

Report on the FCC Testing of the  
EFFILUX GmbH  
LED-light for image processing. Model:  
RandomDot-000  
In accordance with FCC 47 CFR Part 15B



Product Service

Prepared for: EFFILUX GmbH  
Robert-Bosch-Str. 2A  
50354 Hürth  
Germany

FCC ID: 2AZTNRCR20

Add value.  
Inspire trust.

**COMMERCIAL-IN-CONFIDENCE**

Date: 11-05-2021

Document Number: TR-86337-86734-02 | Issue: 02

| RESPONSIBLE FOR      | NAME                | DATE       | SIGNATURE                                                                                               |
|----------------------|---------------------|------------|---------------------------------------------------------------------------------------------------------|
| Project Management   | Thomas Winterberger | 11-05-2021 | <br>SIGN-ID 506367  |
| Authorised Signatory | Alex Fink           | 11-05-2021 | <br>SIGN-ID 506519 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

**ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B. The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR | NAME                | DATE       | SIGNATURE                                                                                               |
|-----------------|---------------------|------------|---------------------------------------------------------------------------------------------------------|
| Testing         | Thomas Winterberger | 11-05-2021 | <br>SIGN-ID 506369 |

Laboratory Accreditation  
DAkkS Reg. No. D-PL-11321-11-02  
DAkkS Reg. No. D-PL-11321-11-03  
Laboratory recognition  
Registration No. BNetzA-CAB-16/21-15

**EXECUTIVE SUMMARY**

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B:2019.

**DISCLAIMER AND COPYRIGHT**

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2021 TÜV SÜD Product Service.

**ACCREDITATION**

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation.

Trade Register Munich  
HRB 85742  
VAT ID No. DE129484267  
Information pursuant to Section 2(1)  
DL-InfoV (Germany) at  
[www.tuev-sued.com/imprint](http://www.tuev-sued.com/imprint)

Managing Directors:  
Walter Reithmaier (Sprecher / CEO)  
Dr. Jens Butenandt  
Patrick van Welij

Phone: +49 (0) 9421 55 22-0  
Fax: +49 (0) 9421 55 22-99  
[www.tuev-sued.de](http://www.tuev-sued.de)

TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45  
94315 Straubing  
Germany

## Contents

|          |                                          |           |
|----------|------------------------------------------|-----------|
| <b>1</b> | <b>Report Summary</b>                    | <b>2</b>  |
| 1.1      | Report Modification Record               | 2         |
| 1.2      | Introduction                             | 2         |
| 1.3      | Brief Summary of Results                 | 3         |
| 1.4      | Product Information                      | 4         |
| 1.5      | Deviations from the Standard             | 5         |
| 1.6      | EUT Modification Record                  | 5         |
| 1.7      | Test Location                            | 6         |
| <b>2</b> | <b>Test Details</b>                      | <b>7</b>  |
| 2.1      | Conducted Disturbance at Mains Terminals | 7         |
| 2.2      | Radiated Disturbance                     | 12        |
| <b>3</b> | <b>Test Equipment Information</b>        | <b>18</b> |
| 3.1      | General Test Equipment Used              | 18        |
| <b>4</b> | <b>Incident Reports</b>                  | <b>18</b> |
| <b>5</b> | <b>Measurement Uncertainty</b>           | <b>19</b> |
| Annex A  | Photographs of Test Setup                | 2 pages   |

## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change                                                                                                                                                                                                                                                                                                                                                                                              | Date of Issue |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1     | First Issue                                                                                                                                                                                                                                                                                                                                                                                                        | 25-Aug-2020   |
| 2     | All test setup pictures are deleted and a ANNEX document is provided.<br>Page 1: Delete of "IC" in headline<br>Add the "FCC ID".<br>Change of the date from "FCC 47 CFR Part 15B:2019"<br>Page 8: Change of "Test Method"<br>Page 13: Change of "Test Method"<br>Page 14: Change of "Specification Limits"<br>Page 17 & 18: Change of "Calibration Due" at "ESU 8"<br>Page 19: Change of "Measurement Uncertainty" | 11-05-2021    |

Table 1

### 1.2 Introduction

|                               |                          |
|-------------------------------|--------------------------|
| Applicant                     | EFFILUX GmbH             |
| Manufacturer                  | EFFILUX GmbH             |
| Model Number(s)               | RandomDot-000            |
| Serial Number(s)              | 0166742008-001           |
| Hardware Version(s)           | ---                      |
| Software Version(s)           | ---                      |
| Number of Samples Tested      | 1                        |
| Test Specification/Issue/Date | FCC 47 CFR Part 15B:2019 |
| Test Plan/Issue/Date          | ---                      |
| Order Number                  | CF001687                 |
| Date                          | 2020-04-09               |
| Date of Receipt of EUT        | 2020-08-18               |
| Start of Test                 | 2020-08-20               |
| Finish of Test                | 2020-08-21               |
| Name of Engineer(s)           | Thomas Winterberger      |
| Related Document(s)           | ANSI C63.4: 2014         |

### 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B is shown below.

| Section                                                       | Specification Clause | Test Description                         | Result | Comments/Base Standard                          |
|---------------------------------------------------------------|----------------------|------------------------------------------|--------|-------------------------------------------------|
| Configuration and Mode: 24 V DC power supply continuous light |                      |                                          |        |                                                 |
| 2.1                                                           | 15.107               | Conducted Disturbance at Mains Terminals | Pass   | Test performed with a customary AC/DC converter |
| 2.2                                                           | 15.109               | Radiated Disturbance                     | Pass   | ---                                             |

**Table 2**



## 1.4 Product Information

### 1.4.1 Technical Description

LED lamp for image processing



Figure 1 - Marking plate

#### 1.4.2 EUT Port/Cable Identification

| Port                                  | Max Cable Length specified | Usage | Type                     | Screened |
|---------------------------------------|----------------------------|-------|--------------------------|----------|
| 24 V DC power supply continuous light |                            |       |                          |          |
| EFFC-CAB-M12-M-8-D-L2                 | ---                        | 3 m   | 24V DC Power/Signal Line | No       |
| EFFC-CAB-M12-F-8-D-L2                 | ---                        | 3 m   | 24V DC Power/Signal Line | Yes      |

**Table 3**

#### 1.4.3 Test Configuration

| Configuration        | Description                                      |
|----------------------|--------------------------------------------------|
| 24 V DC power supply | EUT connected via external DC supply to AC mains |

**Table 4**

#### 1.4.4 Modes of Operation

| Mode             | Description                                       |
|------------------|---------------------------------------------------|
| continuous light | The projector is ON with a continuous white light |

**Table 5**

#### 1.5 Deviations from the Standard

---

#### 1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State | Description of Modification still fitted to EUT | Modification Fitted By | Date Modification Fitted |
|--------------------|-------------------------------------------------|------------------------|--------------------------|
| 0                  | As supplied by the customer                     | Not Applicable         | Not Applicable           |

**Table 6**

## 1.7 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

| Test Name                                                     | Name of Engineer(s) |
|---------------------------------------------------------------|---------------------|
| Configuration and Mode: 24 V DC power supply continuous light |                     |
| Conducted Disturbance at Mains Terminals                      | Thomas Winterberger |
| Radiated Disturbance                                          | Thomas Winterberger |

**Table 7**

Office Address:

Äußere Frühlingstraße 45

94315 Straubing  
Germany

## 2 Test Details

### 2.1 Conducted Disturbance at Mains Terminals

#### 2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.107

#### 2.1.2 Equipment Under Test and Modification State

RandomDot-000, S/N: 0166742008-001 - Modification State 0

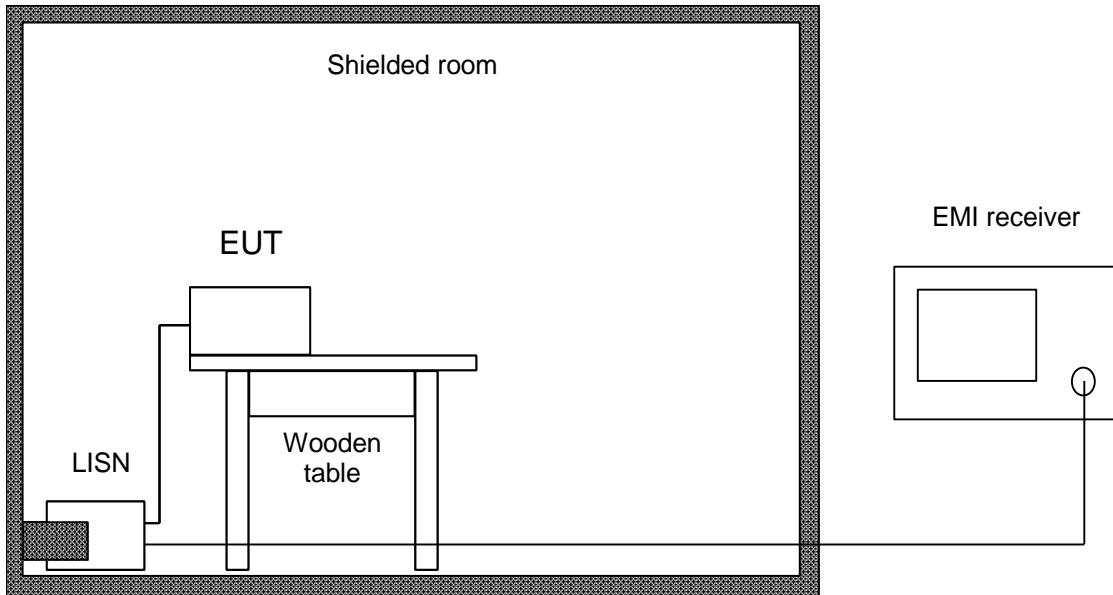
#### 2.1.3 Date of Test

2020-08-21

#### 2.1.4 Environmental Conditions

Ambient Temperature 29,0 °C  
Relative Humidity 31,0 %

#### 2.1.5 Specification Limits


| Required Specification Limits (Class B) |                       |                         |                      |
|-----------------------------------------|-----------------------|-------------------------|----------------------|
| Line Under Test                         | Frequency Range (MHz) | Quasi-peak (dB $\mu$ V) | Average (dB $\mu$ V) |
| AC Power Port                           | 0.15 to 0.5           | 66 to 56*               | 56 to 46*            |
|                                         | 0.5 to 5              | 56                      | 46                   |
|                                         | 5 to 30               | 60                      | 50                   |

**Supplementary information:** \*Decreases with the logarithm of the frequency.

Table 8

### 2.1.6 Test Methode

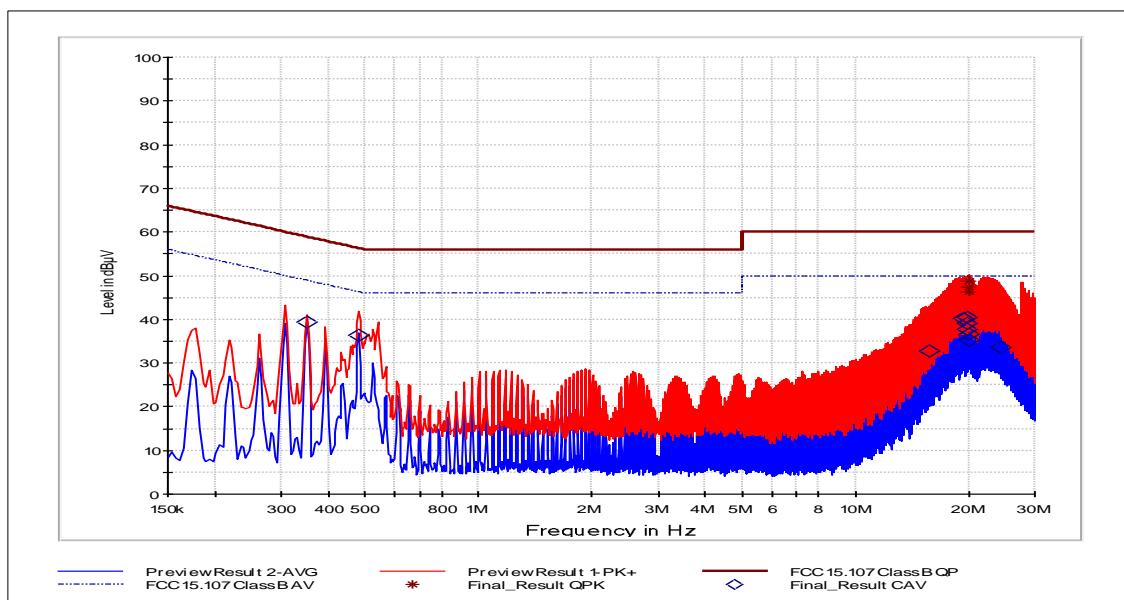
The test was performed according to ANSI C63.4, sections 5.2 and 7.



The EUT was placed on a non-conductive table 0.8 m above a reference ground plane and 0.4 m away from a vertical coupling plane

All power was connected to the EUT through a Line Impedance Stabilization Network (LISN). Conducted disturbance voltage measurements on mains lines were made at the output of the LISN. The LISN was placed 0.8 m from the boundary of the EUT and bounded to the reference ground plane. To simplify testing with quasi-peak and linear average (cisp-average) detector the following procedure is used:

First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with the detectors set to peak and average using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with the detectors set to quasi-peak and average. If the average limit is kept with quasi-peak levels measurement with average detector is optional. In cases of emission levels between quasi-peak and average limit an additional measurement with average detector has to be performed.


### 2.1.7 Test Results

#### Results for Configuration and Mode: 24 V DC power supply continuous light.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Line Under Test: EFFC-CAB-M12-M-8-D-L2 and EFFC-CAB-M12-M-8-D-L2 connected to customary AC/DC converter – L1



| Frequency MHz | QuasiPeak dB $\mu$ V | CAverage dB $\mu$ V | Limit dB $\mu$ V | Margin dB | Meas. Time ms | Bandwidth kHz | Line | Corr. dB |
|---------------|----------------------|---------------------|------------------|-----------|---------------|---------------|------|----------|
| 0.350000      | ---                  | 39.32               | 48.96            | 9.65      | 1000.0        | 9.000         | L1   | 10.0     |
| 0.482000      | ---                  | 36.37               | 46.31            | 9.93      | 1000.0        | 9.000         | L1   | 10.0     |
| 15.686000     | ---                  | 32.80               | 50.00            | 17.20     | 1000.0        | 9.000         | L1   | 10.4     |
| 19.398000     | ---                  | 40.09               | 50.00            | 9.91      | 1000.0        | 9.000         | L1   | 10.3     |
| 19.878000     | ---                  | 40.60               | 50.00            | 9.40      | 1000.0        | 9.000         | L1   | 10.2     |
| 19.922000     | ---                  | 39.02               | 50.00            | 10.98     | 1000.0        | 9.000         | L1   | 10.2     |
| 19.966000     | ---                  | 37.73               | 50.00            | 12.27     | 1000.0        | 9.000         | L1   | 10.2     |
| 20.010000     | 47.33                | ---                 | 60.00            | 12.67     | 1000.0        | 9.000         | L1   | 10.2     |
| 20.010000     | ---                  | 36.58               | 50.00            | 13.42     | 1000.0        | 9.000         | L1   | 10.2     |
| 20.054000     | ---                  | 35.37               | 50.00            | 14.63     | 1000.0        | 9.000         | L1   | 10.2     |
| 20.054000     | 46.42                | ---                 | 60.00            | 13.58     | 1000.0        | 9.000         | L1   | 10.2     |
| 20.094000     | 48.82                | ---                 | 60.00            | 11.18     | 1000.0        | 9.000         | L1   | 10.2     |
| 24.290000     | ---                  | 33.69               | 50.00            | 16.31     | 1000.0        | 9.000         | L1   | 10.3     |

Table 9

Line Under Test: FFC-CAB-M12-M-8-D-L2 and EFFC-CAB-M12-M-8-D-L2 connected to customary AC/DC converter – N

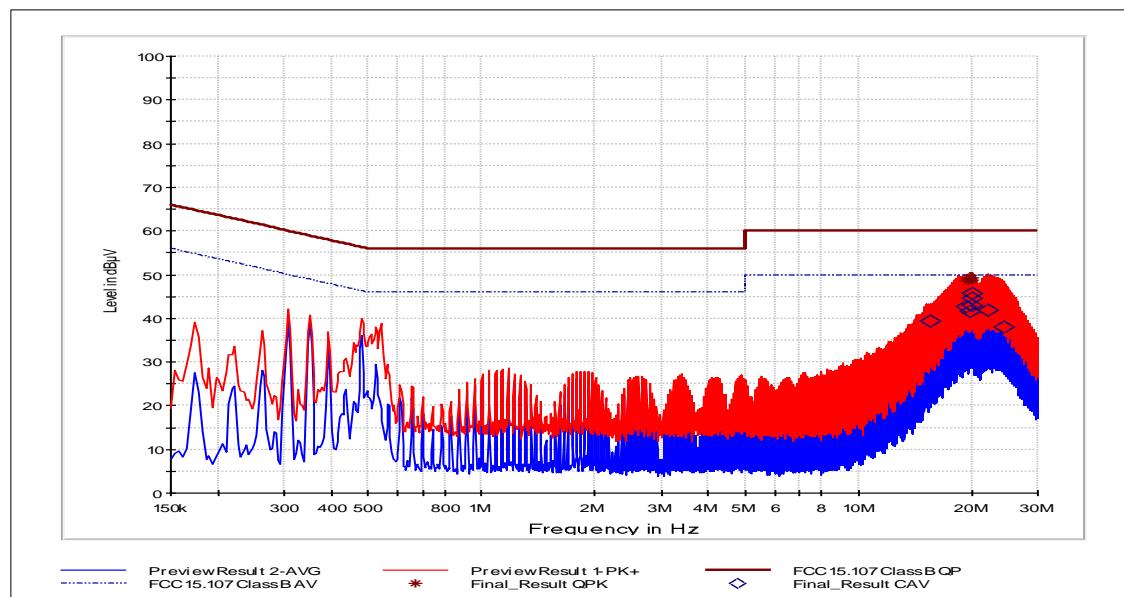



Figure 3 - Graphical Results - N

| Frequency<br>MHz | QuasiPeak<br>dB $\mu$ V | CAverage<br>dB $\mu$ V | Limit<br>dB $\mu$ V | Margin<br>dB | Meas. Time<br>ms | Bandwidth<br>kHz | Line | Corr.<br>dB |
|------------------|-------------------------|------------------------|---------------------|--------------|------------------|------------------|------|-------------|
| 15.630000        | ---                     | 39.39                  | 50.00               | 10.61        | 1000.0           | 9.000            | N    | 10.4        |
| 19.254000        | ---                     | 42.81                  | 50.00               | 7.19         | 1000.0           | 9.000            | N    | 10.3        |
| 19.646000        | 48.43                   | ---                    | 60.00               | 11.57        | 1000.0           | 9.000            | N    | 10.3        |
| 19.822000        | ---                     | 41.48                  | 50.00               | 8.52         | 1000.0           | 9.000            | N    | 10.3        |
| 19.862000        | 49.15                   | ---                    | 60.00               | 10.85        | 1000.0           | 9.000            | N    | 10.2        |
| 19.950000        | 49.22                   | ---                    | 60.00               | 10.78        | 1000.0           | 9.000            | N    | 10.2        |
| 19.994000        | 49.17                   | ---                    | 60.00               | 10.83        | 1000.0           | 9.000            | N    | 10.2        |
| 20.038000        | ---                     | 45.63                  | 50.00               | 4.37         | 1000.0           | 9.000            | N    | 10.2        |
| 20.038000        | 48.90                   | ---                    | 60.00               | 11.10        | 1000.0           | 9.000            | N    | 10.2        |
| 20.082000        | ---                     | 44.65                  | 50.00               | 5.35         | 1000.0           | 9.000            | N    | 10.2        |
| 20.170000        | ---                     | 42.99                  | 50.00               | 7.01         | 1000.0           | 9.000            | N    | 10.2        |
| 22.178000        | ---                     | 41.97                  | 50.00               | 8.03         | 1000.0           | 9.000            | N    | 10.2        |
| 24.274000        | ---                     | 37.97                  | 50.00               | 12.03        | 1000.0           | 9.000            | N    | 10.3        |

Table 10



### 2.1.8 Test Location and Test Equipment Used

This test was carried out in Shielded room - cabin no. 9.

| Instrument               | Manufacturer                  | Type No                      | TE No | Calibration Period (months) | Calibration Due |
|--------------------------|-------------------------------|------------------------------|-------|-----------------------------|-----------------|
| EMI test receiver        | Rohde & Schwarz GmbH & Co. KG | ESU8                         | 19904 | 12                          | 31.01.2021      |
| Microwave cable          | Rosenberger Micro-Coax        | FB293C1080005050             | 20024 | ---                         | ---             |
| Shielded room            | Albatross Projects GmbH       | Cabin no. 9                  | 21083 | ---                         | ---             |
| V-network                | Rohde & Schwarz GmbH & Co. KG | ENV216                       | 39908 | 12                          | 31.03.2021      |
| V-network                | Rohde & Schwarz GmbH & Co. KG | ENV216                       | 39909 | 12                          | 28.02.2021      |
| EMC measurement software | Rohde & Schwarz GmbH & Co. KG | EMC32 Emission K1 - V9.26.01 | 20090 | ---                         | ---             |

**Table 11**



**2.2 Radiated Disturbance**

**2.2.1 Specification Reference**

FCC 47 CFR Part 15B, Clause 15.109

**2.2.2 Equipment Under Test and Modification State**

RandomDot-000, S/N: 0166742008-001 - Modification State 0

**2.2.3 Date of Test**

2020-08-20

**2.2.4 Environmental Conditions**

Ambient Temperature 23,0 °C

Relative Humidity 31,0 %

## 2.2.5 Specification Limits

On any frequency below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths. As an alternative to CISPR quasi-peak measurements compliance may be demonstrated with the emission limits using measuring equipment employing a peak detector function as long as the same bandwidth as indicated for CISPR quasi-peak measurements are employed.

Above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified, there also is a limit on the peak level of the radio frequency emissions. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit. This peak limit applies to the total peak emission level radiated by the device.

| Required Specification Limits (Class A) |                                 |                |
|-----------------------------------------|---------------------------------|----------------|
| Frequency Range<br>(MHz)                | Field strength in 10 m distance |                |
|                                         | ( $\mu$ V/m)                    | (dB $\mu$ V/m) |
| 30 – 88                                 | 90                              | 39             |
| 88 – 216                                | 150                             | 43.5           |
| 126 – 960                               | 210                             | 46.4           |
| above 960                               | 300                             | 49.5           |

Table 12 Class A emission limits

| Required Specification Limits (Class B) |                                |                |
|-----------------------------------------|--------------------------------|----------------|
| Frequency Range<br>(MHz)                | Field strength in 1 m distance |                |
|                                         | ( $\mu$ V/m)                   | (dB $\mu$ V/m) |
| 30 – 88                                 | 100                            | 40             |
| 88 – 216                                | 150                            | 43.5           |
| 126 – 960                               | 200                            | 46             |
| above 960                               | 500                            | 54             |

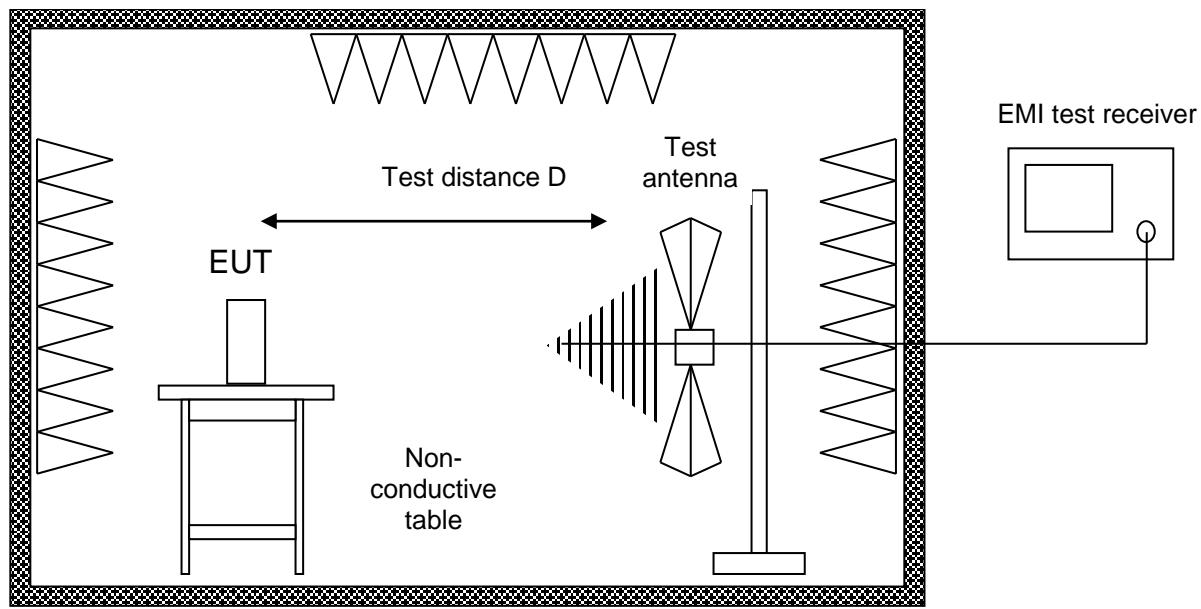
Table 13 Class B emission limits

As an alternative to the radiated emission limits shown above, digital devices may be shown comply with the standards contained in the 3<sup>rd</sup> Edition of CISPR 22. In addition: if measurements must be performed above 1000 MHz, compliance above 1000 MHz shall be demonstrated with the emission limits above.

Measurements above 1000 MHz may be performed at the distance specified in the CISPR 22 publications for measurements below 1000 MHz provided the limits above are extrapolated to the new measurement distance using an inverse linear distance extrapolation factor (20 dB/decade), e.g., the radiated limit above 1000 MHz for Class B digital devices is 150  $\mu$ V/m as measured at a distance of 10 meters.

## 2.2.6 Test Methode

The test was performed according to ANSI C63.4, sections 5.4, 44 and 8.

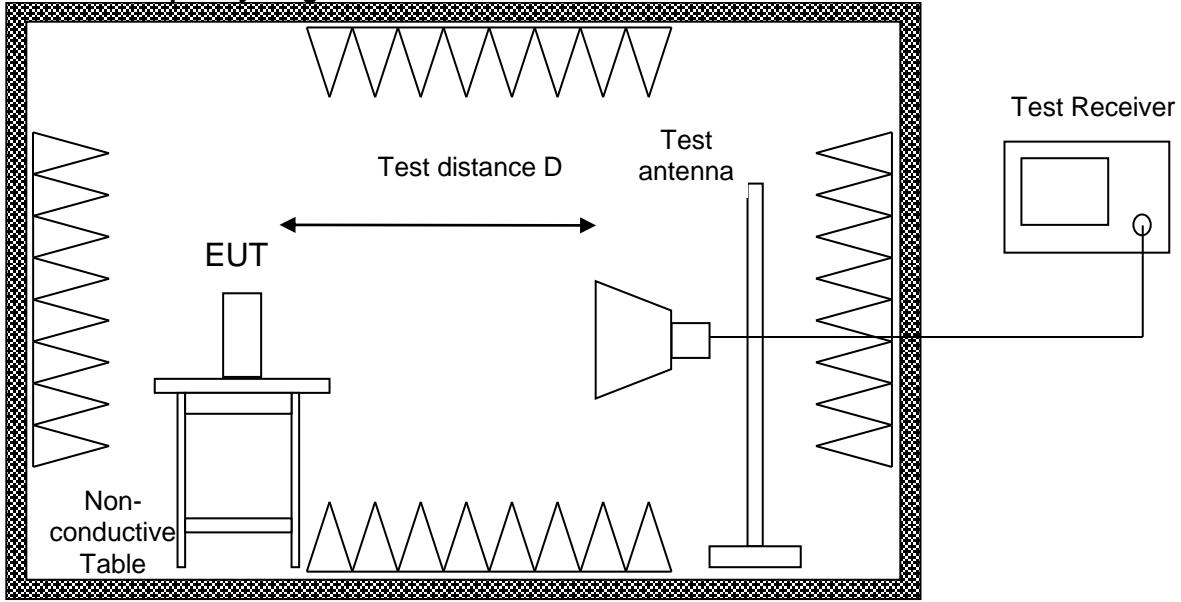

The EUT was placed on a non-conductive table, 0.8 m above the ground plane. Prescans are performed in six positions of the EUT to get the full spectrum of emission caused by the EUT with the measuring antenna raised and lowered from 1 m to 4 m with vertical and horizontal polarisation to find the combination of table position, antenna height and antenna polarisation for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB or exceeding the limit using subranges and limited number of maximums.

Further maximisation for adjusting the maximum position is following.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

### 2.2.6.1 Frequency range 30 MHz – 1 GHz




Radiated emissions in the frequency range 30 MHz – 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4. for alternative test sites. A linear polarised logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used.

For prescan tests the test receiver is set to peak-detector with a bandwidth of 120 kHz.

With the measurement bandwidth of the test receiver set to 120 kHz CISPR quasi-peak detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

### 2.2.6.2 Frequency range above 1 GHz



## 2.2.7 Test Results

### Results for Configuration and Mode: 24 V DC power supply continuous light.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: < 108 MHz  
Which necessitates an upper frequency test limit of: 1 GHz

Frequency Range of Test: 30 MHz to 1 GHz

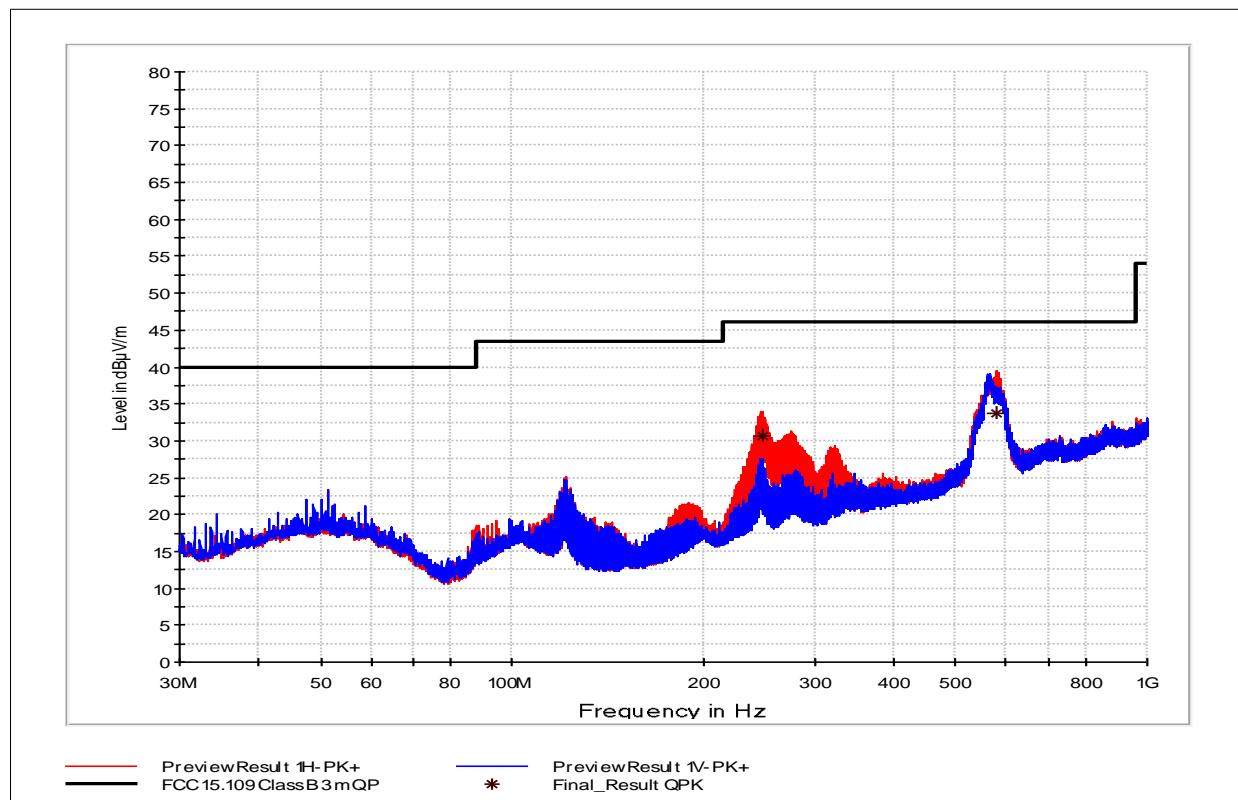



Figure 4 - Graphical Results - Horizontal and Vertical Polarity

| Frequency MHz | QuasiPeak dB $\mu$ V/m | Limit dB $\mu$ V/m | Margin dB | Meas. Time ms | Bandwidth kHz | Height cm | Pol | Azimuth deg | Corr. dB/m |
|---------------|------------------------|--------------------|-----------|---------------|---------------|-----------|-----|-------------|------------|
| 247.365000    | 30.66                  | 46.00              | 15.34     | 1000.0        | 120.000       | 100.0     | H   | -112.0      | 17.8       |
| 579.200000    | 33.64                  | 46.00              | 12.36     | 1000.0        | 120.000       | 151.0     | H   | 87.0        | 25.1       |

Table 14

## 2.2.8 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

| Instrument                 | Manufacturer                  | Type No                       | TE No | Calibration Period (months) | Calibration Due |
|----------------------------|-------------------------------|-------------------------------|-------|-----------------------------|-----------------|
| Semi anechoic room         | Albatross Projects GmbH       | Cabin no. 8                   | 19917 | 36                          | 30.09.2020      |
| Microwave cable            | Rosenberger Micro-Coax        | FA210AF04000505               | 19928 | 0                           |                 |
| Double ridged horn antenna | Rohde & Schwarz GmbH & Co. KG | HF907                         | 19933 | 24                          | 31.07.2021      |
| Microwave cable            | Rosenberger Micro-Coax        | FA210AF04000505 0G            | 19994 | 0                           |                 |
| TRILOG Broadband Antenna   | Schwarzbeck Mess-Elektronik   | VULB 9162                     | 20116 | 36                          | 31.01.2022      |
| EMI test receiver          | Rohde & Schwarz GmbH & Co. KG | ESU 8                         | 19904 | 12                          | 31.01.2021      |
| Microwave cable            | Rosenberger Micro-Coax        | LA5-015-8000                  | 39968 | 12                          | 31.01.2021      |
| RF test cable              | Huber & Suhner                | KK-SF118D-2X11N-8,5N          | 44767 | 0                           |                 |
| EMC measurement software   | Rohde & Schwarz GmbH & Co. KG | EMC32 Emission K8 – V10.50.10 | 19927 | ---                         | ---             |

**Table 15**

## 3 Test Equipment Information

### 3.1 General Test Equipment Used

| Instrument                 | Manufacturer                  | Type No                       | TE No | Calibration Period (months) | Calibration Due |
|----------------------------|-------------------------------|-------------------------------|-------|-----------------------------|-----------------|
| Semi anechoic room         | Albatross Projects GmbH       | Cabin no. 8                   | 19917 | 36                          | 30.09.2020      |
| Microwave cable            | Rosenberger Micro-Coax        | FA210AF04000505               | 19928 | 0                           |                 |
| Double ridged horn antenna | Rohde & Schwarz GmbH & Co. KG | HF907                         | 19933 | 24                          | 31.07.2021      |
| Microwave cable            | Rosenberger Micro-Coax        | FA210AF04000505 0G            | 19994 | 0                           |                 |
| TRILOG Broadband Antenna   | Schwarzbeck Mess-Elektronik   | VULB 9162                     | 20116 | 36                          | 31.01.2022      |
| EMI test receiver          | Rohde & Schwarz GmbH & Co. KG | ESU 8                         | 19904 | 12                          | 30.06.2020      |
| Microwave cable            | Rosenberger Micro-Coax        | LA5-015-8000                  | 39968 | 12                          | 31.01.2021      |
| RF test cable              | Huber & Suhner                | KK-SF118D-2X11N-8,5N          | 44767 | 0                           |                 |
| EMC measurement software   | Rohde & Schwarz GmbH & Co. KG | EMC32 Emission K8 – V10.50.10 | 19927 | ---                         | ---             |
| EMI test receiver          | Rohde & Schwarz GmbH & Co. KG | ESU8                          | 19904 | 12                          | 31.01.2021      |
| Microwave cable            | Rosenberger Micro-Coax        | FB293C108000505 0             | 20024 | ---                         | ---             |
| Shielded room              | Albatross Projects GmbH       | Cabin no. 9                   | 21083 | ---                         | ---             |
| V-network                  | Rohde & Schwarz GmbH & Co. KG | ENV216                        | 39908 | 12                          | 31.03.2021      |
| V-network                  | Rohde & Schwarz GmbH & Co. KG | ENV216                        | 39909 | 12                          | 28.02.2021      |
| EMC measurement software   | Rohde & Schwarz GmbH & Co. KG | EMC32 Emission K1 - V9.26.01  | 20090 | ---                         | ---             |

Table 16

## 4 Incident Reports

---

## 5 Measurement Uncertainty

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: 2011 + A1 + A2 + Cor1 (UCISPR). This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Radio Interference Emission Testing      |    |                      |      |
|------------------------------------------|----|----------------------|------|
| Test Name                                | kp | Expanded Uncertainty | Note |
| Conducted Voltage Emission               |    |                      |      |
| 9 kHz to 150 kHz (50Ω/50µH AMN)          | 2  | ± 3.8 dB             | 1    |
| 150 kHz to 30 MHz (50Ω/50µH AMN)         | 2  | ± 3.4 dB             | 1    |
| 100 kHz to 200 MHz (50Ω/5µH AMN)         | 2  | ± 3.6 dB             | 1    |
| Discontinuous Conducted Emission         |    |                      |      |
| 9 kHz to 150 kHz (50Ω/50µH AMN)          | 2  | ± 3.8 dB             | 1    |
| 150 kHz to 30 MHz (50Ω/50µH AMN)         | 2  | ± 3.4 dB             | 1    |
| Conducted Current Emission               |    |                      |      |
| 9 kHz to 200 MHz                         | 2  | ± 3.5 dB             | 1    |
| Magnetic Fieldstrength                   |    |                      |      |
| 9 kHz to 30 MHz (with loop antenna)      | 2  | ± 3.9 dB             | 1    |
| 9 kHz to 30 MHz (large-loop antenna 2 m) | 2  | ± 3.5 dB             | 1    |
| Radiated Emission                        |    |                      |      |
| Test distance 1 m (ALSE)                 |    |                      |      |
| 9 kHz to 150 kHz                         | 2  | ± 4.6 dB             | 1    |
| 150 kHz to 30 MHz                        | 2  | ± 4.1 dB             | 1    |
| 30 MHz to 200 MHz                        | 2  | ± 5.2 dB             | 1    |
| 200 MHz to 2 GHz                         | 2  | ± 4.4 dB             | 1    |
| 2 GHz to 3 GHz                           | 2  | ± 4.6 dB             | 1    |
| Test distance 3 m                        |    |                      |      |
| 30 MHz to 300 MHz                        | 2  | ± 4.9 dB             | 1    |
| 300 MHz to 1 GHz                         | 2  | ± 5.0 dB             | 1    |
| 1 GHz to 6 GHz                           | 2  | ± 4.6 dB             | 1    |
| Test distance 10 m                       |    |                      |      |
| 30 MHz to 300 MHz                        | 2  | ± 4.9 dB             | 1    |
| 300 MHz to 1 GHz                         | 2  | ± 4.9 dB             | 1    |
| Radio Interference Power                 |    |                      |      |
| 30 MHz to 300 MHz                        | 2  | ± 3.5 dB             | 1    |

Table 17

Note 1:



Product Service

The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 2$ , providing a level of confidence of  $p = 95.45\%$