

D2106-THGN01 User Manual

ZigBee Wireless Module

Contents

1. General introduction.....	1
1.1 Brief introduction.....	1
1.2 Characteristic function.....	1
1.3 ZigBee introduction.....	2
1.4 Application.....	3
2. Technical parameters.....	3
2.1 Limit parameter	3
2.2 Working parameters.....	3
3. Mechanical characteristics.....	5
4. Operation mode.....	6
5. Protocol mode.....	6
6.Function description.....	7
6.1 Pin diagram	7
6.2 Pin connection instructions.....	8
7.Quick start.....	9
7.1 Network construction and communication.....	9
8. User instruction set.....	15
8.1 HEX read command description.....	16
8.2 HEX Parameter description.....	17
8.3. HEX command data communication format.....	21
8.4 AT Command.....	22
8.4.1 AT+DEV.....	22
8.4.2 AT+EXIT.....	22
8.4.3 AT+MODE.....	22
8.4.4 AT+RMODE.....	23
8.4.5 AT+NWK.....	23
8.4.6 AT+PANID.....	23
8.4.7 AT+KEY.....	24
8.4.8 AT+SHORT_ADDR.....	24
8.4.9 AT+MAC_ADDR.....	24
8.4.10 AT+COOR_SHORT_ADDR.....	24
8.4.11 AT+COOR_MAC_ADDR.....	24
8.4.12 AT+GET_SHORT_ADDR.....	25
8.4.13 AT+GROUP.....	25
8.4.14 AT+CH.....	25
8.4.15 AT+TXPOWER.....	25
8.4.16 AT+UART.....	26
8.4.17 AT+SLEEP.....	26
8.4.18 AT+DATA_TIME.....	26
8.4.19 AT+SOFT_ID.....	27
8.4.20 AT+RESET.....	27
8.4.21 AT+RESTORE.....	27
8.3.22 AT+GPIO_PUT.....	27

8.4.23 AT+RGPIO_PUT.....	28
8.4.24 AT+GPIO_LEVEL.....	28
8.4.25 AT+RGPIO_LEVEL.....	28
8.4.26 AT+PWM.....	29
8.4.27 AT+RPWM.....	29
8.4.28 AT+ADC.....	29
9. User instruction.....	31
9.1 ZigBee networking role and notice.....	31
9.2 Network structure.....	31
10. Hardware design.....	32
11. FAQ.....	33
11.1 Communication range is too short.....	33
11.2 Module is easy to damage.....	33
11.3 Bit error rate is too high.....	33
12. Production guidance.....	33
12.1 Reflow soldering temperature.....	33
12.2 Reflow soldering curve.....	34
13. Antenna information.....	34
14. Product packaging figure.....	35

1. General introduction

1.1 Brief introduction

D2106-THGN01 is a small-sized 2.405GHz SMD wireless modules. The space between each pin is 1.27mm. D2106-THGN01 have been put into stable bulk production, they are applicable for various applications (especially smart home).

D2106-THGN01 adopts the original CC2530 RF chip of TI, the chip is integrated with 8051 MCU and wireless transceiver. Built-in PA+LNA, the modules are applicable for ZigBee design and 2.405GHz IEEE 802.15.4 protocol. All IO ports of the MCU have been pinned out for multiple development.

1.2 Characteristic function

- **Role switch**: Users can switch freely between the coordinator, router and end device via UART command.
- **Automatic networking**: Support power-on automatic networking. The coordinator automatically sets up the network, the end device and the router automatically searches and joins the network.
- **Network self-healing**: Automatically reconnect when losing network. When intermediate node in network is lost, other networks automatically join or maintain the original network. (Isolated nodes automatically join the original network, non-isolated nodes maintain the original network.) When the coordinator is lost and non-isolated nodes exist in the original network, the coordinator can join the network again or coordinator of the original network PAN_ID set by the same user join the original network.
- **Ultra-low power consumption**: The device can be set as low power mode in the end state. Sleep time of the device can be changed according to the user's using time. The standby power consumption in the low power mode is less than 2uA. In the father node data storage time, all messages can be received within the time set by users.
- **Configuration for data storage time**: When device is in the coordinator and router state, the user can set their own data storage time, and work with end device in sleep mode to save data for the end device, and sent data to the end device when it wakes up.
Data saved is up to 3 data packets, if exceeded, it will automatically clear the first data! After the data is saved, the data heap is automatically cleared.
- **Automatic retransmission**: In unicast mode, the device will automatically retransmit when failed to send to next node, and the number of retransmission per message is three.
- **Automatic routing**: The module supports network routing. Router and coordinator have network data routing function, users can conduct multi-hopping networking.
- **Support encryption protocol**: The module uses AES 128 bit encryption function, can change the network encryption

and prevent monitoring. Users can change the network key by themselves. Only devices with the same network key can start normal networking communication.

- Support UART configuration: Module has built-in UART commands, the user can configure (view) the parameters and functions of module via UART command .
- Communication for various types of data: Support broadcasting, multicasting and unicasting in the entire network. In the broadcast and unicast mode, it also supports several transmission methods
- Multi-mode selection: support through mode, semi-through mode, protocol mode, three working modes, user can switch freely
- Change channel: It supports change of 16 channels ranging from 11 to 26 (2405~2480MHZ) , different channels have different frequency.
- Change network PAN_ID: Free switch of network PAN_ID. Users can define PAN_ID to join the corresponding network by themselves or automatically select PAN-ID to join the network.
- Change UART baud rate: Users can set baud rate by themselves which can be as high as 1M, it is 8 bits by default without parity bit.
- Search short address: Users can find out corresponding short address according to the (unique and fixed) MAC address of module that already joined network.
- GPIO control:Local/remote gpio control function, there are 10 gpio for users to select.
- Pwm control :Local/remote pwm control function, there are 5 pwm channels for users to select.
- ADC control:Read local/remote adc, there are 7 adc channels for users to select.
- Command format switch: The module supports AT command and HEX command for users' easy configuration and switch.
- Module restore:Users can restore the module via UART commands.
- Onekey recovery of baud rate: The module supports onekey recovery of baud rate when users forget the baud rate. The baud rate is 115200(default).
- Recover factory setting:Users recover the factory setting via UART commands.

1.3 ZigBee introduction

ZigBee technology is a two-way wireless communication technology that features short range, low complexity, low power, low speed and low cost.

There are three types of logical devices in the ZigBee network: Coordinator, Router, and End-Device. The ZigBee network consists of a Coordinator and multiple routers and End-Devices.

These devices own the following functions:

(1) Coordinator

As the first device in the network, the coordinator is responsible for starting the entire network. . The coordinator selects a channel and a network ID (also known as the PAN ID, the Personal Area Network ID), and then starts the entire network.

Coordinators can also be used to help establish bindings between security layer and application layer in the network.

Note that the role of the coordinator mainly involves the network startup and configuration. Once these are done, the coordinator works like a router (or disappears /go away). Due to the distribution characteristics of the

ZigBee network itself, the operation of the entire network is not dependent on the existence of the coordinator.

(2) Router

The main functions of the router: to allow other devices to join the network, multi-hop routing and to assist communication of its own battery-powered son node end-devices.

Typically, the router is expected to remain active, so it must use the main power supply. However, when using the tree group network mode, it allows the routing operate once at an interval of a certain cycle, so battery can be used for power supply.

(3) End-Device

The end-device does not have a specific responsibility for maintaining the network structure, it can sleep or wake up, so it can be a battery-powered device.

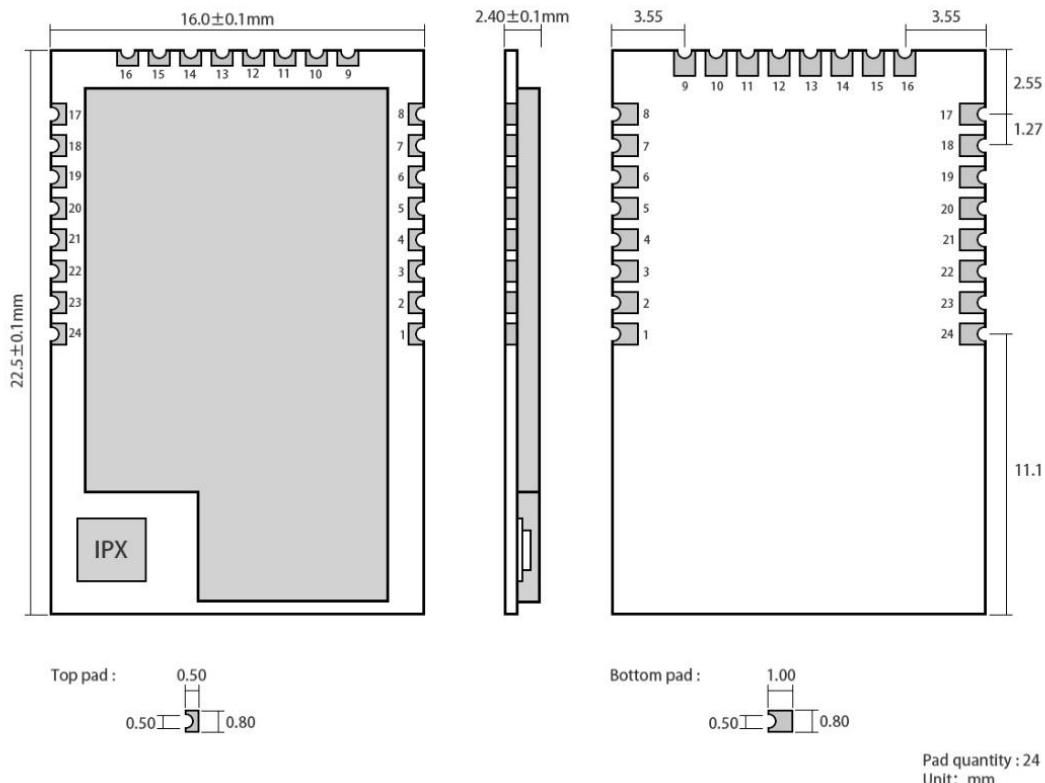
1.4 Application

- Home security alarm and remote keyless entry;
- Smart home and industrial sensors;
- Wireless alarm security system;
- Wireless industrial-grade remote control;
- Health care products;
- Wireless voice, wireless headphones;
- Automotive industry applications.

2. Technical parameters

2.1 Limit parameter

Main parameter	Performance		Remark
	Min	Max	
Voltage supply (V)	0	3.6	Voltage over 3.6V will cause permanent damage to module
Blocking power (dBm)	-	10	Chances of burn is slim when modules are used in short distance
Working temperature (°C)	-40	85	


2.2 Working parameters

Main parameter	Performance			Remark
	Min.	Typ.	Max.	
Operating voltage (V)	2.5	3.3	3.6	≥3.3 V ensures output power
Communication level (V)		3.3		For 5V TTL, it may be at risk of burning

					down
Working temperature (°C)		-40	-	85	Industrial design
Frequency (GHz)		2.405	-	2.480	Support ISM band
Power consumption	TX current (mA)		500		Instant power consumption
	RX current (mA)		33		
	Sleep current (μA)		2.4		Software is shut down
Max Tx power (dBm)		24.8	25.0	25.4	
Receiving sensitivity (dBm)		-98	-99	-100	Air data rate is 250kbps

Main parameter	Description	Remark
Distance for reference	2500 m	Test condition: clear and open area
Protocol	ZigBee	
Packing	SMD	
Connector	1.27mm	
IC	CC2530F256RHAT/QFN40	Built-in PA+LNA
FLASH	256 KB	
RAM	8 KB	
Core	8051 MCU	
Size	16.0 * 22.5 mm	
Antenna	IPEX	50 ohm impedance

3. Mechanical characteristics

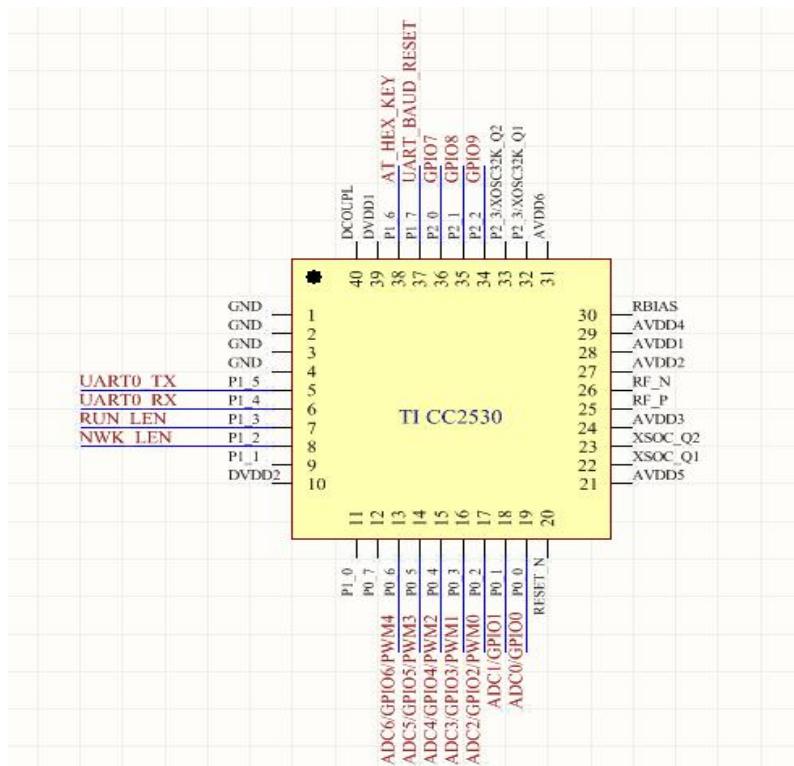
Pin No.	Pin item	Pin direction	Application
1	GND		Ground, connecting to power source referential ground
2	VCC		Power supply, must be 2.5-3.6V
3	GPIO9	Input /Output	User Control Function Pin GPIO9
4	GPIO8	Input /Output	User Control Function Pin GPIO8
5	GPIO7	Input /Output	User Control Function Pin GPIO7
6	UART_BAUD_RESET	Input	Used to restore the serial port baud rate. user forgot or did not know the baud rate of module, the button can be used to restore the factory baud rate of 115200 (the falling edge is valid)
7	AT_HEX_KEY	Input	It is used to switch AT instruction mode and HEX instruction mode; Low level means HEX instruction mode, high level means AT instruction mode(default)
8	NC		N.C
9	NC		N.C
10	UART0_TX	Output	Serial TX pin
11	UART0_RX	Input	Serial RX pin
12	RUN_LED	Output	Indicate the normal running indicator of the module. Low level means the module is running normally, and high level means the module is not running

13	NWK_LED	Output	Indicate the module access status, low level means the module joins the network, high level means the module has no network
14	NC		N.C
15	NC		N.C
16	NC		N.C
17	GPIO6/ADC6/PWM4	Input /Output	User Control Function Pin GPIO6/ADC6/PWM4
18	GPIO5/ADC5/PWM3	Input /Output	User Control Function Pin GPIO5/ADC5/PWM3
19	GPIO4/ADC4/PWM2	Input /Output	User Control Function Pin GPIO4/ADC4/PWM2
20	GPIO3/ADC3/PWM1	Input /Output	User Control Function Pin GPIO3/ADC3/PWM1
21	GPIO2/ADC2/PWM0	Input /Output	User Control Function Pin GPIO2/ADC2/PWM0
22	GPIO1/ADC1	Input /Output	User Control Function Pin GPIO1/ADC1
23	GPIO0/ADC0	Input /Output	User Control Function Pin GPIO0/ADC0
24	RESET	Input /Output	Reset port

- Please refer to TI official CC2530 Datasheet for module pin definitions, software driver and protocol ★

4. Operation mode

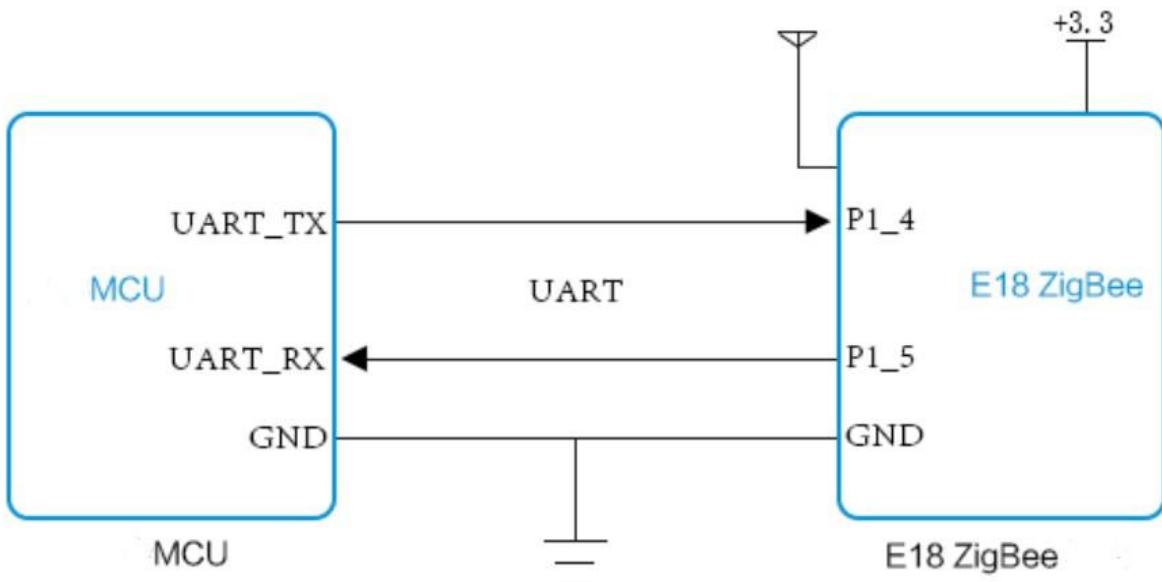
Mode	Node	Description	Data Communication Display Mode
Mode 1 (Transparent transmission mode)	Coordinator	This type of node is a transmission mode, which transmits serial data to non-sleeping devices in the network through broadcasting.	Data carrier formats can be configured by instructions: 1 Display the sender's MAC address; 2. Display short address of sender; 3 Display the RSSI value of the shortest path of the message; (User can configure the display mode to carry no display and any one or more display modes)
	Router	This type of node is in the transmission mode, passing serial data to the coordinator through on-demand.	
	End device	(Note: Terminal can't receive the transmitted data of Mode 1 in dormant mode)	
Mode 2 (Half transparent transmission mode)	Coordinator	The module transmits data according to fixed format and full protocol. It can carry out unicast, broadcast and multicast. Please see more details in HEX command data communication format	/
	Router	This type of node is in the transmission mode, passing serial data to the coordinator through unicast	
	End device		
Mode 3 (Protocol mode)	Coordinator	The module transmits data according to fixed format and full protocol. Can be unicast, broadcast, multicast; for details, please see more details in HEX command data communication format	
Note: Only mode 3 can be selected for GPIO function configuration. Any mode can communicate with each other without affecting each other.			


5. Protocol mode

No	Using mode	Description
1	Broadcast	When joining the network, the user can broadcast according to the commands in the whole network (which can be divided into three broadcast modes) 1, Broadcast Mode 1 - The message is broadcasted to all devices in the entire network. 2, broadcast mode 2 - the message is broadcasted only to receiving devices (except sleep mode).

		3, broadcast mode 3 - the message is broadcasted to all full-functional devices (router and coordinator).
2	Multicast	When joining the network, the user can multicast all the devices (not in sleep) in the entire network.
3	Unicast	When joining the network, the user can independently communicate with the devices in the network in a short address mode according to the commands (which can be divided into three broadcast modes) 1, transparent transmission mode - (no carrying information) 2, short address mode - (carry information for the short address) 3, MAC address mode - (carry information for the MAC address)

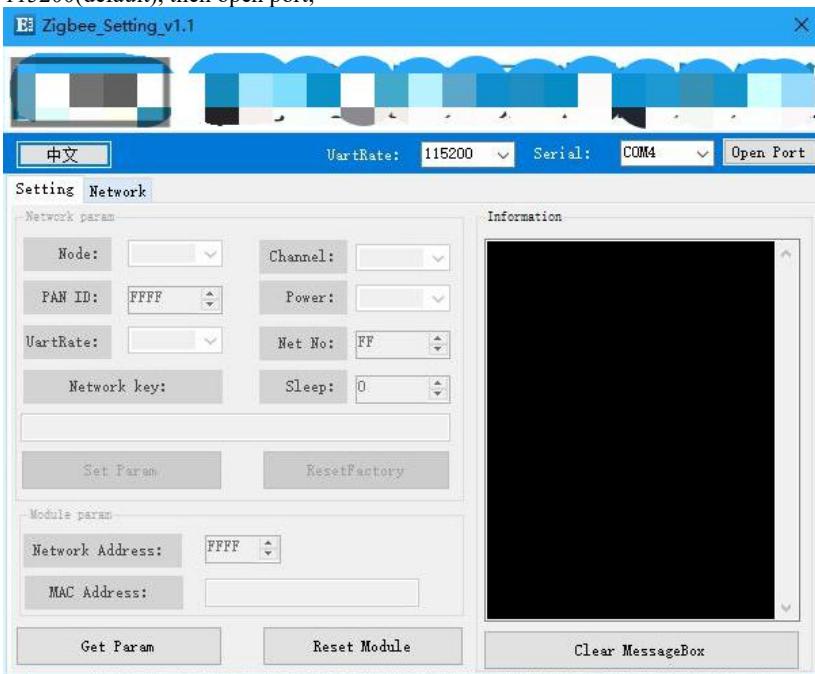
6.Function description

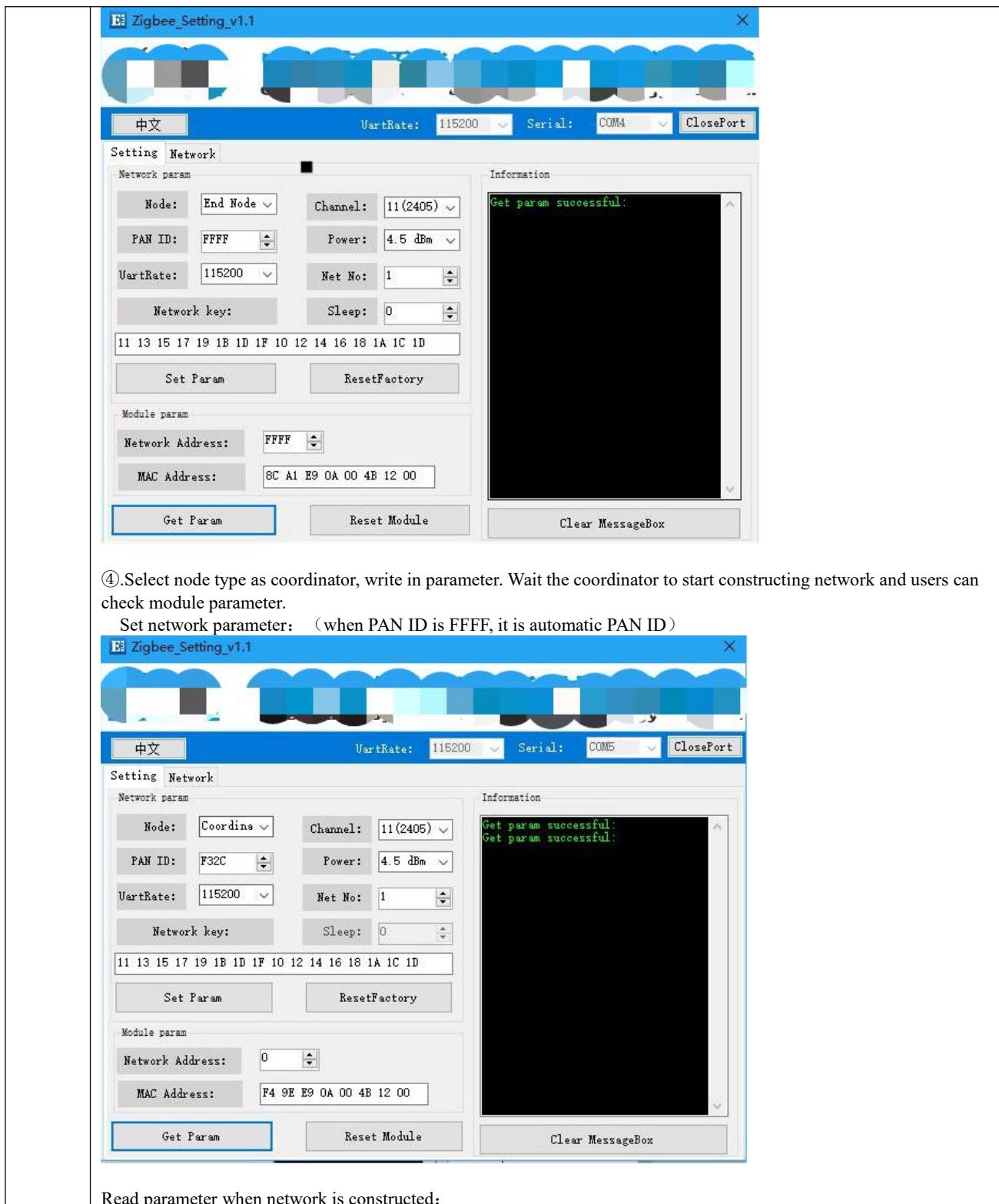

6.1 Pin diagram

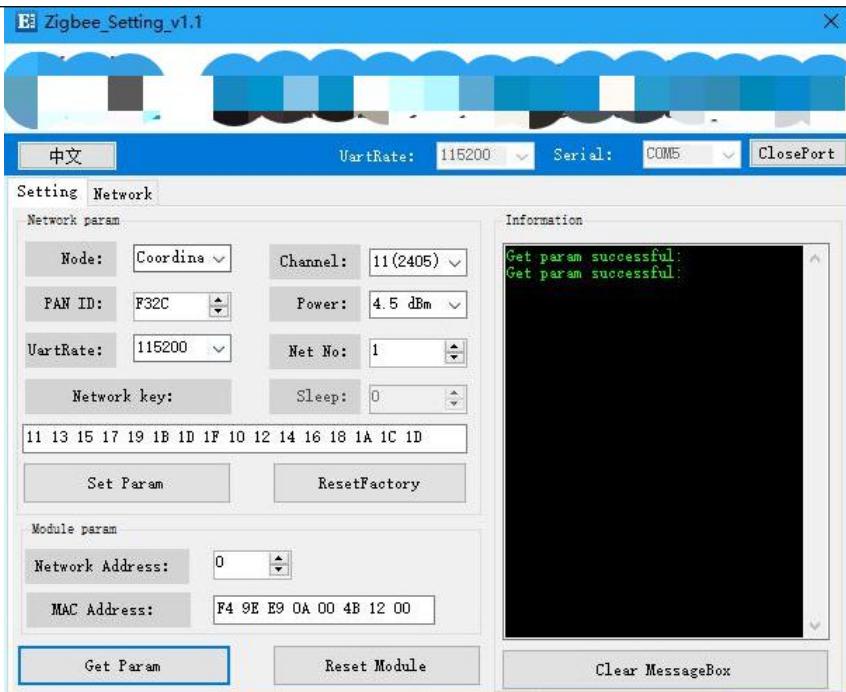
Pin No.	Function indication	Description (reuse function pin can only be defined as the function rectified for the last time)	Input/Output
P0_0	GPIO0/ADC0	User controlled function pin GPIO0/ADC0	I/O
P0_1	GPIO1/ADC1	User controlled function pin GPIO1/ADC1	I/O
P0_2	GPIO2/ADC2/PWM0	User controlled function pin GPIO2/ADC2/PWM0	I/O
P0_3	GPIO3/ADC3/PWM1	User controlled function pin GPIO3/ADC3/PWM1	I/O
P0_4	GPIO4/ADC4/PWM2	User controlled function pin GPIO4/ADC4/PWM2	I/O

P0_5	GPIO5/ADC5/PWM3	User controlled function pin GPIO5/ADC5/PWM3	I/O
P0_6	GPIO6/ADC6/PWM4	User controlled function pin GPIO6/ADC6/PWM4	I/O
P2_0	GPIO7	User controlled function pin GPIO7	I/O
P2_1	GPIO8	User controlled function pin GPIO8	I/O
P2_2	GPIO9	User controlled function pin GPIO9	I/O
P1_2	NWK_LED	To indicate module network joining state, low level means that module joins network, high level means no network.	O
P1_3	RUN_LED	To indicate module works normally, low level means that module works normally, high level means module does not work.	O
P1_6	AT_HEX_KEY	To switch AT command and HEX command, low level means HEX command mode, high level means AT command mode (default) .	I
P1_7	UART_BAUD_RESET	To reset baud rate, when users forget or do not know the baud rate use this button to restore factory setting (115200) (valid for falling edge) .	I
P1_4	UART0_RX	UART RX pin	I
P1_5	UART0_TX	UART TX pin	O

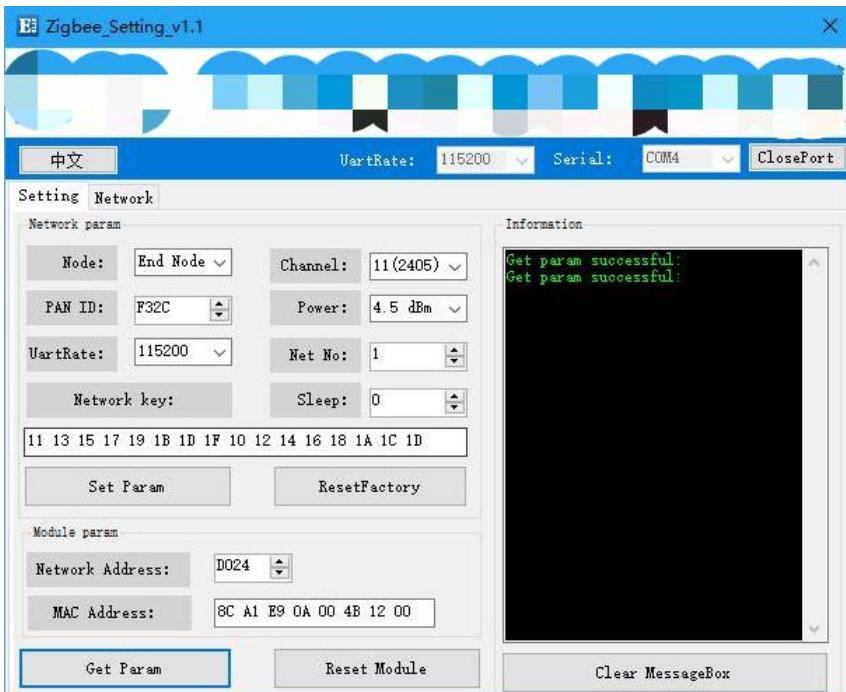
6.2 Pin connection instructions


7.Quick start

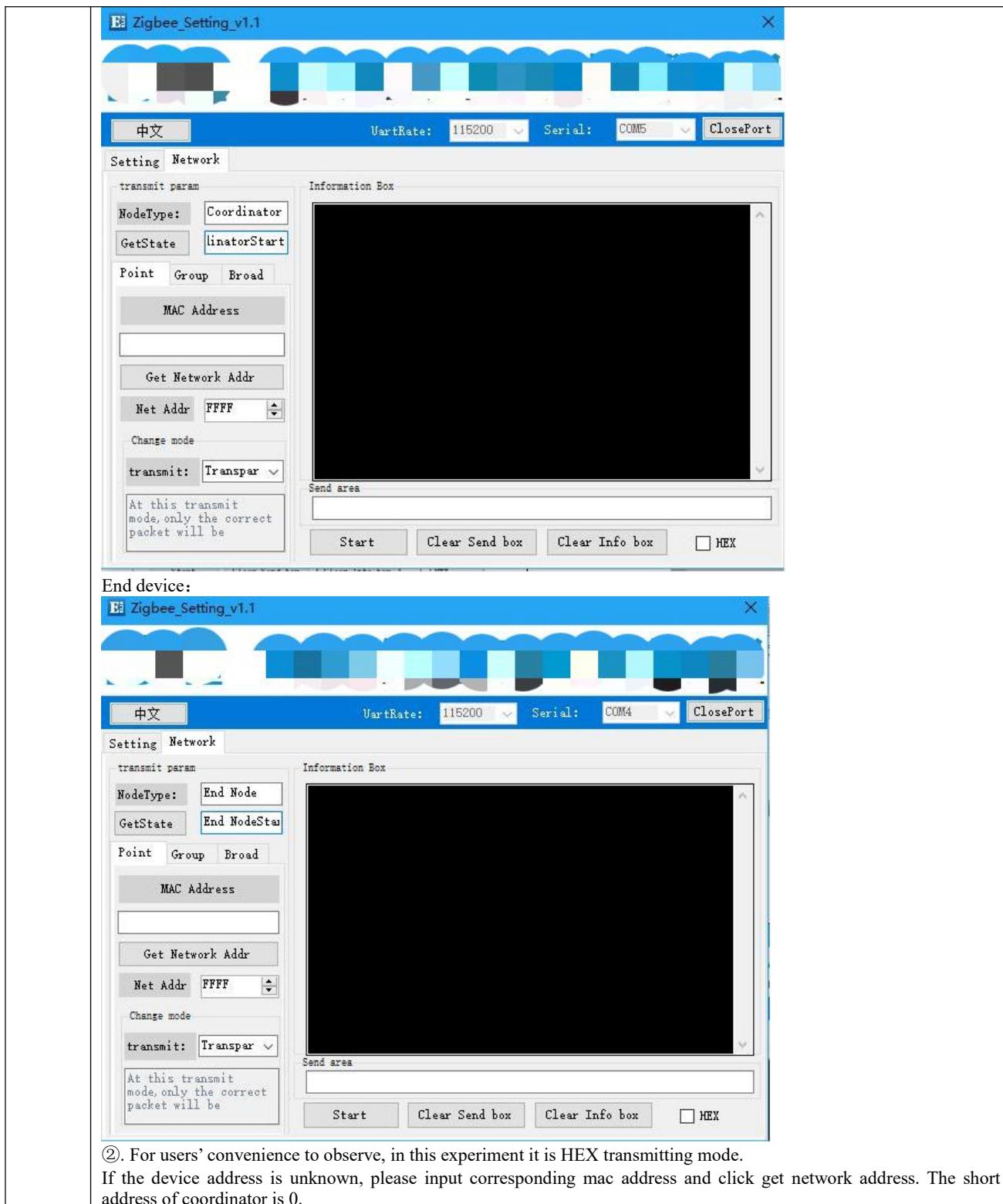

The ZigBee ad hoc network module is easy to use. In order to allow users to be quickly familiar with modules, this section will guide users to achieve configuration and communication in various modes via a simple configuration. The working mode is mode 3 (protocol mode).

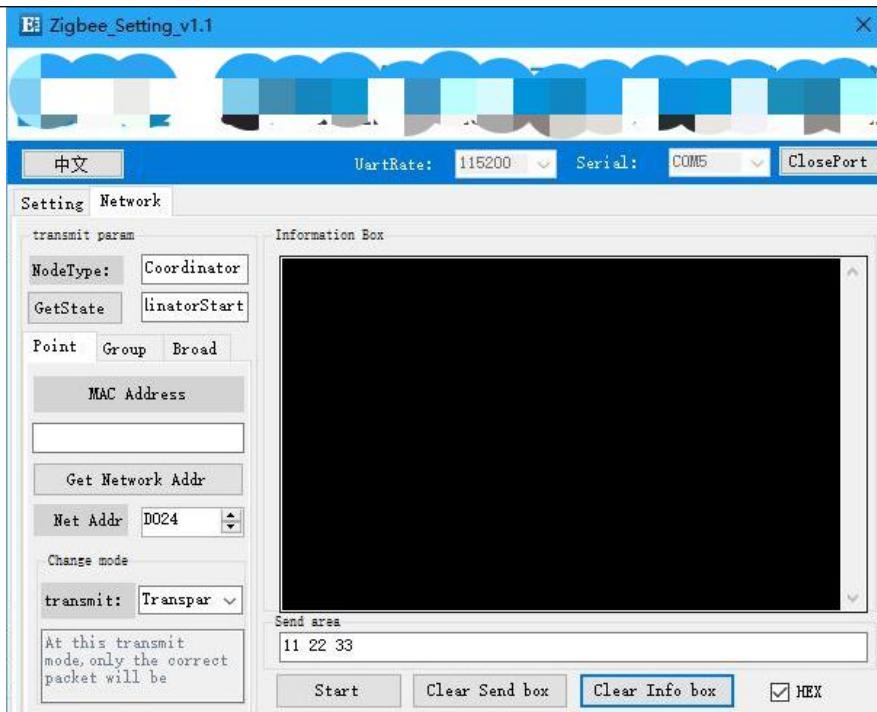

The user can pull down the P1.6 pin and conduct the HEX instruction set. In order to facilitate observation of the host computer, the experiment will use HEX command format, AT command users do not test in this test. (AT command cannot be used for the configuration of host computer.)

In addition, the user can use the external microcontroller (MCU) instead of test board directly to connect with module for UART command communication to achieve secondary development.


7.1 Network construction and communication

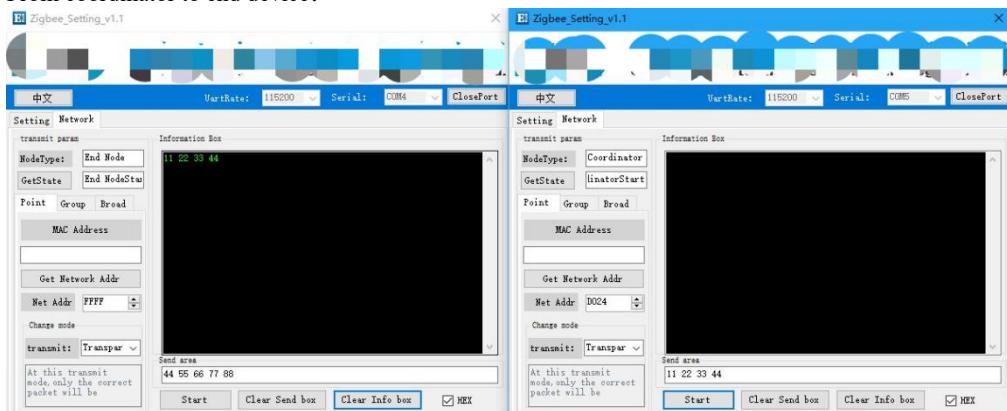
No	Notes
1	<p>【Construct network】 :</p> <p>①.Connect Zigbee ad hoc module via USB to UART converter.</p> <p>② .Open host computer software “Zigbee_Setting_V1.1”, select Com port and set baud rate as 115200(default), then open port;</p> <p>③.Click read parameter to read corresponding module parameter.</p>

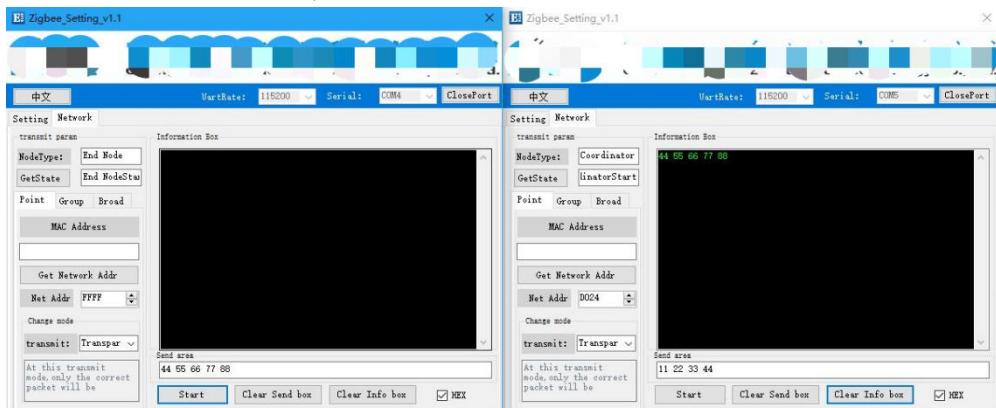




⑤. Select another module, set it as the router or end device following the same steps (module is set as end device when leave factory (default), no need to set again, in this experiment it is end device).

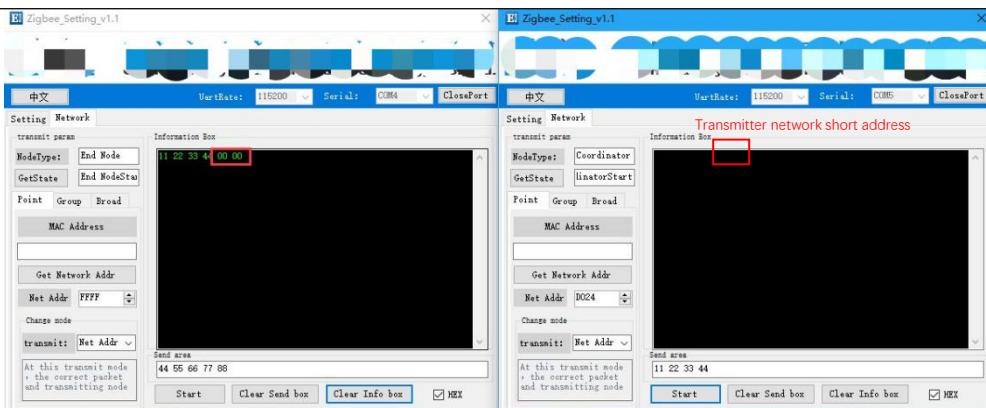
2	<p>【Communication test】 :</p> <p>①. Click “fixed networking” of the coordinator and end device of the host computer. Corresponding info is available to be viewed.</p> <p>Coordinator:</p>
---	--



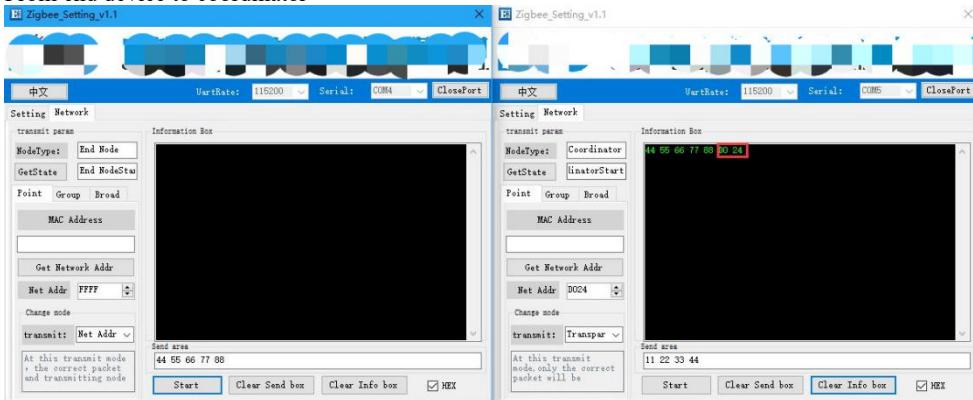

③. Input random content in these 3 modes, click start.

Transparent transmission:

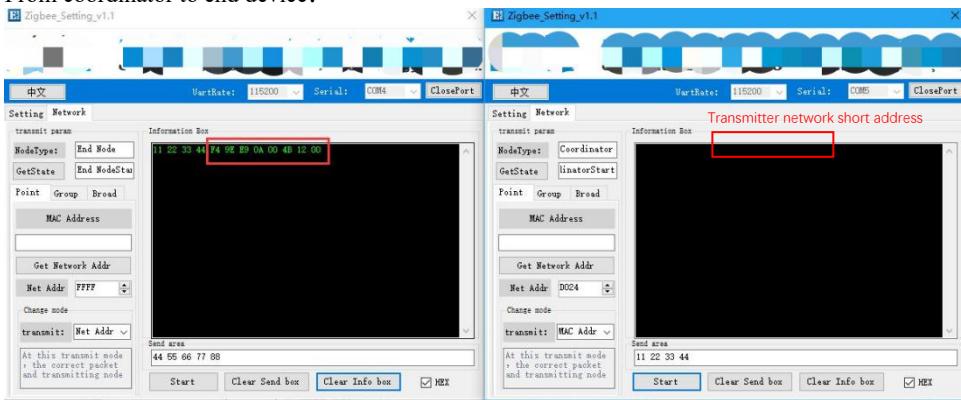
From coordinator to end device:



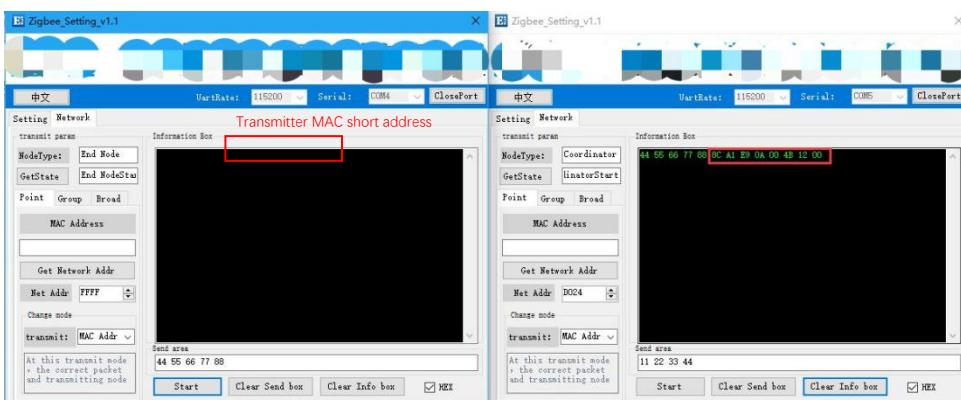
From end device to coordinator:

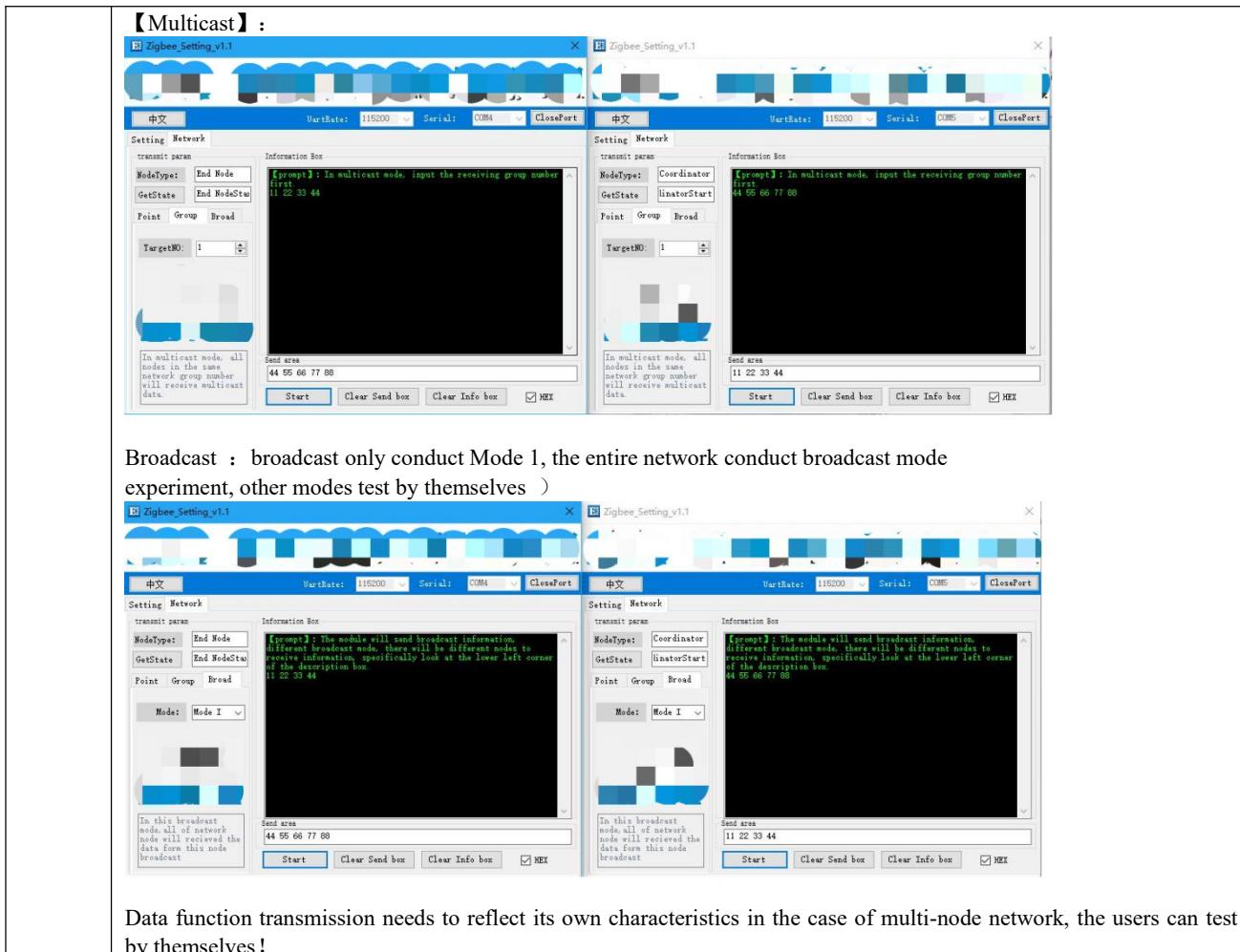

【Network address】

From coordinator to end device:

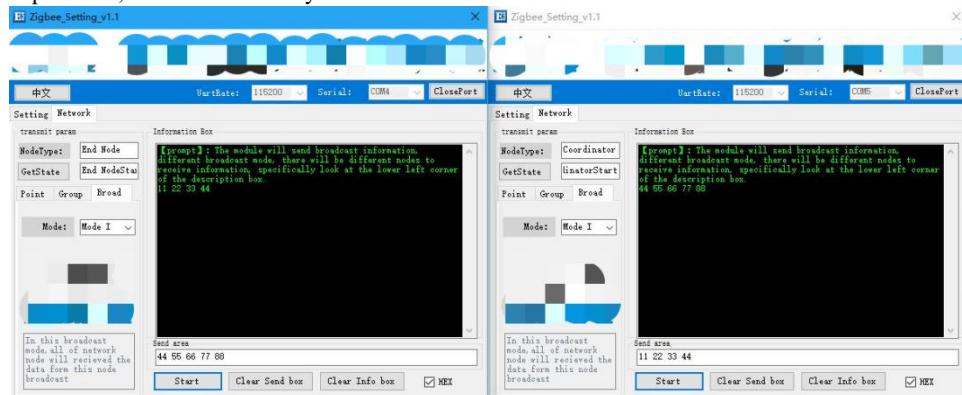

【Network address】

From end device to coordinator




【MAC address】

From coordinator to end device:



【MAC From end device to coordinator】

Broadcast : broadcast only conduct Mode 1, the entire network conduct broadcast mode experiment, other modes test by themselves)

Data function transmission needs to reflect its own characteristics in the case of multi-node network, the users can test by themselves !

8. User instruction set

In order to facilitate user use, D2106-THGN01 ZigBee module uses two instruction formats, namely AT instruction format and HEX instruction format. The format mode is controlled by default P1_6.

When P1_6 = 0, the module enters HEX instruction mode. In this mode, input +++, enter the temporary AT instruction mode. AT command can be used to configure, input AT + EXIT exit temporary AT command.

When P1_6 = 1, the module enters AT instruction mode. Line break endings cannot be used in AT instructions.

Remarks:

1 Serial data format error message

HEX instruction mode : F7 FF

AT instruction mode : +ERROR<CR><LF>

2 Coordinator device network establishment will prompt information:

HEX instruction mode : FF FF

AT instruction mode : Builded network<CR><LF>

3 Devices joining the network will prompt information

HEX instruction mode: FF AA

AT instruction mode: Joined network<CR><LF>

4 Module device without or lost network will prompt information

HEX instruction mode :FF 00

AT instruction mode: No network<CR><LF>

5 <CR>: 0x0D

6 <LF>: 0x0A

8.1 HEX read command description

Command description	Command format	Command example
Read device type	Send: FE 01 01 FF Return: FB dev_type	Send: FE 01 01 FF Return: FB 02
Read network state	Send: FE 01 02 FF Return: FB nwk_state	Send: FE 01 02 FF Return: FB 01
Read network PAN_ID	Send: FE 01 03 FF Return: FB pan_id	Send: FE 01 03 FF Return: FB 02 F4
Read network key	Send: FE 01 04 FF Return: FB key	Send: FE 01 04 FF Return: FB 11 13 15 17 19 1B 1D 1F 10 12 14 16 18 1A 1C 1D
Read local short address	Send: FE 01 05 FF Return: FB ShortAddr	Send: FE 01 05 FF Return: FB F2 EF
Read local MAC address	Send: FE 01 06 FF Return: FB Mac_Addr	Send: FE 01 06 FF Return: FB 89 6C 50 09 00 4B 12 00
Read short address of father nodes	Send: FE 01 07 FF Return: FB Coor_shortAddr	Send: FE 01 07 FF Return: FB 00 00
Read short MAC address of father nodes	Send: FE 01 08 FF Return: FB Coor_Mac_Addr	Send: FE 01 08 FF Return: FB 20 39 EA 0A 00 4B 12 00
Read network group number	Send: FE 01 09 FF Return: FB group	Send: FE 01 09 FF Return: FB 01
Read communication channel	Send: FE 01 0A FF Return: FB channel	Send: FE 01 0A FF Return: FB 0B
Read Send power	Send: FE 01 0B FF Return: FB txpower	Send: FE 01 0B FF Return: FB 04
Read UART baud rate	Send: FE 01 0C FF Return: FB baud	Send: FE 01 0C FF Return: FB 09
Read sleep state (valid for terminal nodes)	Send: FE 01 0D FF Return: FB sleep_time	Send: FE 01 0D FF Return: FB 05

Command description	Command format	Command example
Read data storage time of the node(valid for router and coordinator)	Send: FE 01 0E FF Return: FB 1E	Send: FE 01 0E FF Return: FB 1E
Read all device data	Send: FE 01 FE FF Return: FB all_info	Send: FE 01 FE FF Return: FB 02 01 02 F4 11 13 15 17 19 1B 1D 1F 10 12 14 16 18 1A 1C 1D F2 EF 89 6C 50 09 00 4B 12 00 00 00 20 39 EA 0A 00 4B 12 00 01 0B 04 09 05
Acquire short address of random MAC address in network	Send: FE 09 10 Mac_Addr FF Return: FB shortAddr	Send: FE 09 10 AF 99 E9 0A 00 4B 12 00 FF Return: FB 08 35
Read remote/local GPIO input and output state	Command: FE 04 20 addr gpiox FF Return: FB 20 addr In/Out	FE 04 20 F9 DE 04 FF
Read remote/local GPIO level	Command: FE 04 21 addr gpiox FF Return: FB 21 addr In/Out level	FE 04 21 FF FF 04 FF
Read remote/local PWM state	Command: FE 04 22 addr 22 FF Return: FB 22 addr period duty1 duty2 duty3 duty4 duty5	FE 04 22 FFFF 22 FF
Read remote/local ADC state	Command: FE 04 23 addr pin FF Return: FB 23 addr adc_value	FE 04 23 FF FF 01 FF

8.2 HEX Parameter description

8.2.1. Device type dev_type : 00 coordinator

01 router

02 terminal (default)

8.2.2. Network state nwk_state : 00 no network

01 network exists

8.2.3. Network PAN_ID pan_id : 0000~FFFE fixed network PAN_ID

FFFF stochastic network PAN_ID

8.2.4. Network key key : 16 bits network key

8.2.5. Network short address shortAddr : 2 Byte address

8.2.6. MAC address Mac_Addr : 8 Byte address

8.2.7 Short address of father nodes Coor_shortAddr : 2 Byte address

8.2.8. MAC address of father nodes Coor_Mac_Addr: : 8 Byte address

8.2.9. Network group number group : range from 1~99 (default 1)

8.2.10. Channel channel : range from 11~26 (default 11)

8.2.11. Power txpower table (default 0dBm) :

txpower	power (dBm)
00	-3
01	-1.5
02	0

txpower	power (dBm)
03	2.5
04	4.5
05	

8.2.12. Buad rate baud table (default 115200) :

baud	Baud rate
00	2400
01	4800
02	9600
03	14400
04	19200
05	38400
06	43000
07	57600

baud	Baud rate
08	76800
09	115200
0A	128000
0B	230400
0C	256000
0D	460800
0E	921600
0F	1000000

8.2.13. Sleep time sleep_time : 0 sleep mode closed (default)

Otherwise sleep mode open , sleep time is sleep_time, unit S

8.2.14. Storage time of father nodes time: range from 0~120 (default 30) , unit S

8.2.15. Gpio parameter

(1) gpio portal table

GPIO	P0_0	P0_1	P0_2	P0_3	P0_4	P0_5	P0_6	P2_0	P2_1	P2_2
HEX	00	01	02	03	04	05	06	07	08	09

(2) gpio input/output state

In/Out: 1 input state
 0 output state

(3) gpio state value (invalid for input state configuration)

level 0 low level
 1 high level
 2 switch

8.2.16. pwm parameter

(1) pwm portal table

pwmx	duty1	duty2	duty3	duty4	duty5
GPIO	P0_2	P0_3	P0_4	P0_5	P0_6

(2) period: period unit 62.5ns 0~0xffff

(3) dutyx: duty cycleunit 62.5ns 0~0xffff

8.2.17. adc parameter:

(1) adc state value

adc_state 0 ADC enabled
 1 ADC closed

(2) adc sample value

adc_value 0~0xFFFF

8.2.18. Peripheral addr parameter description

Addr value

FFFF check/configure local information
 0~FFF8 check/configure information with network address addr
 FFFE FFFD FFFC check/configure information for all devices receiving broadcast

(FFFE: broadcast to all devices in network

FFFD: broadcast to devices receiving when free (except devices in sleep)

FFFC: broadcast to coordinator and router)

8.2.19. All information all_info

dev_type	(1 Byte (0))	device type
nwk_state	(1 Byte (1))	network state
pan_id	(2 Byte (2~3))	PAN_ID
key	(16 Byte (4~20))	network key
shortAddr	(2 Byte (21~22))	network short address
Mac_Addr	(8 Byte (23~30))	MAC address
Coor_shortAddr	(2 Byte (31~32))	Short address of father nodes
Coor_Mac_Addr	(8 Byte (33~40))	MAC address of father nodes
group	(1 Byte (41))	network group number
channel	(1 Byte (42))	communication channel
txpower	(1 Byte (43))	transmit power
baud	(1 Byte (44))	UART baud rate
sleep_time	(1 Byte (45))	sleep state

Detailed parameter for example:

all_info: 02 01 02 F4 11 13 15 17 19 1B 1D 1F 10 12 14 16 18 1A 1C 1D F2 EF 89 6C 50 09 00 4B 12 00 00 00 20
39 EA 0A 00 4B 12 00 01 0B 04 09 05

Device type: 02 (Terminal)

Network state: 01 (Network exists)

Network PANID: 02 F4 (PAN_ID=0X02F4)

Network key: 11 13 15 17 19 1B 1D 1F 10 12 14 16 18 1A 1C 1D

Short address of local network: F2 EF (Short Address=0XF2EF)

Local MAC address: 89 6C 50 09 00 4B 12 00

Short address of father nodes: 00 00 (Short Address=0X0000)

MAC address of father nodes: 20 39 EA 0A 00 4B 12 00

Network group number: 01

Network channel: 0B (channel 11)

Transmit power: 04 (transmit power 4.5dBm)

Baud rate: 09 (baud rate 115200)

Sleep time: 05 (sleep mode starts, sleep time is 5s)

(Notes: Father node reserve time is not listed here, please use corresponding command for configuration and examination.)

8.3. HEX command data communication format

8.3.1. Command format description

Command (COM)	Data length (LEN)	Data content (DATA)
1Byte	1Byte	
FC	LEN	DATA

8.3.2. DATA parameter description (data is content awaiting to send)

1) Broadcast data

Command: 01+type+data

Parameter description: type

01: broadcast mode1 —broadcast the message to all devices in network

02: broadcast mode2 —broadcast the message to receiving devices(except ones in sleep mode)

03: broadcast mode3 —broadcast the message to all functional devices (router and coordinator)

Example: FC 05 01 02 31 32 33

Example explanation: Transmit HEX data to network broadcast in broadcast mode 2: 0X310X320X33

2) Multicast data

Command: 02+ group+data

Parameter description: group

0~99: number for the multicasted message

Example: FC 05 02 01 31 32 33

Example explanation: Send HEX data to Network Group 1: 0X31 0X32 0X33

3) Unicast data

Command: 03+ type +addr+data

Parameter description: type

01: transparent transmission mode (no carry message)

02: short address mode (carry message is short address)

03: MAC address mode (carry message is MAC address)

Parameter description: addr: network short address valid unicast address 0x0000—0xFFFF8)

Example: FC 07 03 01 AB CD 31 32 33**Example explanation:** HEX data with short address to devices with 0XADCD network address: 0X31 0X32 0X33

8.4 AT Command

8.4.1 AT+DEV

Function: Inquire/Configure device type**Format:**

Inquire

Send: AT+DEV= type

Return: +OK<CR><LF>

Configure

Send: AT+DEV=?

Return: DEV= type<CR><LF>

Parameter: type

C Coordinator

R Router

E End device

Example: AT+DEV=C**Default:** DEV=E

8.4.2 AT+EXIT

Function: Exit the temporary AT instruction. (P1_6 pin is valid when it is pulled down into AT command.)**Format:** Configure

Send: AT+EXIT

Return: +OK<CR><LF>

Example: AT+EXIT

8.4.3 AT+MODE

Function: Inquire/Configure operation mode**Format:** Inquire

Send: AT+MODE=?

Return: MODE=type<CR><LF>

Configure

Send: AT+MODE=mode

Return: +OK<CR><LF>

Parameters: mode

- 1 mode 1 (transparent mode)
- 2 mode 2 (half transparent mode)
- 3 mode 3 (protocol mode)

Example: AT+MODE=3

Default: MODE=3

8.4.4 AT+RMODE

Function: Inquire/Configure communication display mode

Format: Inquire

Send: AT+RMODE=?

Return: RMODE=type<CR><LF>

Configure

Send: AT+RMODE=type

Return: +OK<CR><LF>

Parameter: rmode (1:on, 0:off ; Range: 0-7)

0bit : MAC address

1bit : Short address

2bit : RSSI value of message shortest path

Example: AT+RMODE=0

Default: RMODE=0

8.4.5 AT+NWK

Function: Inquire network state

Format: Inquire

Send: AT+NWK=?

Return: NWK=nwk_state<CR><LF>

Parameter: nwk_state

0 No network

1 Existing network

Example: AT+NWK=?

8.4.6 AT+PANID

Function: Inquire/Configure PANID

Format: Inquire

Send: AT+PANID=?

Return: PANID=panid<CR><LF>

Configure

Send: AT+PANID=mode

Return: +OK<CR><LF>

Parameter: panid

0000-FFFF Fixed PANID
 FFFF Random PANID

Example: AT+ PANID=0XA1B2

8.4.7 AT+KEY

Function: Inquire/ Configure network key

Format: Inquire

Send: AT+KEY=?
 Return: KEY=key<CR><LF>
 Configure
 Send: AT+PANID=mode
 Return: +OK<CR><LF>

Parameter: key

16 Byte network key

Example: AT+ KEY=01030507090B0D0F00020406080A0C0D

Default: KEY=01030507090B0D0F00020406080A0C0D

8.4.8 AT+SHORT_ADDR

Function: Inquire local network address

Format: Inquire

Send: AT+SHORT_ADDR=?
 Return: SHORT_ADDR=shortaddr<CR><LF>

Parameter: shortaddr

0000-FFFF Network short address

Example: AT+SHORT_ADDR=?

8.4.9 AT+MAC_ADDR

Function: Inquire/Configure network PANID

Format: Inquire

Send: AT+MAC_ADDR=?
 Return: MAC_ADDR=macaddr<CR><LF>
 Parameter: macaddr

8 Byte MAC long address (unique IEEE ID)

Example: AT+MAC_ADDR=?

8.4.10 AT+COOR_SHORT_ADDR

Function: Inquire father node network short address

Format: Inquire

Send: AT+COOR_SHORT_ADDR=?
 Return: COOR_SHORT_ADDR=macaddr<CR><LF>
 Parameter : macaddr
 8 Byte MAC long address (unique IEEE ID)

Example: AT+COOR_SHORT_ADDR=?

8.4.11 AT+COOR_MAC_ADDR

Function: Inquire father node MAC address

Format: Inquire

Send: AT+COOR_MAC_ADDR=?

Return: COOR_MAC_ADDR=macaddr<CR><LF>

Parameter: macaddr

8 Byte MAC short address (unique IEEE ID)

Example: AT+COOR_MAC_ADDR=?

8.4.12 AT+GET_SHORT_ADDR

Function: Inquire the network short addresses of any MAC device

Format: Inquire

Send: AT+GET_SHORT_ADDR=macaddr

Return: GET_SHORT_ADDR=shoraddr<CR><LF>

Parameter: macaddr

8 Byte MAC Length address (Unique IEEE ID)

shoraddr

Short address of inquired device

Example: AT+GET_SHORT_ADDR=4B805A3D25741200

8.4.13 AT+GROUP

Function: Inquire/Set network group number

Format: Inquire

Send: AT+GROUP=?

Return: GROUP=group<CR><LF>

Set

Send: AT+GROUP=group

Return: +OK<CR><LF>

Parameter: group (0~99)

Local group number

Example: AT+GROUP=group

Default: GROUP=1

8.4.14 AT+CH

Function: Inquire/Configure wireless channel

Format: Inquire

Send: AT+CH=?

Return: CH=ch<CR><LF>

Configure

Send: AT+CH=ch

Return: +OK<CR><LF>

Parameter: ch (11~26)

Wireless channel

Example: AT+CH=11 **Default:** CH=11

8.4.15 AT+TXPOWER

Function: Inquire/Configure wireless transmitting power

Format: Inquire

Send: AT+TXPOWER=?

Return: CH=txpower<CR><LF>

Configure

Send: AT+TXPOWER=txpower

Return: +OK<CR><LF>

Parameter: txpower (0~4)

Transmitting power

Example: AT+TXPOWER=4

Default: TXPOWER=4

8.4.16 AT+UART

Function: Inquire/Configure serial port baud rate

Format: Inquire

Send: AT+UART=?

Return: UART=baud<CR><LF>

Configure

Send: AT+UART=baud

Return: +OK<CR><LF>

Parameter: baud (0~15)

Serial Port Baud Rate

Example: AT+UART=9

Default: UART=9

8.4.17 AT+SLEEP

Function: Inquire/Configure device sleep mode (End device valid)

Format: Inquire

Send: AT+SLEEP=?

Return: SLEEP=sleep<CR><LF>

Configure

Send: AT+SLEEP=sleep

Return: +OK<CR><LF>

Parameter: sleep

0 close sleep mode

1~250 Sleep mode is turned on, sleeping time is 1-250 seconds

Example: AT+SLEEP=0

Default: SLEEP=0

8.4.18 AT+DATA_TIME

Function: Inquire/Configure data reserved time

Format: Inquire

Send: AT+DATA_TIME=?

Return: DATA_TIME=data_time<CR><LF>

Configure

Send: AT+SLEEP=data_time

Return: +OK<CR><LF>

Parameter: data_time

0~120 Data retention time,Unit:S

Example: AT+DATA_TIME=30

Default: DATA_TIME=30

8.4.19 AT+SOFT_ID

Function: Inquire software version number

Format: Inquire

Send: AT+SOFT_ID=?

Return: SOFT_ID=soft_id<CR><LF>

Parameter: soft_id

software version number

Example: AT+SOFT_ID=?

8.4.20 AT+RESET

Function: Device reset

Format: Configure

Send: AT+RESET

Return: +OK<CR><LF>

Example: AT+RESET=?

8.4.21 AT+RESTORE

Function: Restore factory settings

Format: Configure

Send: AT+RESTORE

Return: +OK<CR><LF>

Example: AT+RESTORE=?

8.3.22 AT+GPIO_PUT

Function: Configure remote/local GPIO input/output mode

Format: Configure

Send: AT+GPIO_PUT=addr,gpiox,inout

Return: +OK<CR><LF>

Parameter: addr

0000~FFF8 remote short address device

FFFF local device

gpiox (0~9)

GPIO port number

input

0 Output state

1 Input state

Example: AT+GPIO_PUT=1AC0,5,0

8.4.23 AT+RGPIO_PUT

Function: Read remote/local GPIO input/output mode

Format: Configure

Send: AT+RGPIO_PUT=addr,gpiox

Return: RGPI0_PUT=addr,input<CR><LF>

Parameter: addr

0000~FFF8 Remote short address device

FFFF local device

gpiox (0~9)

GPIO Port number

input

0 Output state

1 Input state

Example: AT+RGPIO_PUT=1AC0,5

8.4.24 AT+GPIO_LEVEL

Function: Read remote/local GPIO input/output mode

Format: Configure

Send: AT+GPIO_LEVEL=addr,gpiox,level

Return: +OK<CR><LF>

Parameter: addr

0000~FFF8 Remote short address device

FFFF Local device

gpiox (0~9)

GPIO port number

level

0 high level

1 low level

2 overturn

Example: AT+GPIO_LEVEL=1AC0,5,2

8.4.25 AT+RGPIO_LEVEL

Function: Read remote/local GPIO input/output mod

Format: Read

Send: AT+RGPIO_LEVEL=addr,gpiox

Return: RGPI0_LEVEL=addr,input,level<CR><LF>

Parameter: addr

0000~FFF8 Remote short address device

FFFF Local device

gpiox (0~9)

GPIO Port number

input

0 Output state

1 Input mode

level

0 High level

1 Low level

Example: AT+RGPIO_LEVEL=1AC0,5

8.4.26 AT+PWM

Function: Configure remote/local PWM input/output mode

Format: Configure

Send: AT+PWM=addr,period,duty1,duty2,duty3,duty4,duty5

Return: +OK<CR><LF>

Parameter: addr

0000~FFF8 Remote short address device

FFFF Local device

period (1 = 62.5ns)

0~65535 周期

duty1

0 Close

Other channel 1 is square wave with duty cycle of 50%.

duty2~duty5 (0~65535 1 = 62.5ns)

The PWM of the channel is closed when the pulse width time of the corresponding channel number is 0 or greater than the period.

Example: AT+PWM=1AC0,1000,1,500,500,0,500

8.4.27 AT+RPWM

Function: Read remote/local PWM input/output mode

Format: Read

Send: AT+RPWM=addr

Return: RPWM=addr,period,duty1,duty2,duty3,duty4,duty5<CR><LF>

Parameter: addr

0000~FFF8 Remote short address device

FFFF Local device

period (1 = 62.5ns)

0~65535 cycle

duty1

0 Close

Other channel 1 is square wave with duty cycle of 50%

duty2~duty5 (0~65535 1 = 62.5ns)

The PWM of the channel is closed when the pulse width time of the corresponding channel number is 0 or greater than the period.

Example: AT+RPWM=1AC0

8.4.28 AT+ADC

Function: Read remote/local ADC input

Format: Read

Send: AT+ADC=addr,adcx

Return: ADC=addr,val<CR><LF>

Parameter: addr

0000~FFF8 Remote short address device

FFFF Local device

adcx (0~6)

ADC Channel

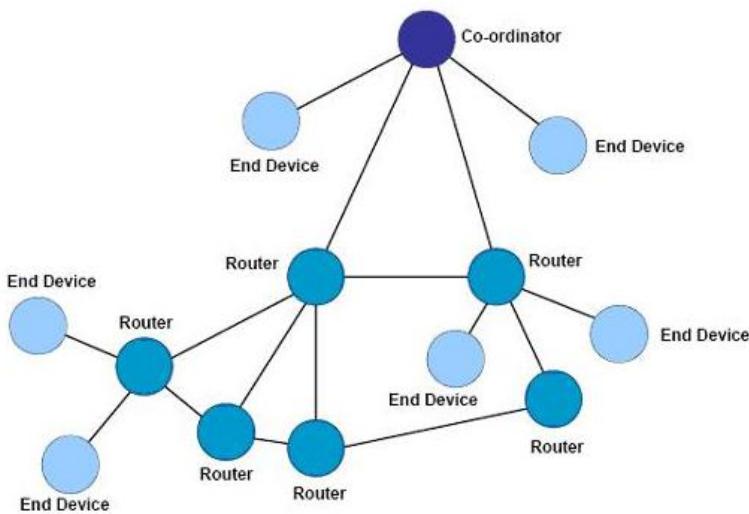
val (0~3300)

Current acquisition voltage, unit mV (millivolt)

Example: AT+ADC=1AC0,5

9. User instruction

9.1 ZigBee networking role and notice


No.	Description
1	Module uses Zigbee ad hoc networking, consisting of one coordinator and random other devices(routers and end-devices)
2	It has self-organization, self-routing and network multi-hopping function (By default the network depth is 5, there are 20 son nodes and 6 son router nodes in total).
3	The father node device (coordinator and router) can save data for the end-devices in sleep. The save time can be set by the user (by default it is 30 seconds, ranging from 0 to 120 seconds).
4	Only the end device has the sleep function, sleeping within 120S, the user can set by themselves, the default 0 (with sleep mode off). Note: The recommended sleep time must be less than the data storage time of father node , otherwise it will affect the data reception.
5	In network communication Short Address communication is used. Note: The short address is randomly distributed when the device joins the network, the long address of MacAddress is the only fixed one, if the short address is unknown, the network Short Address can be found via corresponding commands according to the MacAddress , and point to point communication is conducted.
6	Coordinator is unique in the network, the short address is 0000.
7	If unicast address is FFFF, FFFD, FFFC, then it corresponds to three broadcast mode.
8	When PANID is FFFF, it means automatic distribution. Networking cannot be realized if PANID is different.
9	When network keys are not the same the network cannot be joined. The module network key of the module remains open, the user cannot get the correct air data via software packet capture .
10	All devices in the network have opened broadcast function. Multiple devices broadcasting at the same time or a single device broadcasting at a higher frequency will lead to a serious network congestion. Please try to avoid this situation.
11	When multicasting module does not need to join the group,but be directly multicasted to any group according to communication usage guidance. After the multicast, the local group number will not change due to different multicast number.
12	PWM function and sleep mode cannot be used at the same time in network, please turn off the sleep mode before turn on PWM function .
13	After sleep mode, it can be waked up via the serial port(UART). Note: In the sleep state, the first frame of data waked up via UART is invalid.
14	In ZigBee network communication, the transmission cycle of single packet data should not be too fast (generally recommended in more than 1 second), too fast may cause data loss. (Pay special attention to the fact that there are too many nodes in the network and the broadcast cycle is too fast, which may cause network instability.)

9.2 Network structure

The network structure of module is MESH network

MESH network topology network has a powerful function, the network can communicate via "multi-level hopping"; the topology can also form a very complex network; network also has self-organization, self-healing function.

Network structure diagram

10. Hardware design

- It is recommended to use a DC stabilized power supply. The power supply ripple factor is as small as possible, and the module needs to be reliably grounded.
- Please pay attention to the correct connection of the positive and negative poles of the power supply.
- Reverse connection may cause permanent damage to the module;
- Please check the power supply to ensure it is within the recommended voltage otherwise when it exceeds the maximum value the module will be permanently damaged;
- Please check the stability of the power supply, the voltage cannot be fluctuated frequently;
- When designing the power supply circuit for the module, it is often recommended to reserve more than 30% of the margin, so the whole machine is beneficial for long-term stable operation.
- The module should be as far away as possible from the power supply, transformers, high-frequency wiring and other parts with large electromagnetic interference
- High-frequency digital routing, high-frequency analog routing, and power routing must be avoided under the module. If it is necessary to pass through the module, assume that the module is soldered to the Top Layer, and the copper is spread on the Top Layer of the module contact part(well grounded), it must be close to the digital part of the module and routed in the Bottom Layer;
- Assuming the module is soldered or placed over the Top Layer, it is wrong to randomly route over the Bottom Layer or other layers, which will affect the module's spurs and receiving sensitivity to varying degrees;
- It is assumed that there are devices with large electromagnetic interference around the module that will greatly affect the performance. It is recommended to keep them away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done;
- Assume that there are traces with large electromagnetic interference (high-frequency digital, high-frequency analog, power traces) around the module that will greatly affect the performance of the module. It is recommended to stay away from the module according to the strength of the interference

If necessary, appropriate isolation and shielding can be done.

- If the communication line uses a 5V level, a 1k-5.1k resistor must be connected in series (not recommended, there is still a risk of damage);
- Try to stay away from some physical layers such as TTL protocol at 2.4GHz, for example: USB3.0;
- The mounting structure of antenna has a great influence on the performance of the module. It is necessary to ensure that the antenna is exposed, preferably vertically upward. When the module is mounted inside the case, use a good antenna extension cable to extend the antenna to the outside;
- The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly weakened.

11. FAQ

11.1 Communication range is too short

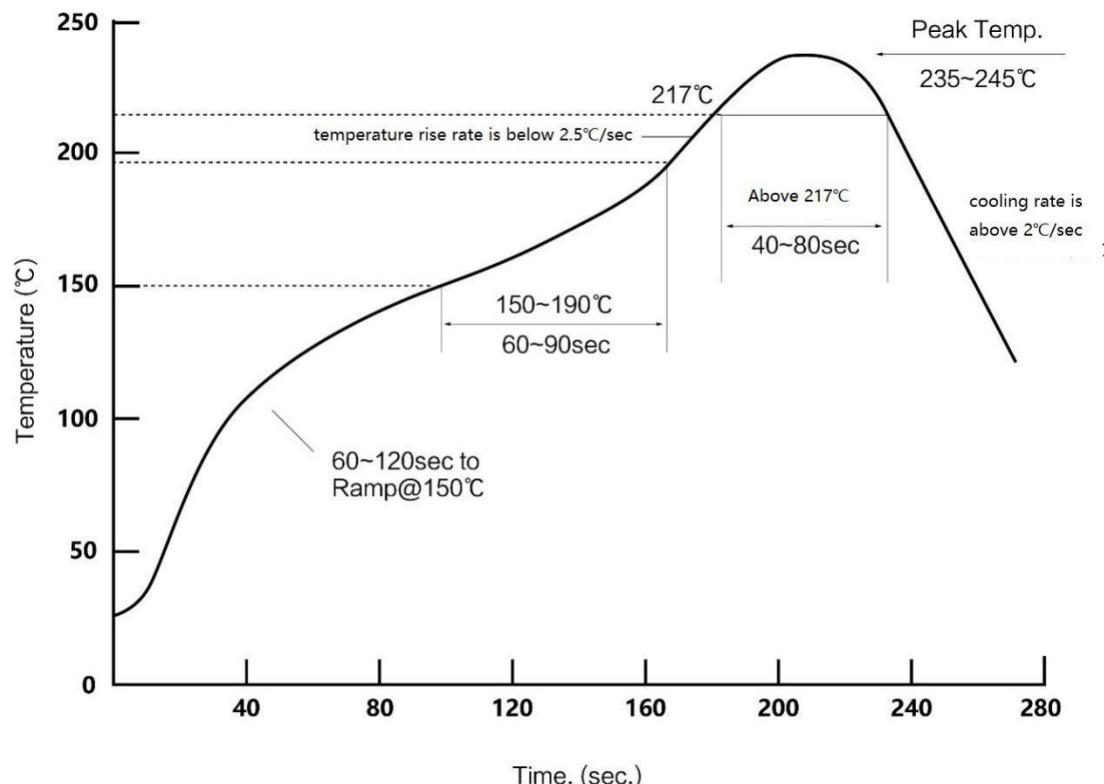
- The communication distance will be affected when obstacle exists.
- Data lose rate will be affected by temperature, humidity and co-channel interference.
- The ground will absorb and reflect wireless radio wave, so the performance will be poor when testing near ground.
- Sea water has great ability in absorbing wireless radio wave, so performance will be poor when testing near the sea.
- The signal will be affected when the antenna is near metal object or put in a metal case.
- Power register was set incorrectly, air data rate is set as too high (the higher the air data rate, the shorter the distance).
- The power supply low voltage under room temperature is lower than 2.5V, the lower the voltage, the lower the transmitting power.
- Due to antenna quality or poor matching between antenna and module.

11.2 Module is easy to damage

- Please check the power supply source, ensure it is 2.0V~3.6V, voltage higher than 3.6V will damage the module.
- Please check the stability of power source, the voltage cannot fluctuate too much.
- Please make sure antistatic measure are taken when installing and using, high frequency devices have electrostatic susceptibility.
- Please ensure the humidity is within limited range, some parts are sensitive to humidity.
- Please avoid using modules under too high or too low temperature.

11.3 Bit error rate is too high

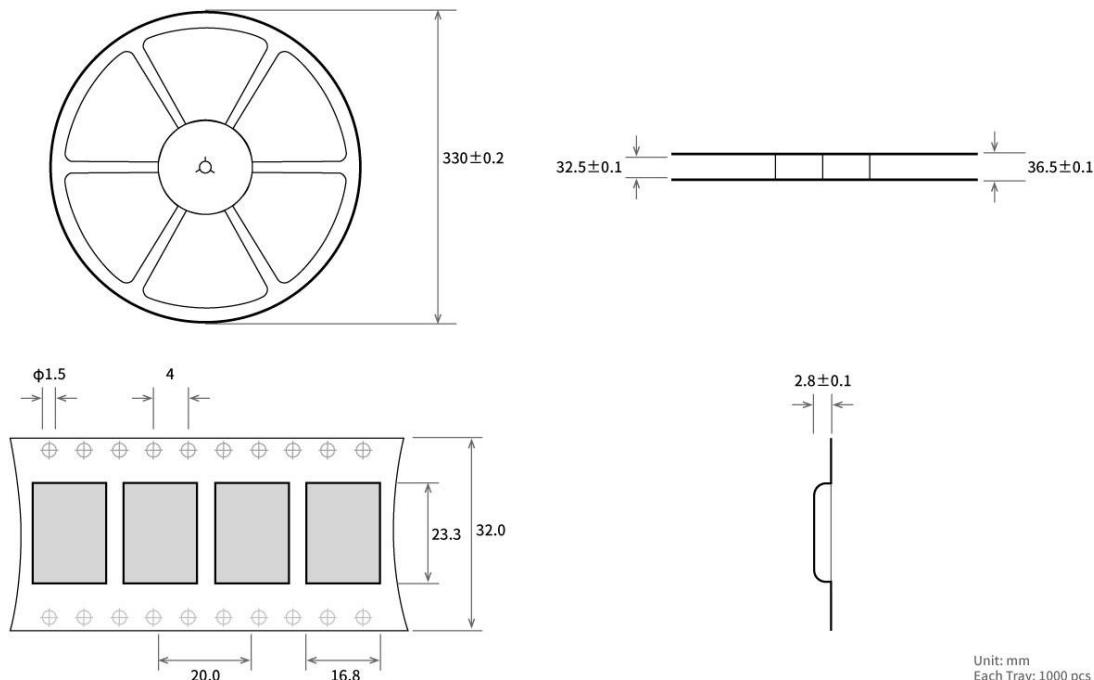
- There are co-channel signal interference nearby, please be away from interference sources or modify frequency and channel to avoid interference;
- Poor power supply may cause messy code. Make sure that the power supply is reliable.
- The extension line and feeder quality are poor or too long, so the bit error rate is high;


12. Production guidance

12.1 Reflow soldering temperature

- Pre-heating area: maximum temperature rise is 2.5°C/s;

- Thermal insulation area: temperature is 150~190°C, time is 60~90s, maximum temperature rise is 2.5°C/s;
- Reflowing area: maximum temperature is 235~245°C, time for above 217°C is 40~80s;
- Cooling area: maximum temperature drop is 4°C/s.


12.2 Reflow soldering curve

13. Antenna information

Antenna Manufacturer:	Shenzhen Raintenna Technology Co., Ltd
Antenna Model:	YC-TH-2.4G-20210604(3M)
Antenna type:	Sucker Antenna
Antenna gain:	2dBi

14. Product packaging figure

This module has been tested and found to comply with part 15.247 requirements for Modular Approval.

This module is intended for OEM integrator. The OEM integrator is responsible for the compliance to all the rules that apply to the product into which this certified RF module is integrated. **Additional testing and certification may be necessary when multiple modules are used.**

FCC Caution:

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Host product manufacturers that they need to provide a physical or e-label stating, "Contains FCC ID: 2AZTB-D2106-THGN01" with their finished product.

Only those antennas with same type and lesser gain filed under this FCC ID can be used with this device.

The host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

The final host integrator must ensure there is no instruction provided in the user manual or customer documentation indicating how to install or remove the transmitter module except such device has implemented two-ways authentication between module and the host system.

The final host manual shall include the following regulatory statement: This equipment has been tested and found to comply with the limits for a This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must

accept any interference received, including interference that may cause undesired operation.

FCC RF Radiation Exposure Statement:

1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
2. This equipment complies with RF radiation exposure limits set forth for an uncontrolled environment.
3. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.