frequency	30
4.7 Time of Occupancy (Dwell Time)	33
4.8 Out-of-band Emissions	40
4.9 Pseudorandom Frequency Hopping Sequence	57
4.10 Antenna Requirement	58
5 TEST SETUP PHOTOS OF THE EUT	59
6 PHOTOS OF THE EUT	60

1 TEST STANDARDS

The tests were performed according to following standards:

[FCC Rules Part 15.247](#): Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

[ANSI C63.10-2013](#): American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	May. 09, 2023
Testing commenced on	:	May. 09, 2023
Testing concluded on	:	May. 20, 2023

2.2 Product Description

Product Name:	Bluetooth hearing aid
Model/Type reference:	SAQ001
Listed Models:	/
Power supply:	5.0V---1.0A(charged by DC 5V Power Adapter)
Adapter information (Auxiliary test supplied by test Lab):	Model:JY052000T Input:AC100-240V 50/60Hz, 0.5A Output:DC 5V,2A
Testing sample ID:	GRCTR230502003-1# (Engineer sample), GRCTR230502003-2# (Normal sample)

Bluetooth

Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Internal antenna
Antenna gain*(Supplied by the customer):	Left ear:-4.62 dBi Right ear:-2.04 dBi

Remark: *When the information provided by the customer was used to calculate test results, if the information provided by the customer is not accurate, shenzhen GUOREN Certification Technology Service Co., Ltd. does not assume any responsibility.

2.3 Equipment Under Test

Power supply system utilised

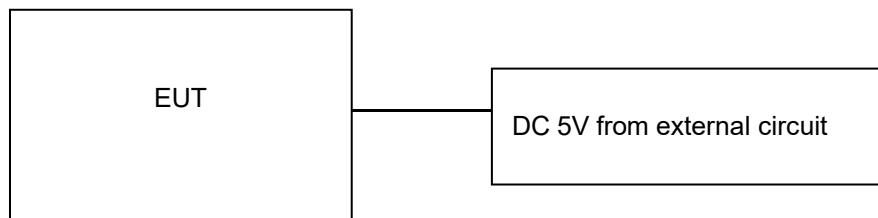
Power supply voltage	:	<input type="radio"/> 230V / 50 Hz	<input type="radio"/> 120V / 60Hz
		<input type="radio"/> 12 V DC	<input type="radio"/> 24 V DC
		<input checked="" type="radio"/> Other (specified in blank below)	

DC 5V from external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Bluetooth hearing aid.

For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software(RtlBluetoothMP) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen GUOREN Certification Technology Service Co., Ltd.

101#, Building K & Building T, The Second Industrial Zone, Jiaxitang Community, Fenghuang Street, Guangming District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 920798 Designation Number: CN1304

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6202.01

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27264 CAB identifier: CN0115

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

CNAS-Lab Code: L15631

Shenzhen GUOREN Certification Technology Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories for the Competence of Testing and Calibration Laboratories.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature	15-35 °C
Relative Humidity	30-60 %
Air Pressure	950-1050mbar

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Recorded In Report		Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Full	GFSK	<input checked="" type="checkbox"/> Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	Compliant
§15.247(d)	Band edge compliance conducted	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	Compliant
§15.205	Band edge compliance radiated	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Highest	Compliant
§15.247(d)	TX spurious emissions conducted	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	Compliant
§15.247(d)	TX spurious emissions radiated	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK	<input checked="" type="checkbox"/> Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	<input checked="" type="checkbox"/> Lowest <input checked="" type="checkbox"/> Middle <input checked="" type="checkbox"/> Highest	GFSK	<input checked="" type="checkbox"/> Middle	Compliant

Remark:

1. The measurement uncertainty is not included in the test result.
2. We tested all test mode and recorded worst case in report.
3. N/A means "not applicable".

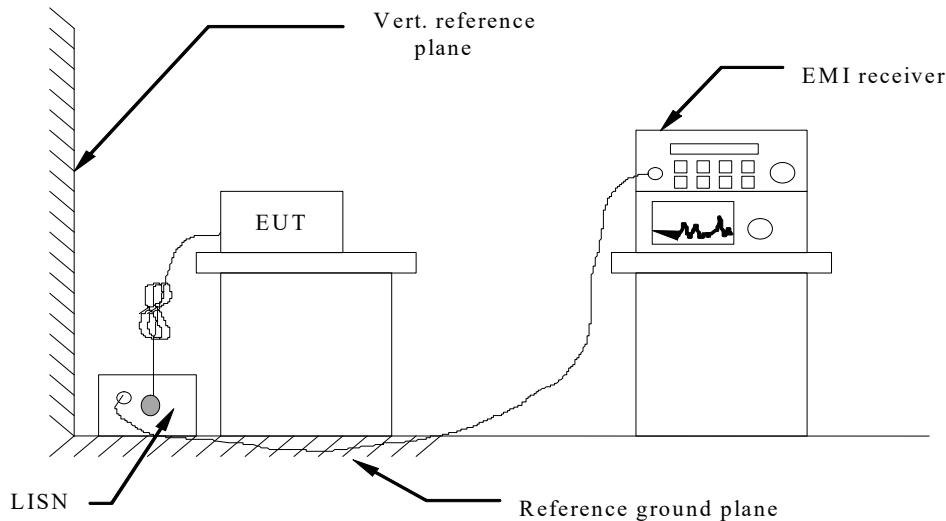
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen GUOREN Certification Technology Service Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GUOREN Certification Technology Service Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	GRCTEE009	2022/10/12	2023/10/11
LISN	R&S	ENV216	GRCTEE010	2022/10/12	2023/10/11
EMI Test Receiver	R&S	ESPI	GRCTEE017	2022/10/12	2023/10/11
EMI Test Receiver	R&S	ESCI	GRCTEE008	2022/10/12	2023/10/11
Spectrum Analyzer	Agilent	N9020A	GRCTEE002	2022/10/12	2023/10/11
Spectrum Analyzer	R&S	FSP	GRCTEE003	2022/10/12	2023/10/11
Vector Signal generator	Agilent	N5181A	GRCTEE007	2022/10/12	2023/10/11
Analog Signal Generator	R&S	SML03	GRCTEE006	2022/10/12	2023/10/11
Climate Chamber	QIYA	LCD-9530	GRCTES016	2022/10/12	2023/10/11
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	GRCTEE018	2020/10/25	2023/10/24
Horn Antenna	Schwarzbeck	BBHA 9120D	GRCTEE019	2020/10/25	2023/10/24
Loop Antenna	Zhinan	ZN30900C	GRCTEE020	2020/10/25	2023/10/24
Horn Antenna	Beijing Hangwei Dayang	OBH100400	GRCTEE049	2021/1/18	2024/1/17
Amplifier	Schwarzbeck	BBV 9745	GRCTEE021	2022/10/12	2023/10/11
Amplifier	Taiwan chengyi	EMC051845B	GRCTEE022	2022/10/12	2023/10/11
Temperature/Humidity Meter	Huaguan	HG-308	GRCTES037	2022/10/12	2023/10/11
Directional coupler	NARDA	4226-10	GRCTEE004	2022/10/12	2023/10/11
High-Pass Filter	XingBo	XBLBQ-GTA18	GRCTEE053	2022/10/12	2023/10/11
High-Pass Filter	XingBo	XBLBQ-GTA27	GRCTEE054	2022/10/12	2023/10/11
Automated filter bank	Tonscend	JS0806-F	GRCTEE055	2022/10/12	2023/10/11
Power Sensor	Agilent	U2021XA	GRCTEE070	2022/10/12	2023/10/11
EMI Test Software	ROHDE & SCHWARZ	ESK1-V1.71	GRCTEE060	N/A	N/A
EMI Test Software	Fera	EZ-EMC	GRCTEE061	N/A	N/A

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

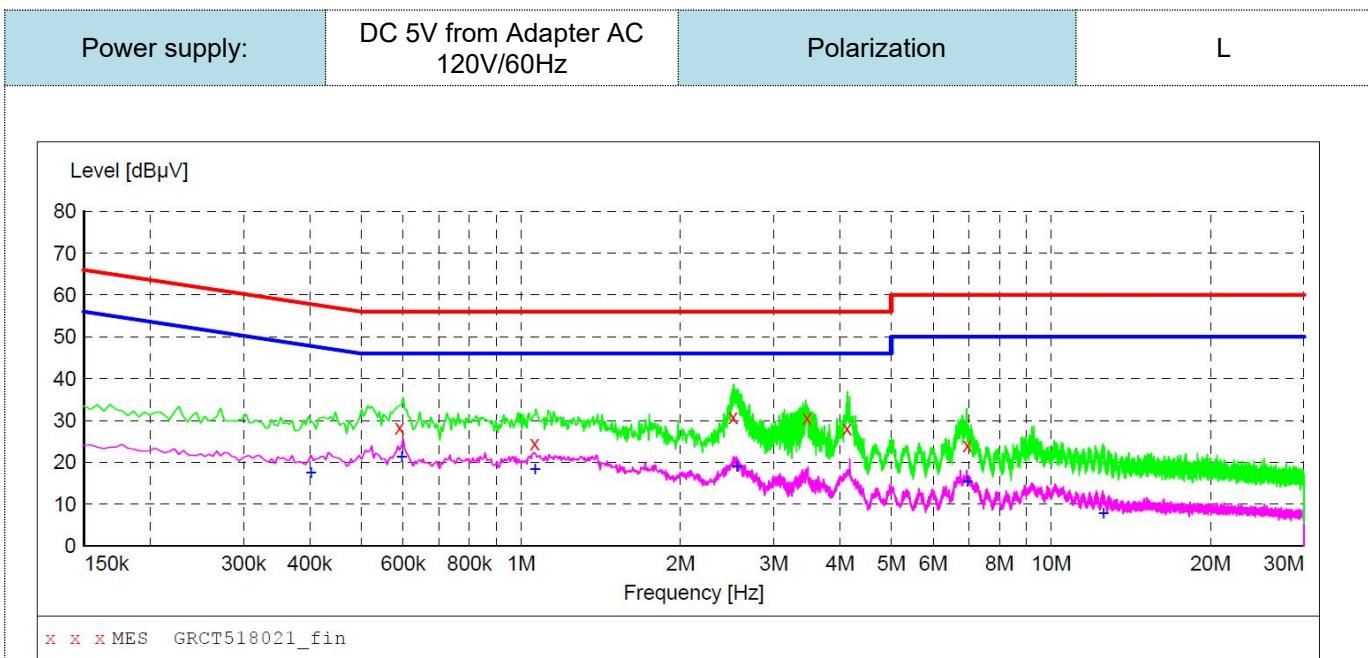
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from variable frequency power supply, the AC 120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50


* Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

1. All modes of GFSK, $\pi/4$ DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

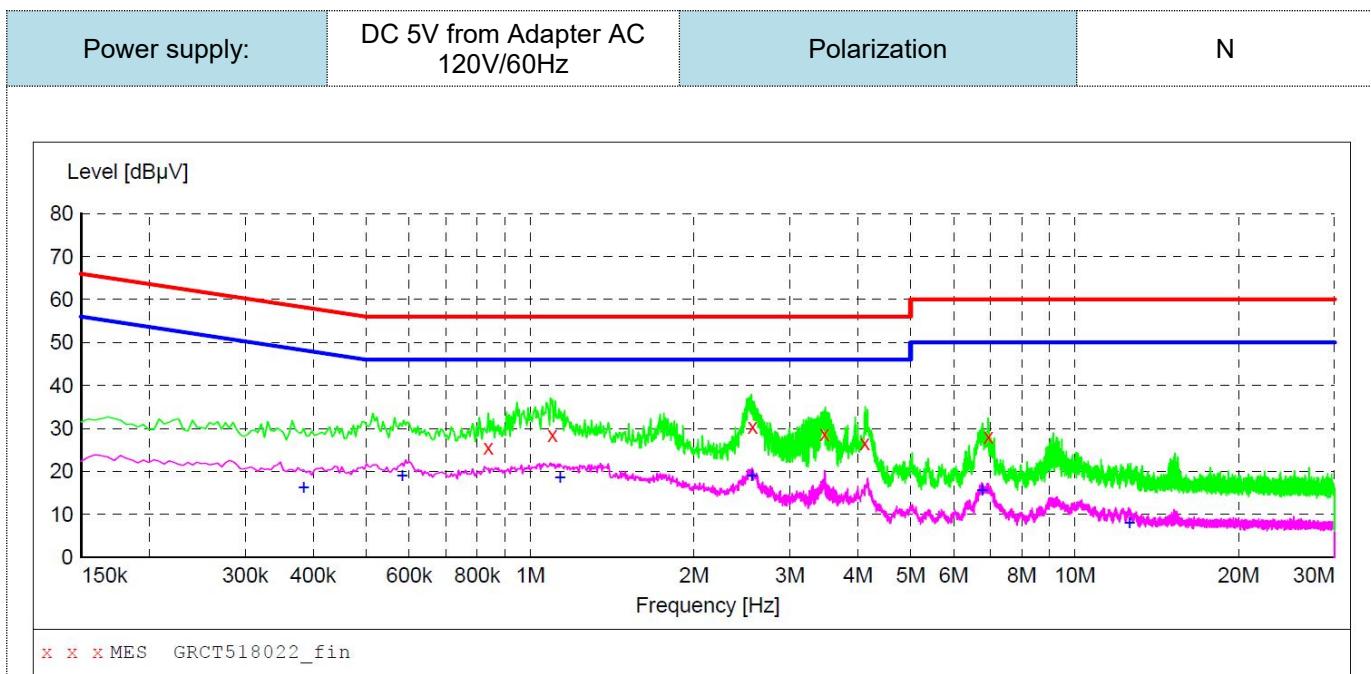
2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

MEASUREMENT RESULT: "GRCT518021_fin"

5/18/2023 10:34AM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.591000	28.30	9.8	56	27.7	QP	L1	GND
1.063500	24.60	9.6	56	31.4	QP	L1	GND
2.517000	30.90	9.7	56	25.1	QP	L1	GND
3.471000	30.70	9.6	56	25.3	QP	L1	GND
4.128000	28.10	9.5	56	27.9	QP	L1	GND
6.954000	24.10	9.8	60	35.9	QP	L1	GND

MEASUREMENT RESULT: "GRCT518021_fin2"


5/18/2023 10:34AM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.402000	17.60	9.8	48	30.2	AV	L1	GND
0.595500	21.40	9.8	46	24.6	AV	L1	GND
1.063500	18.40	9.6	46	27.6	AV	L1	GND
2.557500	19.10	9.7	46	26.9	AV	L1	GND
6.958500	15.50	9.8	50	34.5	AV	L1	GND
12.552000	7.90	9.7	50	42.1	AV	L1	GND

Note: 1). Level (dB μ V) = Reading (dB μ V) + Transducer (dB)

2). Transducer (dB) = insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

MEASUREMENT RESULT: "GRCT518022_fin"

5/18/2023 10:37AM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.838500	25.70	9.7	56	30.3	QP	N	GND
1.099500	28.60	9.6	56	27.4	QP	N	GND
2.562000	30.40	9.7	56	25.6	QP	N	GND
3.475500	28.80	9.6	56	27.2	QP	N	GND
4.119000	26.70	9.5	56	29.3	QP	N	GND
6.949500	28.10	9.8	60	31.9	QP	N	GND

MEASUREMENT RESULT: "GRCT518022_fin2"

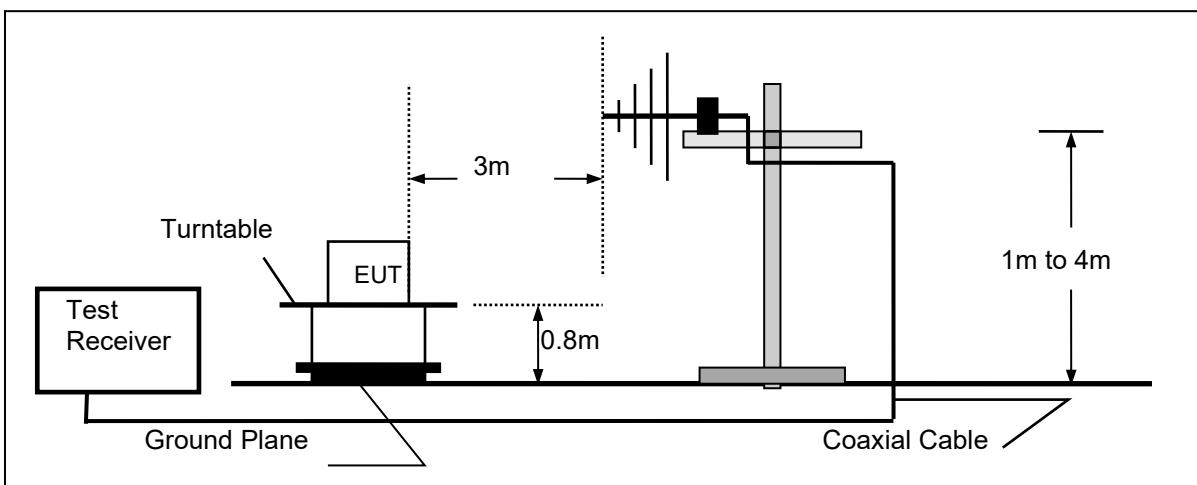
5/18/2023 10:37AM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.384000	16.40	9.8	48	31.8	AV	N	GND
0.582000	19.10	9.8	46	26.9	AV	N	GND
1.135500	18.60	9.6	46	27.4	AV	N	GND
2.553000	19.00	9.7	46	27.0	AV	N	GND
6.765000	15.60	9.7	50	34.4	AV	N	GND
12.606000	8.00	9.7	50	42.0	AV	N	GND

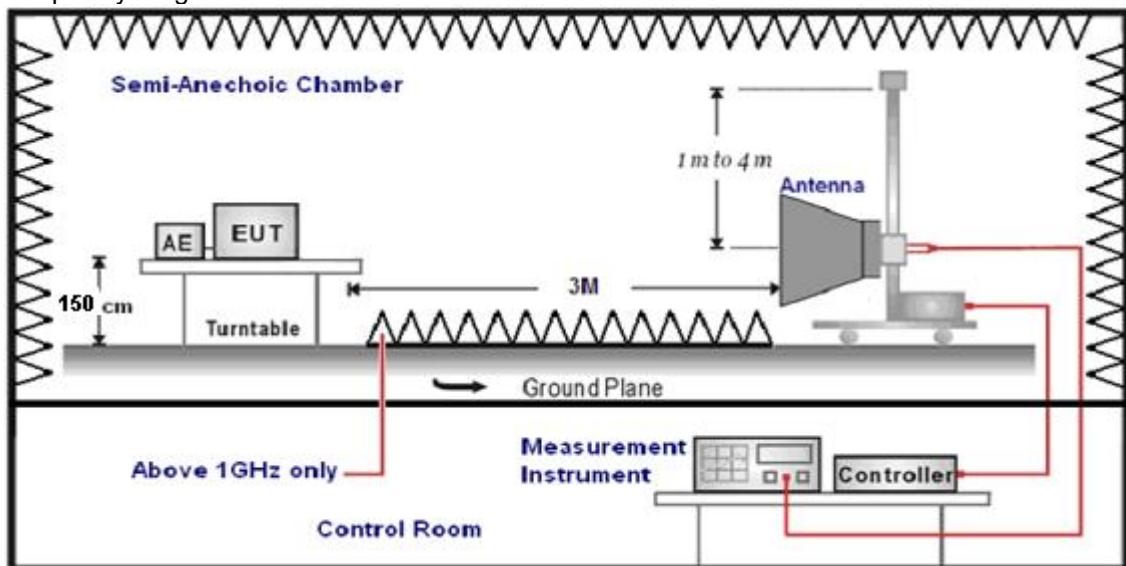
Note: 1).Level (dB μ V)= Reading (dB μ V)+ Transducer (dB)

2). Transducer (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz – 1GHz, the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.
5. Radiated emission test frequency band from 9KHz to 25GHz.
6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Antenna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

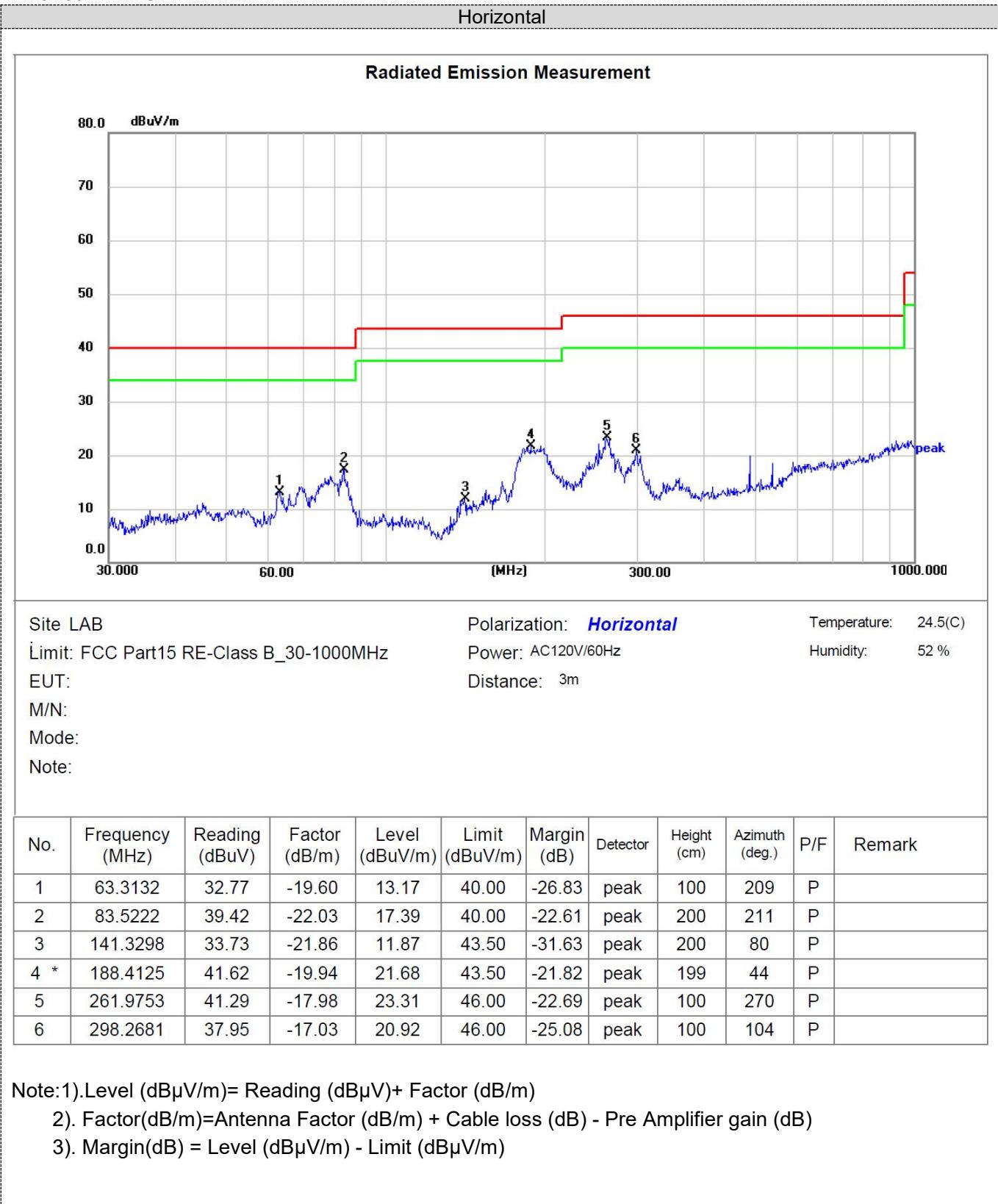
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

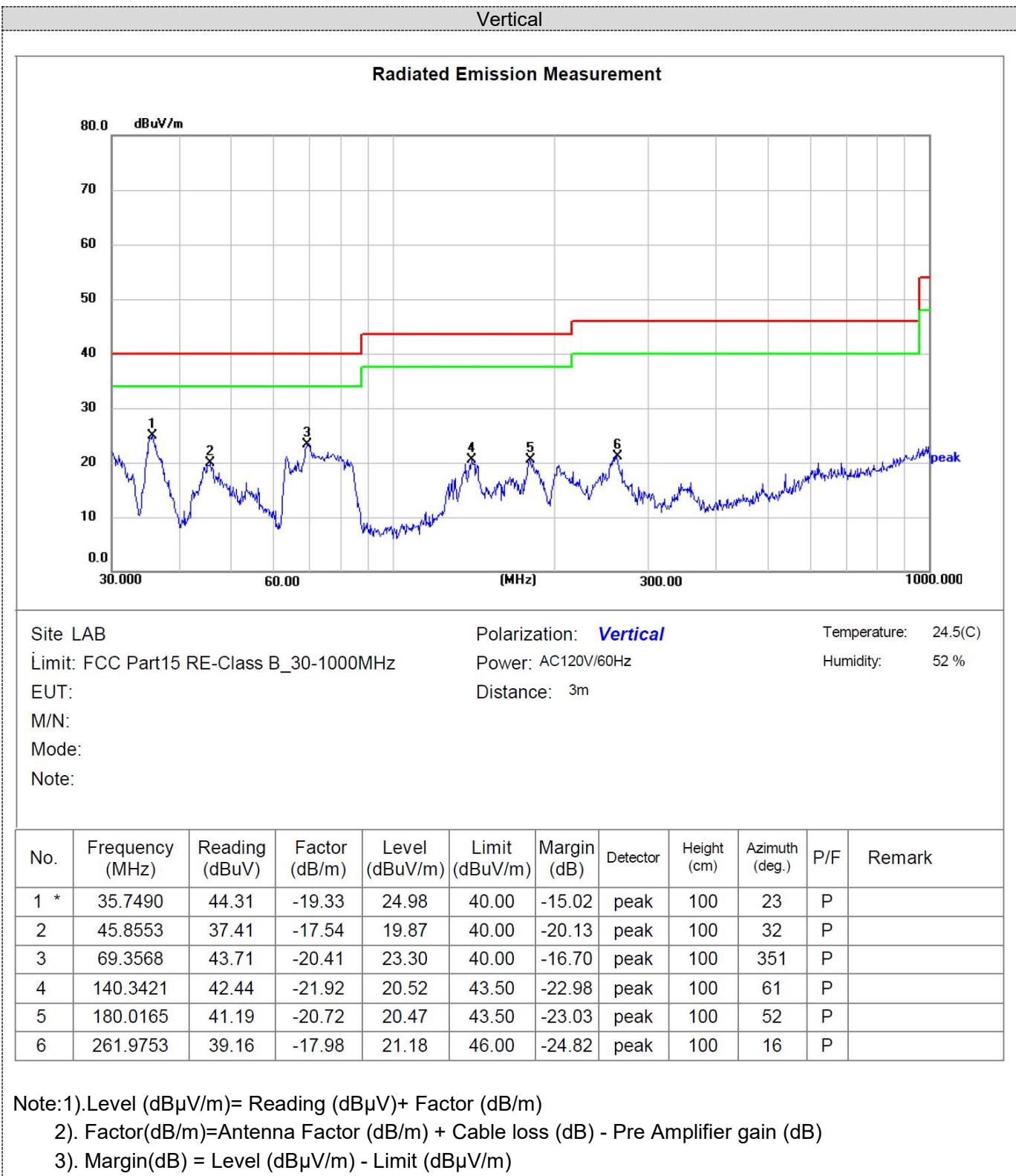
$$Transd=AF + CL - AG$$

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dB μ V/m)	Radiated (μ V/m)
0.009-0.49	3	$20\log(2400/F(\text{KHz}))+40\log(300/3)$	$2400/F(\text{KHz})$
0.49-1.705	3	$20\log(24000/F(\text{KHz}))+40\log(30/3)$	$24000/F(\text{KHz})$
1.705-30	3	$20\log(30)+40\log(30/3)$	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS

Remark:

1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
2. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode of left ear and right ear from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode of right ear.
3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

For 1GHz to 25GHz

Note: GFSK, $\pi/4$ DQPSK and 8DPSK of left ear and right ear all have been tested, only worse case GFSK of right ear is reported.

GFSK (above 1GHz)

Frequency(MHz):		2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4804.00	53.29	PK	74	20.71	74.45	28.42	5.14	54.72
4804.00	41.92	AV	54	12.08	63.08	28.42	5.14	54.72
7206.00	47.03	PK	74	26.97	61.45	34.15	6.46	55.03
7206.00	36.12	AV	54	17.88	50.54	34.15	6.46	55.03

Frequency(MHz):		2402		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
4804.00	53.55	PK	74	20.45	74.71	28.42	5.14	54.72	-21.16
4804.00	41.24	AV	54	12.76	62.40	28.42	5.14	54.72	-21.16
7206.00	47.76	PK	74	26.24	62.18	34.15	6.46	55.03	-14.42
7206.00	37.19	AV	54	16.81	51.61	34.15	6.46	55.03	-14.42

Frequency(MHz):		2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4882.00	53.92	PK	74	20.08	74.16	28.76	5.34	54.34
4882.00	42.95	AV	54	11.05	63.19	28.76	5.34	54.34
7323.00	49.54	PK	74	24.46	63.17	34.41	6.83	54.87
7323.00	38.04	AV	54	15.96	51.67	34.41	6.83	54.87

Frequency(MHz):		2441		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4882.00	43.11	PK	74	19.37	74.87	28.76	5.34	54.34
4882.00	49.71	AV	54	10.89	63.35	28.76	5.34	54.34
7323.00	38.13	PK	74	24.29	63.34	34.41	6.83	54.87
7323.00	43.11	AV	54	15.87	51.76	34.41	6.83	54.87

Frequency(MHz):		2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4960.00	54.49	PK	74	19.51	74.02	29.52	5.63	54.68
4960.00	43.15	AV	54	10.85	62.68	29.52	5.63	54.68
7440.00	49.81	PK	74	24.19	63.01	34.49	7.23	54.92
7440.00	37.41	PK	54	16.59	50.61	34.49	7.23	54.92

Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
4960.00	56.66	PK	74	17.34	76.19	29.52	5.63	54.68
4960.00	44.92	AV	54	9.08	64.45	29.52	5.63	54.68
7440.00	49.77	PK	74	24.23	62.97	34.49	7.23	54.92
7440.00	37.66	PK	54	16.34	50.86	34.49	7.23	54.92

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
3. Margin value = Limit value- Emission level.
4. -- Mean the PK detector measured value is below average limit.
5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK , $\pi/4$ DQPSK and 8DPSK of left ear and right ear all have been tested, only worse case GFSK of right ear is reported.

GFSK

Frequency(MHz):		2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2390.00	55.98	PK	74	18.02	80.70	25.72	4.32	54.76
2390.00	41.12	AV	54	12.88	65.84	25.72	4.32	54.76
Frequency(MHz):		2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2390.00	56.71	PK	74	17.29	81.43	25.72	4.32	54.76
2390.00	42.01	AV	54	11.99	66.73	25.72	4.32	54.76
Frequency(MHz):		2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2483.50	56.63	PK	74	17.37	81.20	25.78	4.48	54.83
2483.50	41.20	AV	54	12.80	65.77	25.78	4.48	54.83
Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
2483.50	55.90	PK	74	18.10	80.47	25.78	4.48	54.83
2483.50	40.06	AV	54	13.94	64.63	25.78	4.48	54.83

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
3. Margin value = Limit value- Emission level.
4. -- Mean the PK detector measured value is below average limit.
5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Left ear

Type	Channel	Output power (dBm)	Limit (dBm)	Result
GFSK	00	-3.54	20.97	Pass
	39	-4.16		
	78	-4.97		
$\pi/4$ DQPSK	00	-2.89	20.97	Pass
	39	-2.37		
	78	-3.26		
8DPSK	00	-2.51	20.97	Pass
	39	-2.81		
	78	-2.69		

Right ear

Type	Channel	Output power (dBm)	Limit (dBm)	Result
GFSK	00	-0.36	20.97	Pass
	39	-0.09		
	78	-0.42		
$\pi/4$ DQPSK	00	-0.34	20.97	Pass
	39	-0.67		
	78	-0.06		
8DPSK	00	-0.35	20.97	Pass
	39	-0.74		
	78	-0.03		

Note: 1.The test results including the cable lose.

4.4 20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Left ear

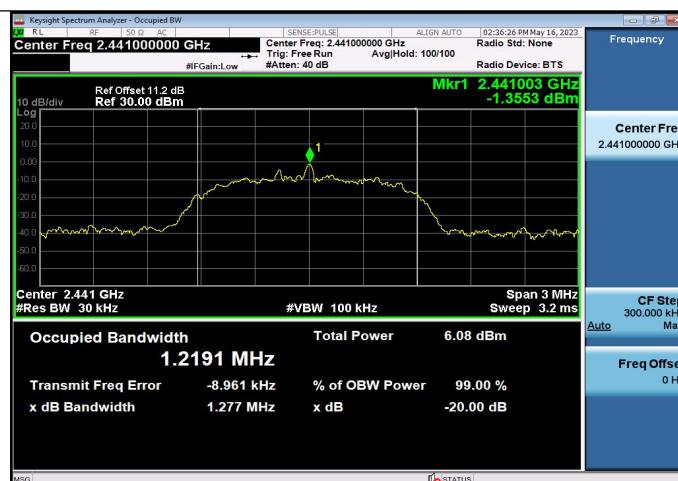
Modulation	Channel	20dB bandwidth (MHz)	Result
GFSK	00	0.9136	Pass
	39	0.9288	
	78	0.9209	
$\pi/4$ DQPSK	00	1.238	Pass
	39	1.266	
	78	1.265	
8DPSK	00	1.305	Pass
	39	1.277	
	78	1.267	

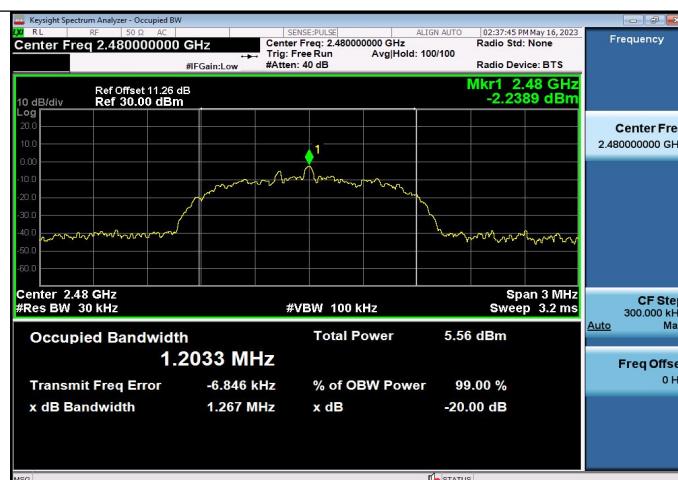
Right ear

Modulation	Channel	20dB bandwidth (MHz)	Result
GFSK	00	0.9256	Pass
	39	0.9107	
	78	0.8512	
$\pi/4$ DQPSK	00	1.330	Pass
	39	1.253	
	78	1.243	
8DPSK	00	1.280	Pass
	39	1.266	
	78	1.273	

Test plot as follows:

Left ear




8DPSK Modulation

CH00

CH39

CH78

Right ear

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

Left ear

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH39	1.020	25KHz or 2/3*20dB bandwidth	Pass
	CH40			
$\pi/4$ DQPSK	CH39	0.988	25KHz or 2/3*20dB bandwidth	Pass
	CH40			
8DPSK	CH39	0.862	25KHz or 2/3*20dB bandwidth	Pass
	CH40			

Right ear

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH39	0.994	25KHz or 2/3*20dB bandwidth	Pass
	CH40			
$\pi/4$ DQPSK	CH39	1.320	25KHz or 2/3*20dB bandwidth	Pass
	CH40			
8DPSK	CH39	0.992	25KHz or 2/3*20dB bandwidth	Pass
	CH40			

Note:

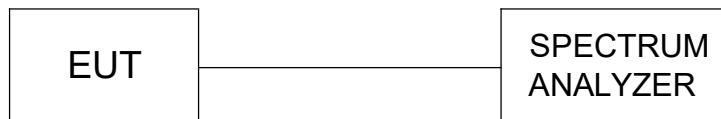
We have tested all mode at high, middle and low channel, and recorded worst case at middle.

Test plot as follows:

Left ear

Right ear

4.6 Number of hopping frequency


Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

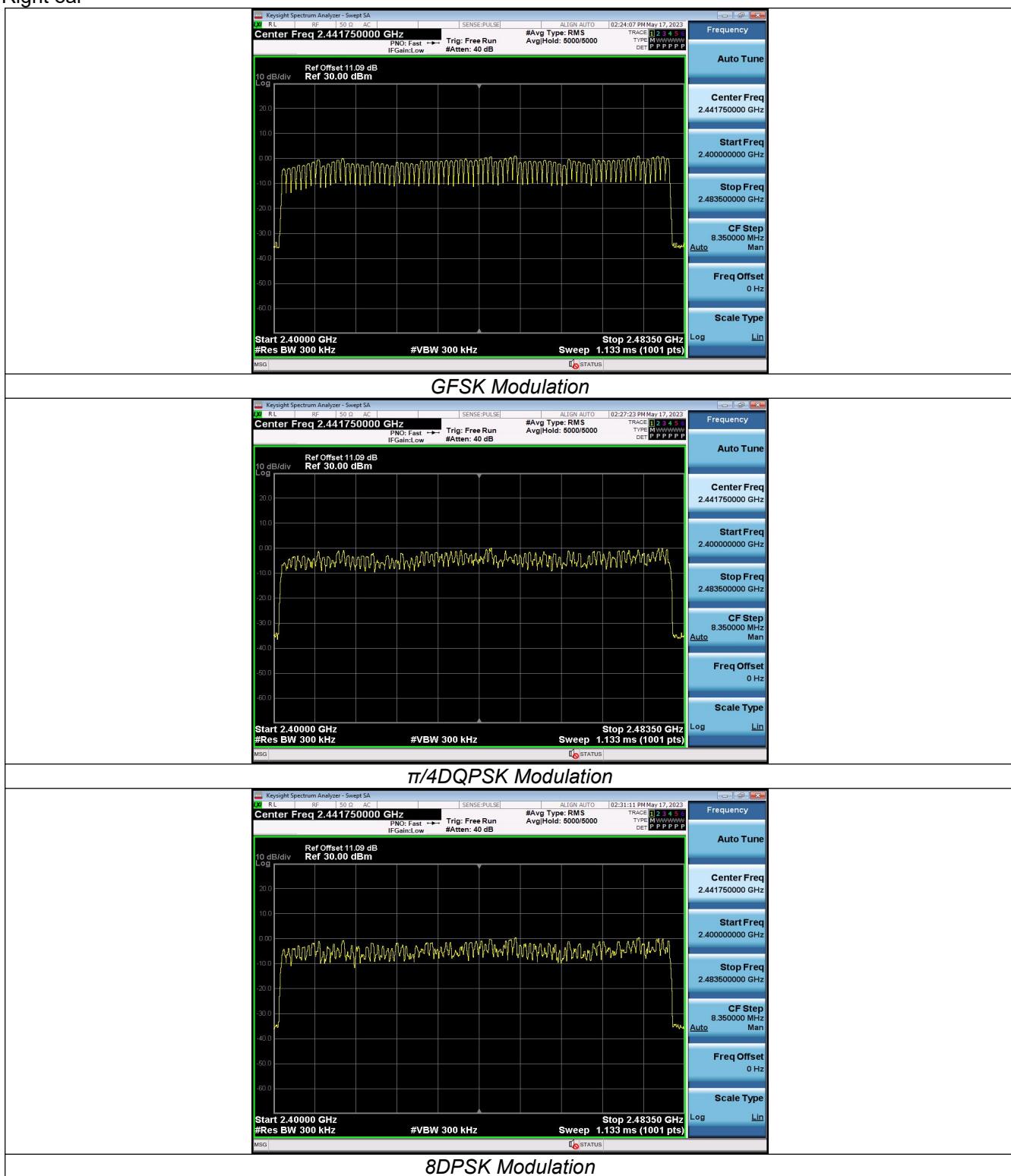
Test Configuration

Test Results

Left ear

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4DQPSK	79		
8DPSK	79		

Right ear


Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4DQPSK	79		
8DPSK	79		

Test plot as follows:

Left ear

Right ear

4.7 Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

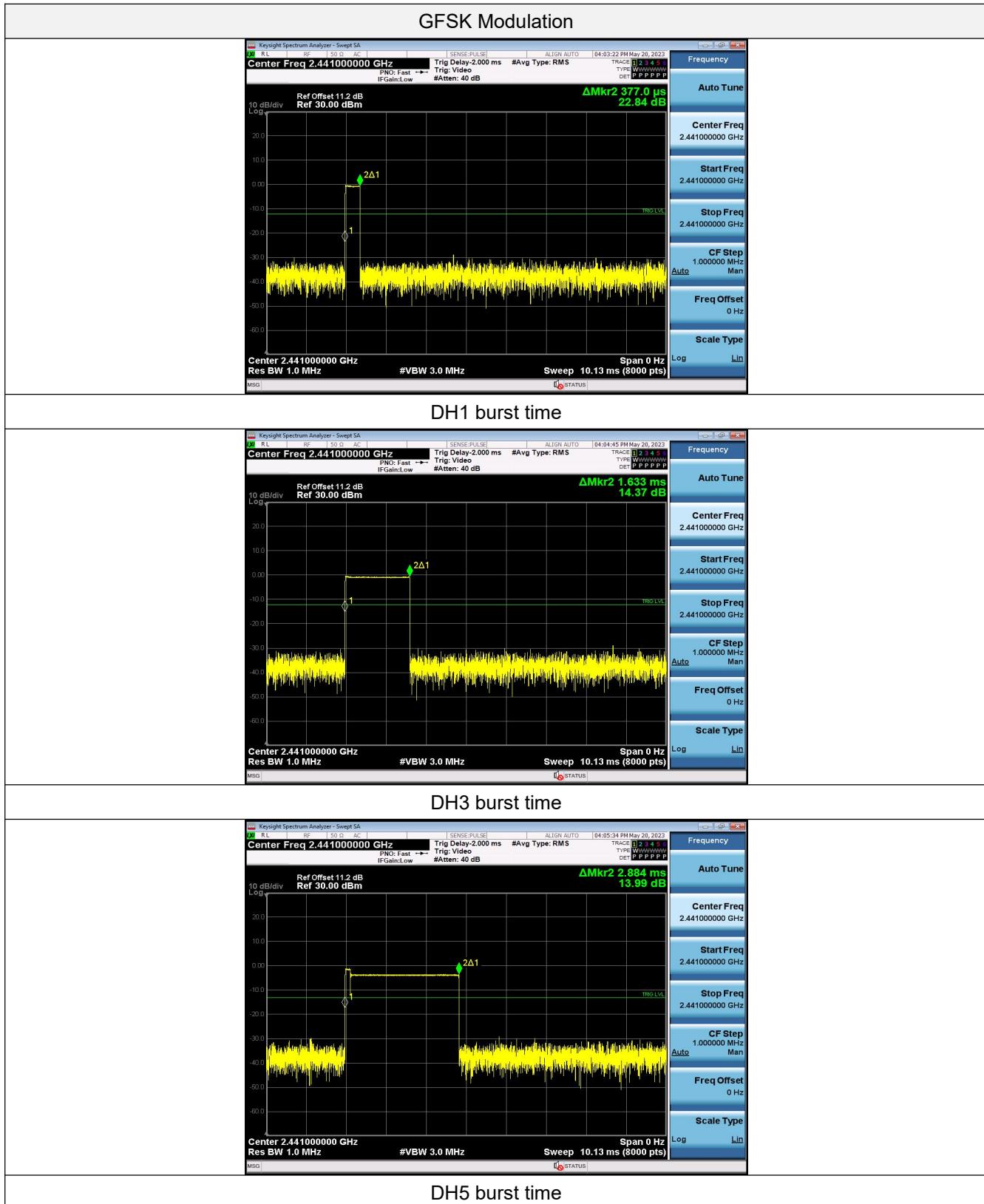
Left ear

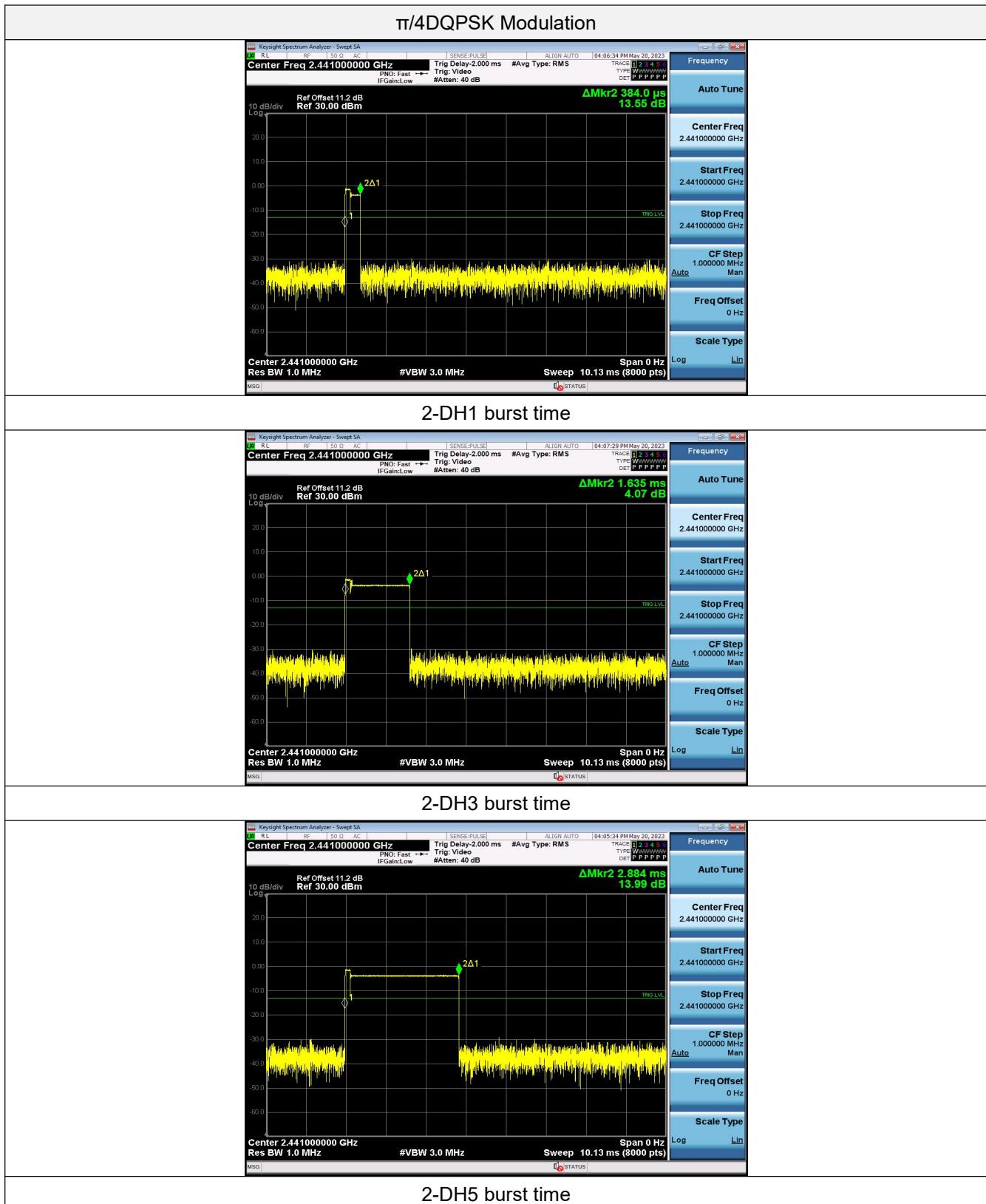
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
GFSK	DH1	0.377	0.121	0.40	Pass
	DH3	1.633	0.261		
	DH5	2.880	0.307		
$\pi/4$ DQPSK	2-DH1	0.384	0.123	0.40	Pass
	2-DH3	1.635	0.262		
	2-DH5	2.884	0.308		
8DPSK	3-DH1	0.385	0.123	0.40	Pass
	3-DH3	1.635	0.262		
	3-DH5	2.885	0.308		

Right ear

Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
GFSK	DH1	0.376	0.120	0.40	Pass
	DH3	1.631	0.261		
	DH5	2.880	0.307		
$\pi/4$ DQPSK	2-DH1	0.384	0.123	0.40	Pass
	2-DH3	1.637	0.262		
	2-DH5	2.884	0.308		
8DPSK	3-DH1	0.385	0.123	0.40	Pass
	3-DH3	1.634	0.261		
	3-DH5	2.885	0.308		

Note:We have tested all mode at high,middle and low channel, and recorded worst case at middle channel.


Dwell time=Pulse time (ms) \times $(1600 \div 2 \div 79) \times 31.6$ Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times $(1600 \div 4 \div 79) \times 31.6$ Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times $(1600 \div 6 \div 79) \times 31.6$ Second for DH5, 2-DH5, 3-DH5

Test plot as follows:

Left ear

