

Shenzhen CTL Testing Technology Co., Ltd.
Tel: +86-755-89486194 E-mail: ctl@ctl-lab.com

TEST REPORT

FCC PART 15.225

Report Reference No.: **CTL2104191011-WF03**

Compiled by: (position+printed name+signature)	Happy Guo (File administrators)	
Tested by: (position+printed name+signature)	Gary Gao (Test Engineer)	
Approved by: (position+printed name+signature)	Ivan Xie (Manager)	

Product Name: Thermal Printer

Model/Type reference: E10

List Model(s): E11, E12, E13, E15

Trade Mark: N/A

FCC ID: **2AZW2-E10**

Applicant's name: **Beijing Supvan Information Technology Co., Ltd.**

Address of applicant: Room 206, 2F, Building No. 1 No. 1 Gaoxin Three Street, Huilongguan Town, Changping District, Beijing, China.

Test Firm: **Shenzhen CTL Testing Technology Co., Ltd.**

Address of Test Firm: Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

Test specification:

Standard: **FCC Part 15.225**: Operation within the band 13.110–14.010 MHz.

TRF Originator: Shenzhen CTL Testing Technology Co., Ltd.

Master TRF: Dated 2011-01

Date of receipt of test item: Apr. 20, 2021

Date of sampling: Apr. 20, 2021

Date of Test Date: Apr. 20, 2021-May. 20, 2021

Date of Issue: May. 20, 2021

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL2104191011-WF03	May. 20, 2021
Date of issue		

Equipment under Test : Thermal Printer

Sample No : CTL210419101-1-S001

Model /Type : E10

Listed Models : E11, E12, E13, E15

Applicant : **Beijing Supvan Information Technology Co., Ltd.**

Address : Room 206, 2F, Building No. 1 No. 1 Gaoxin Three Street, Huilongguan Town, Changping District, Beijing, China.

Manufacturer : **Supvan Electronic Technology Co., Ltd.**

Address : No. 302, Jinhua Road, Renqiu, Cangzhou District, Hebei Province, China.

Test result	Pass *
--------------------	---------------

* In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

	Table of Contents	Page
1. SUMMARY.....		5
1.1. TEST STANDARDS.....		5
1.2. TEST DESCRIPTION.....		5
1.3. TEST FACILITY.....		6
1.4. STATEMENT OF THE MEASUREMENT UNCERTAINTY.....		6
2. GENERAL INFORMATION.....		8
2.1. ENVIRONMENTAL CONDITIONS.....		8
2.2. GENERAL DESCRIPTION OF EUT.....		8
2.3. EQUIPMENTS USED DURING THE TEST.....		10
2.4. RELATED SUBMITTAL(S) / GRANT (S).....		10
2.5. MODIFICATIONS.....		10
3. TEST CONDITIONS AND RESULTS.....		11
3.1. CONDUCTED EMISSIONS TEST.....		11
3.2. RADIATED EMISSIONS AND BAND EDGE.....		14
3.3. 20DB BANDWIDTH.....		18
3.4. FREQUENCY STABILITY TEST DATA.....		19
3.5. ANTENNA REQUIREMENT.....		21
4. TEST SETUP PHOTOS OF THE EUT.....		22
5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT.....		24

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

[**FCC Rules Part 15.225**](#): Operation within the band 13.110–14.010 MHz

[**ANSI C63.10:2013**](#) : American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

FCC PART 15 .225		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 2.1049	20dB Bandwidth	PASS
FCC Part 15.225(a) (b) (c)	In-band Emissions	PASS
FCC Part 15.225(d)/15.207	Out-of-band Emissions	PASS
FCC Part 15.225(e)	Frequency Stability Tolerance	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance 0.15~30MHz	±3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Thermal Printer
Model/Type reference:	E10, E11, E12, E13, E15
Power supply:	DC 5V from USB
Hardware Version:	F
Software Version:	IOS: 2.6 Andriod : 1.6.10

Bluetooth:

Version:	Supported BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PCB Antenna
Antenna gain:	0dBi

Bluetooth LE

Supported type:	Bluetooth Low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB Antenna
Antenna gain:	0dBi

RFID

Operation frequency:	13.56MHz
Modulation :	ASK
No. of Channel :	1
Antenna type:	Loop Antenna

Note1: For more details, please refer to the user's manual of the EUT.

Note2: Antenna gain provided by the applicant.

Note3: This report is for RFID only.

2.3. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ESH2-Z5	860014/010	2020/05/21	2021/05/20
Double cone logarithmic antenna	Schwarzbeck	VULB 9168	824	2020/05/23	2021/05/22
Horn Antenna	Ocean Microwave	OBH100400	26999002	2019/11/28	2022/11/27
EMI Test Receiver	R&S	ESCI	1166.5950.03	2020/05/21	2021/05/20
Spectrum Analyzer	Agilent	E4407B	MY41440676	2021/05/20	2022/05/19
Spectrum Analyzer	Agilent	N9020A	US46220290	2021/05/20	2022/05/19
Spectrum Analyzer	Keysight	N9020A	MY53420874	2021/05/20	2022/05/19
Controller	EM Electronics	EM 1000	060859	2021/05/21	2022/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2020/05/23	2021/05/22
Active Loop Antenna	Da Ze	ZN30900A	/	2020/05/23	2021/05/22
Amplifier	Agilent	8449B	3008A02306	2020/05/21	2021/05/20
Amplifier	Agilent	8447D	2944A10176	2020/05/21	2021/05/20
Amplifier	Brief&Smart	LNA-4018	2104197	2021/05/20	2022/05/19
Temperature/Humidity Meter	Gangxing	CTH-608	02	2020/05/22	2021/05/21
Power Sensor	Agilent	U2021XA	MY55130004	2021/05/20	2022/05/19
Power Sensor	Agilent	U2021XA	MY55130006	2021/05/20	2022/05/19
Power Sensor	Agilent	U2021XA	MY54510008	2021/05/20	2022/05/19
Power Sensor	Agilent	U2021XA	MY55060003	2021/05/20	2022/05/19
Spectrum Analyzer	RS	FSP	1164.4391.38	2021/05/20	2022/05/19
Test Software					
Name of Software			Version		
TST-PASS			1.0.5		
ES-K1(Below 1GHz)			V1.71		
e3(Above 1GHz)			6.111221a		

The calibration interval was one year

2.4. Related Submittal(s) / Grant (s)

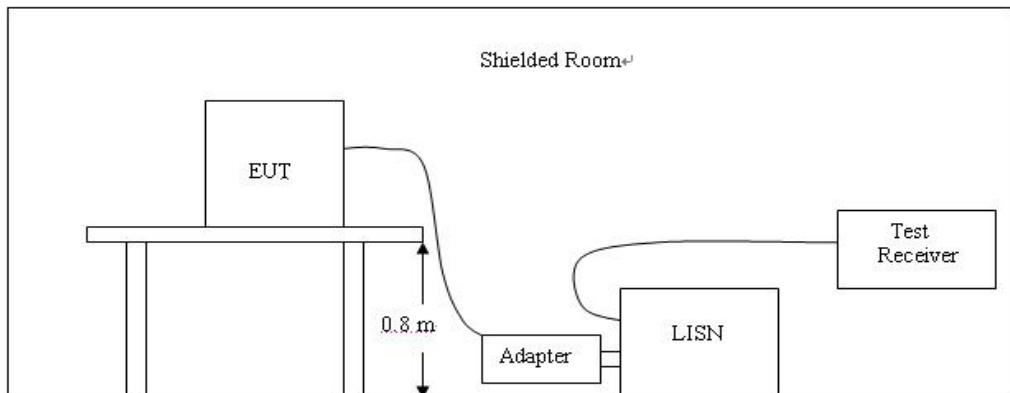
This submittal(s) (test report) is intended for FCC ID: 2AZW2-E10 filing to comply with Section 15.225 of the FCC Part 15, Subpart C Rules.

2.5. Modifications

No modifications were implemented to meet testing criteria.

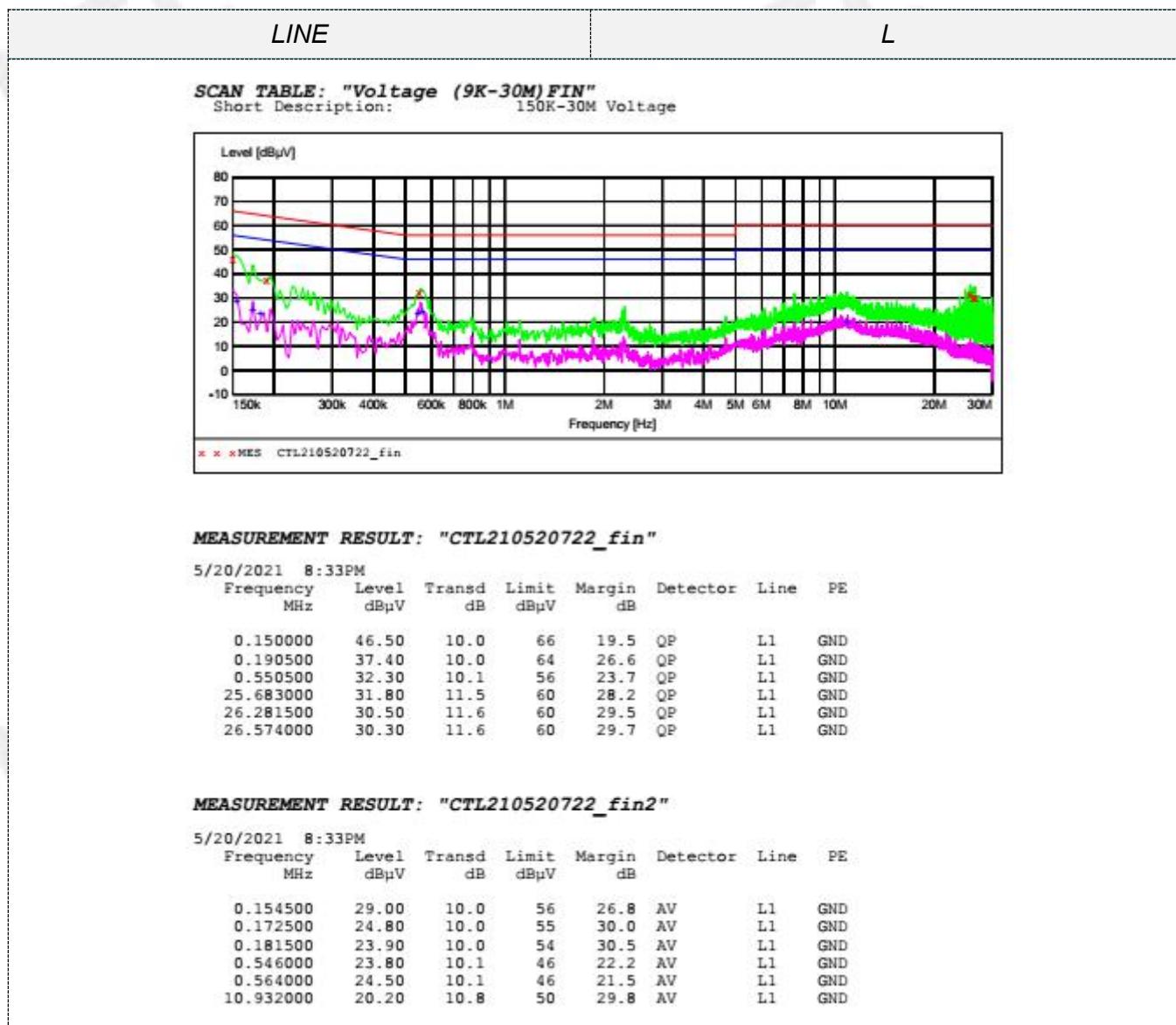
3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test


LIMIT

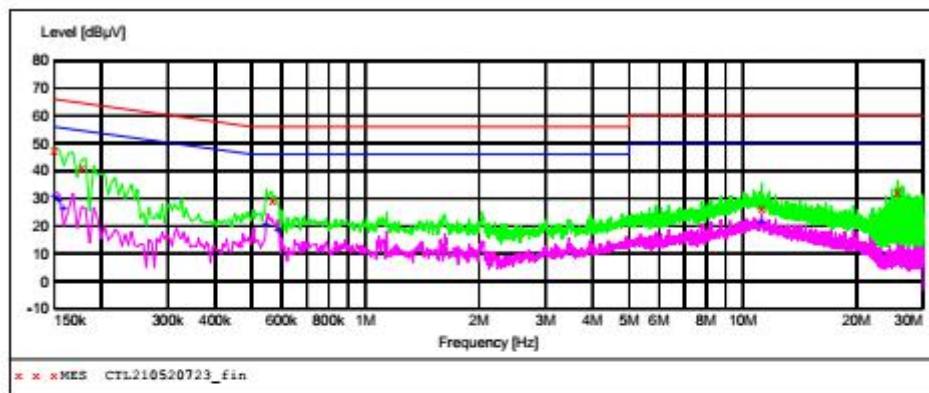
FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50


* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE


1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5. All support equipments received AC power from a second LISN, if any.
6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

LINE

N

SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL210520723_fin"

5/20/2021 8:35PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.150000	47.40	10.0	66	18.6	QP	N	GND
0.177000	40.90	10.0	65	23.7	QP	N	GND
0.568500	29.80	10.1	56	26.2	QP	N	GND
11.229000	26.80	10.8	60	33.2	QP	N	GND
25.683000	32.50	11.5	60	27.5	QP	N	GND

MEASUREMENT RESULT: "CTL210520723_fin2"

5/20/2021 8:35PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.150000	30.80	10.0	56	25.2	AV	N	GND
0.154500	29.20	10.0	56	26.6	AV	N	GND
0.159000	26.80	10.0	56	28.7	AV	N	GND
0.546000	21.10	10.1	46	24.9	AV	N	GND
0.586500	18.50	10.1	46	27.5	AV	N	GND
11.170500	21.20	10.8	50	28.8	AV	N	GND

3.2. Radiated Emissions and Band Edge

Limit

- a The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- b Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d The field strength of any emissions appearing outside of the 13.110– 14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

Frequency (MHz)	Distance (Meters)	Radiated (dBuV/m)	Radiated (μ V/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-13.110	3	69.54	30
13.110-13.410	3	80.50	106
13.410-13.553	3	90.47	334
13.553-13.567	3	124.00	15848
13.567-13.710	3	90.47	334
13.710-14.010	3	80.50	106
14.010-30.0	3	69.54	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Test Procedure

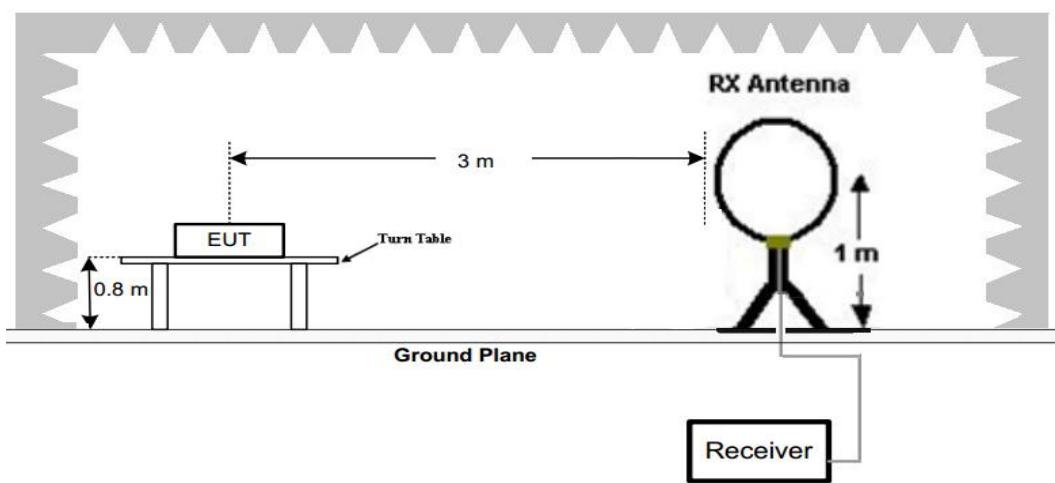
1. The EUT was placed on 80cm wooden desk above ground plane which on a turn table.
2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.

Field Strength Calculation

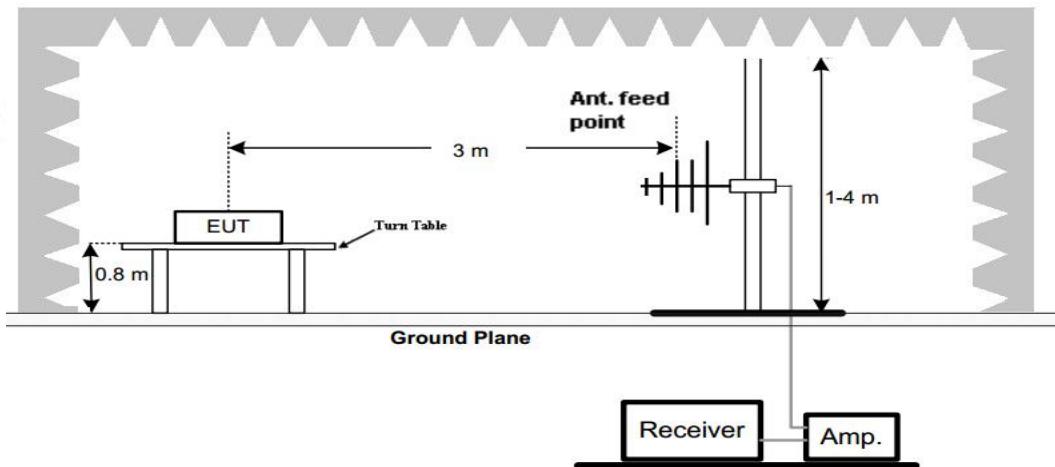
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	


For example

Frequency (MHz)	FS (dBuV/m)	RA (dBuV/m)	AF (dB)	CL (dB)	AG (dB)	Transd (dB)
150.00	40	58.1	12.2	1.6	31.90	-18.1


$$\text{Transd} = AF + CL - AG$$

Test Configuration

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Test Results**3.2.1 In-band Emissions**

Frequency(MHz):			13.56			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	44.08	PK	80.50	36.42	39.38	5.26	-0.56	4.70
2	13.55	46.15	PK	90.47	44.32	41.36	5.36	-0.57	4.79
3	13.56	87.32	PK	124.00	36.68	82.44	5.45	-0.57	4.88
4	13.57	47.56	PK	90.47	42.91	42.42	5.49	-0.35	5.14
5	13.75	41.05	PK	80.50	39.45	35.72	5.63	-0.30	5.33

Frequency(MHz):			13.56			Polarity:		VERTICAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	43.32	PK	80.50	37.18	38.62	5.26	-0.56	4.70
2	13.55	47.66	PK	90.47	42.81	42.87	5.36	-0.57	4.79
3	13.56	87.43	PK	124.00	36.57	82.55	5.45	-0.57	4.88
4	13.57	46.78	PK	90.47	43.69	41.64	5.49	-0.35	5.14
5	13.75	41.93	PK	80.50	38.57	36.60	5.63	-0.30	5.33

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
3. Margin value = Limit value- Emission level.
4. The other emission levels were very low against the limit.

3.2.2 Out-of-band Emissions

Frequency(MHz):			13.56			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	35.76	PK	69.54	33.78	28.26	7.25	0.25	7.50
2	40.68	37.45	PK	40.00	2.55	28.64	8.25	0.56	8.81
3	54.24	31.51	PK	40.00	8.49	22.47	8.30	0.74	9.04
4	67.80	32.98	PK	40.00	7.02	23.45	8.55	0.98	9.53

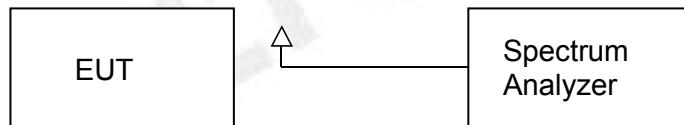
Frequency(MHz):			13.56			Polarity:		VERTICAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	36.57	PK	69.54	32.97	29.07	7.25	0.25	7.50
2	40.68	37.63	PK	40.00	2.37	28.82	8.25	0.56	8.81
3	54.24	32.28	PK	40.00	7.72	23.24	8.30	0.74	9.04
4	67.80	31.56	PK	40.00	8.44	22.03	8.55	0.98	9.53

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
3. Margin value = Limit value - Emission level.
4. The other emission levels were very low against the limit.

3.3. 20dB Bandwidth

Limit


No limit for 20dB bandwidth.

Test Procedure

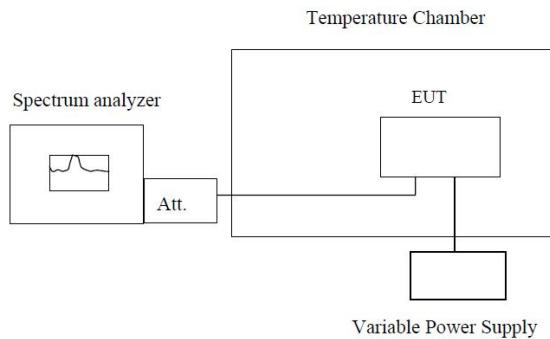
The 20dB bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Modulation	Frequency(MHz)	20dB bandwidth (KHz)	Result
ASK	13.56	2.535	Pass



3.4. Frequency Stability Test Data

LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector

TEST PROCEDURE

1. The equipment under test was connected to an external DC power supply and input rated voltage.
2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
3. The EUT was placed inside the temperature chamber.
4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.
5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) or endpoint, record the maximum frequency change.

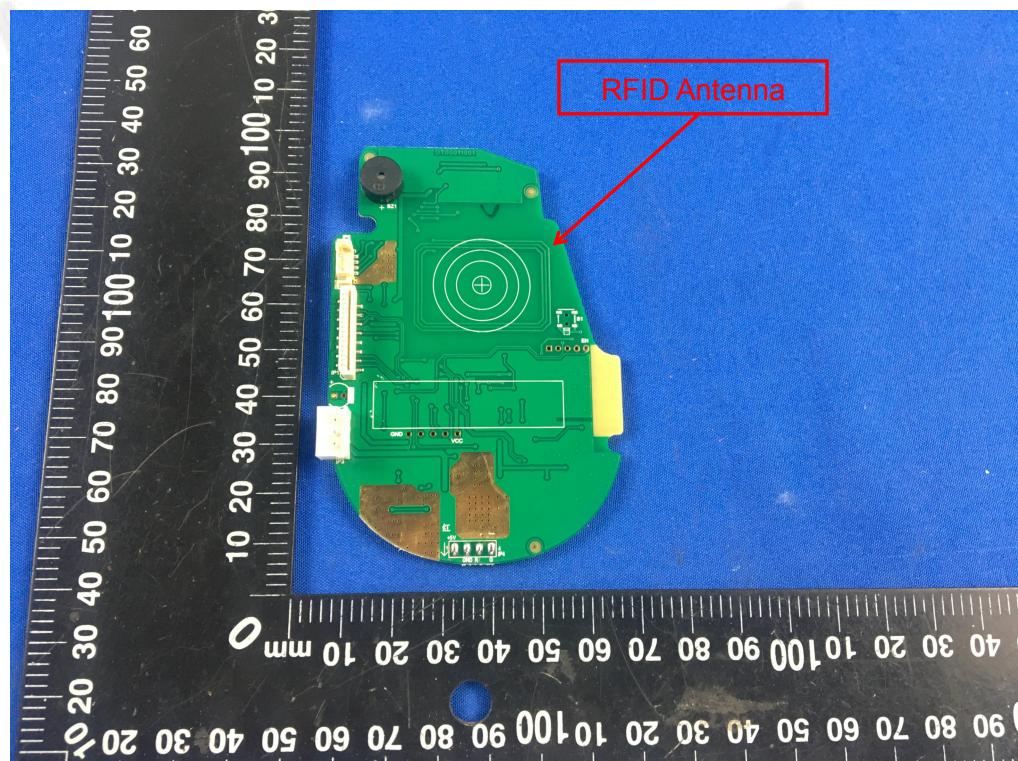
TEST RESULTS

Reference Frequency: 13.56MHz				
Voltage (V)	Temperature (°C)	Frequency (Hz)	Frequency Deviation(Hz)	Deviation (%)
5.0	+20(Ref)	13,560,063	63	0.000465
	-20	13,560,049	49	0.000361
	-10	13,560,053	53	0.000391
	0	13,560,064	64	0.000472
	+10	13,560,040	40	0.000295
	+20	13,560,032	32	0.000236
	+25	13,560,020	20	0.000147
	+30	13,560,073	73	0.000538
	+40	13,560,076	76	0.000560
	+50	13,560,045	45	0.000332
5.5	+20	13,560,034	34	0.000251
4.5	+20	13,560,018	18	0.000133

3.5. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 0dBi.

4. Test Setup Photos of the EUT

5. External and Internal Photos of the EUT

Reference to the test report No. CTL2104191011-WF01

***** End of Report *****