

# **TEST REPORT**

Test Report No.: UL-RPT-RP-13524356-616-FCC

**Applicant** Jifeline Networks B.V.

Model No. J-ReX

**FCC ID** 2AZLW-OBD-CON-V10

Technology WLAN (802.11 n)

Test Standard(s) FCC Parts 15.209(a) & 15.247

For details of applied tests refer to test result summary

- This test report shall not be reproduced in full or partial, without the written approval of UL 1. International Germany GmbH.
- 2. The results in this report apply only to the sample tested.
- 3. The test results in this report are traceable to the national or international standards.
- Test Report Version 1.2 supersede Version 1.1 with immediate effect 4. Test Report No. UL-RPT-RP-13524356-616-FCC Version 1.2, Issue Date 25 JUNE 2021 replaces Test Report No. UL-RPT-RP-13524356-616-FCC Version 1.1, Issue Date 25 JUNE 2021, which is no longer valid.

5. Result of the tested sample: PASS

> Prepared by: Sercan, Usta Title: Laboratory Engineer

Date: 25 June 2021

Approved by: Ajit, Phadtare Title: Lead Test Engineer

Date: 25 June 2021





This laboratory is accredited by DAkkS. The tests reported herein have been performed in accordance with its' terms of accreditation.

TEST REPORT NO: UL-RPT-RP-13524356-616

TEST REPORT VERSION 1.2 ISSUE DATE: 25 JUNE 2021

This page has been left intentionally blank.



## **Table of Contents**

| 1. | Customer Information                                                                                | 4        |
|----|-----------------------------------------------------------------------------------------------------|----------|
|    | 1.1. Applicant Information                                                                          | 4        |
|    | 1.2. Manufacturer Information                                                                       | 4        |
| 2. | Summary of Testing                                                                                  | 5        |
|    | 2.1. General Information                                                                            | 5        |
|    | Applied Standards                                                                                   | 5        |
|    | Location                                                                                            | 5        |
|    | Date information                                                                                    | 5        |
|    | 2.2. Summary of Test Results                                                                        | 6        |
|    | <ul><li>2.3. Methods and Procedures</li><li>2.4. Deviations from the Test Specification</li></ul>   | 6        |
| _  | ·                                                                                                   |          |
| 3. | Equipment Under Test (EUT)                                                                          |          |
|    | <ul><li>3.1. Identification of Equipment Under Test (EUT)</li><li>3.2. Description of EUT</li></ul> | 7<br>7   |
|    | 3.3. Modifications Incorporated in the EUT                                                          | 7        |
|    | 3.4. Additional Information Related to Testing                                                      | 8        |
|    | 3.5. Support Equipment                                                                              | 8        |
|    | A. Support Equipment (In-house)                                                                     | 8        |
|    | B. Support Equipment (Manufacturer supplied)                                                        | 8        |
| 4. | Operation and Monitoring of the EUT during Testing                                                  | 9        |
|    | 4.1. Operating Modes / Worst Case Identification                                                    | 9        |
|    | 4.2. Configuration and Peripherals                                                                  | 9        |
| 5. | Measurements, Examinations and Derived Results                                                      | 10       |
|    | 5.1. General Comments                                                                               | 10       |
|    | 5.2. Test Results                                                                                   | 11       |
|    | 5.2.1. Transmitter Minimum 6 dB Bandwidth                                                           | 11       |
|    | 5.2.2. Transmitter Duty Cycle                                                                       | 14       |
|    | 5.2.3. Transmitter Power Spectral Density                                                           | 16       |
|    | 5.2.4. Transmitter Maximum Output Power 5.2.5. Transmitter Radiated Emissions                       | 19<br>21 |
|    | 5.2.6. Transmitter Radiated Emissions 5.2.6. Transmitter Band Edge Radiated Emissions               | 33       |
| c  | -                                                                                                   |          |
|    | Measurement Uncertainty                                                                             |          |
| 7. | Used equipment                                                                                      | 38       |
| Q  | Report Revision History                                                                             | 30       |

# 1. Customer Information

### 1.1. Applicant Information

| Company Name:           | Jifeline BV                                       |
|-------------------------|---------------------------------------------------|
| Company Address:        | De Hoogjens 11, 4254XV Sleeuwijk, The Netherlands |
| Company Phone No.:      | +31(0)85-4863727                                  |
| Company E-Mail:         | info@jifeline.com                                 |
| Contact Person:         | Femke van Wanrooij                                |
| Contact E-Mail Address: | femke@jifeline.com                                |
| Contact Phone No.:      | +32(0)854863727                                   |

### 1.2. Manufacturer Information

| Company Name:           | Jifeline BV                                       |
|-------------------------|---------------------------------------------------|
| Company Address:        | De Hoogjens 11, 4254XV Sleeuwijk, The Netherlands |
| Company Phone No.:      | +31(0)85-4863727                                  |
| Company E-Mail:         | info@jifeline.com                                 |
| Contact Person:         | Femke van Wanrooij                                |
| Contact E-Mail Address: | femke@jifeline.com                                |
| Contact Phone No.:      | +32(0)854863727                                   |

# 2. Summary of Testing

### 2.1. General Information

### **Applied Standards**

| Specification Reference: | 47CFR15.247                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Specification Title:     | Code of Federal Regulations Volume 47 (Telecommunications):<br>Part 15 Subpart C (Intentional Radiators) - Section 15.247 |
| Specification Reference: | 47CFR15.209                                                                                                               |
| Specification Title:     | Code of Federal Regulations Volume 47 (Telecommunications):<br>Part 15 Subpart C (Intentional Radiators) – Section 15.209 |

### **Location**

| Location of Testing:    | UL International Germany GmbH Hedelfinger Str. 61 70327 Stuttgart Germany |
|-------------------------|---------------------------------------------------------------------------|
| Test Firm Registration: | 399704                                                                    |

### **Date information**

| Order Date: 24 September 2020 |                                  |
|-------------------------------|----------------------------------|
| EUT arrived: 18 December 2020 |                                  |
| Test Dates:                   | 09 February 2021 to 10 June 2021 |
| EUT returned:                 | -/-                              |



2.2. Summary of Test Results

| Clause                     | lause Measurement                                 |             | Did not comply | Not performed | Not applicable |
|----------------------------|---------------------------------------------------|-------------|----------------|---------------|----------------|
| Part 15.207                | Transmitter AC Conducted Emissions <sup>(1)</sup> |             |                |               | $\boxtimes$    |
| Part 15.247(a)(2)          | Transmitter Minimum 6 dB Bandwidth                | $\boxtimes$ |                |               |                |
| Part 15.35(c)              | Transmitter Duty Cycle <sup>(2)</sup>             | $\boxtimes$ |                |               |                |
| Part 15.247(e)             | Transmitter Power Spectral Density                | $\boxtimes$ |                |               |                |
| Part 15.247(b)(3)          | Transmitter Maximum Output Power                  | $\boxtimes$ |                |               |                |
| Part 15.247(d) & 15.209(a) | Transmitter Radiated Emissions                    | $\boxtimes$ |                |               |                |
| Part 15.247(d) & 15.209(a) | Transmitter Band Edge Radiated Emissions          |             |                |               |                |

#### Note(s):

- 1. Not applicable as the EUT will be powered via an automotive vehicle DC battery. In accordance with Part 15.207(c) measurements to demonstrate compliance are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines or do not make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or do not connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines.
- The measurement was performed to determine the Duty Cycle Correction Factor to compute the
  corrected average values of the emissions that would have been measured had the test been
  performed at 100% Duty Cycle.

#### 2.3. Methods and Procedures

| Reference: | ANSI C63.10-2013                                                                                                                                                                         |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:     | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                                                                           |
| Reference: | KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019                                                                                                                                 |
| Title:     | Guidance for compliance measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC rules |

#### 2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.



### 3. Equipment Under Test (EUT)

### 3.1. Identification of Equipment Under Test (EUT)

| Brand Name:                | Jifeline                |  |
|----------------------------|-------------------------|--|
| Model Name or Number:      | J-ReX                   |  |
| Test Sample Serial Number: | 32520 (Radiated Sample) |  |
| Hardware Version Number:   | 10                      |  |
| Software Version Number:   | 100000050               |  |
| FCC ID:                    | 2AZLW-OBD-CON-V10       |  |

| Brand Name:                | Jifeline                    |  |
|----------------------------|-----------------------------|--|
| Model Name or Number:      | J-ReX                       |  |
| Test Sample Serial Number: | KIM19005 (Conducted Sample) |  |
| Hardware Version Number:   | 10                          |  |
| Software Version Number:   | 100000050                   |  |
| FCC ID:                    | 2AZLW-OBD-CON-V10           |  |

### 3.2. Description of EUT

The equipment under test was an automotive remote diagnostics tool to connect the OBD diagnostics vehicle communication to an online cloud platform supporting WLAN 802.11n operations in 2.4 - 2.4835 GHz ISM band.

### 3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.



### 3.4. Additional Information Related to Testing

| Category of Equipment:                | WLAN (IEEE 802.11n) / Digital Transmission System |                      |                            |  |
|---------------------------------------|---------------------------------------------------|----------------------|----------------------------|--|
| Type of Radio Device:                 | Transceiver                                       |                      |                            |  |
| Power Supply Requirement(s):          | Nominal                                           | 12 - 24              | V DC / 3 - 5 A             |  |
|                                       | Nominal                                           | 25 °C                | 25 °C                      |  |
| Temperature Requirement(s):           | Minimum                                           | 0 °C                 | 0 °C                       |  |
|                                       | Maximum                                           | 85 °C                | 85 °C                      |  |
| Relative Humidity                     | 30%                                               |                      |                            |  |
| Supported Transmit Operating Mode(s): | IEEE 802.11n (Note 1)                             |                      |                            |  |
| Data Rates:                           | 802.11 n HT20 MCS0 to MCS7                        |                      |                            |  |
| Modulation Types:                     | OFDM BPSK, QPSK, 16QAM, 64QAM                     |                      |                            |  |
| Nominal Channel Bandwidth:            | 20 MHz                                            |                      |                            |  |
| Maximum Conducted Output Power:       | 13.62 dBm                                         |                      |                            |  |
| Declared Antenna Gain:                | 0.0 dBi                                           |                      |                            |  |
| Antenna Type:                         | Single PCB Anten                                  | nna Equipment        |                            |  |
| Antenna Details:                      | Embedded on-boa                                   | ard PCB antenna   DP | PT   DPT-Module-v1         |  |
| Transmit Frequency Range:             | 2412 MHz to 2462                                  | 2 MHz                |                            |  |
| Transmit Channels Tested:             | Channel ID                                        | Channel Number       | Channel<br>Frequency (MHz) |  |
|                                       | Bottom                                            | 1                    | 2412                       |  |
|                                       | Middle                                            | 6                    | 2437                       |  |
|                                       | Top 11 2462                                       |                      |                            |  |
|                                       |                                                   |                      |                            |  |

(Note 1) As per applicant's declaration & in accordance with data sheet of the radio module's (Model: DPT-Module) FCC\_Jifeline\_wifi\_module\_datasheet\_rev2.pdf | Issue Date: June 26,2017 | DPTECHNICS "The DPT-Module is a general purpose embedded system with integrated 2.4GHz 802.11n WiFi."

### 3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

### A. Support Equipment (In-house)

| Item | Description            | Brand Name | Model Name or Number | Serial Number |
|------|------------------------|------------|----------------------|---------------|
| 1    | Test Laptop with Putty | HP         | HP Probook 650 G1    | 5CG614419V    |

### **B. Support Equipment (Manufacturer supplied)**

| Item | Description           | Brand Name | Model Name or Number         | Serial Number |
|------|-----------------------|------------|------------------------------|---------------|
| 1    | USB Programming Cable | N/A        | N/A                          | N/A           |
| 2    | DC Power Cable        | N/A        | N/A                          | N/A           |
| 3    | OBD Cable             | N/A        | N/A                          | N/A           |
| 4    | Car Battery           | Yuasa      | NP7-12L<br>Type 12 V, 7.0 Ah | N/A           |



### 4. Operation and Monitoring of the EUT during Testing

### 4.1. Operating Modes / Worst Case Identification

The EUT was tested in the following operating mode(s):

\*All supported data rates, modulation schemes & nominal channel bandwidths configurations were initially investigated to determine the above-mentioned worst-cases for highest power and widest bandwidth

### 4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

 The applicant supplied a document containing the setup instructions "DPT-Module V1 radio test firmware" Revision V1, issue date 16.11.2020

#### **EUT Power Supply:**

- The EUT Conducted Sample was powered by 3.3 V DC via laboratory DC power supply.
- The EUT Radiated Sample was powered by a fully charged automotive 12 V DC battery supplied by the customer..

#### **Test Mode Activation:**

- The EUT connected via USB cable to the test laptop.
- "The test modes were activated using terminal (Putty.exe) software tool supplied by applicant. The application was used to enable continuous transmission and to select the test channels as required.
- The EUTs were configured to continuous transmissions mode with power level (PWR) 14.
- As the EUT was transmitting continuously with a Duty Cycle of 88.69 %, a Duty Cycle Correction Factor of 0.52 dB was added to all average measurements.

#### **Conducted Measurements:**

 All conducted measurements were carried using conducted samples with SMA (Female) RF Cable soldered on PCB by the customer. The maximum attenuation of 0.5 dB at the tested frequencies was added to a reference level offset to each of the conducted plots.

#### **Radiated Measurements:**

- The radiated samples with integrated on chip antenna were used for radiated spurious emission measurements.
- Before starting final radiated spurious emission measurements "worst case verification" with the EUT in Standing-position & Laying-position was performed by Lab.
- The EUT in Laying-position was found to be the worst case therefore this report includes relevant results.
- Radiated measurments below 30 MHz were performed with the EUT positioned on the turn table and rotating 360 degrees while the loop antenna height was set to 80 cm.
- Radiated measurments above 30 MHz were performed with the EUT positioned on the turn table and rotating 360 degrees while the antenna height varies from 1 to 4 m over the measurement frequency range.
- R&S<sup>®</sup> EMC32 V10.60.10 Software was used for the Radiated spurious emission measurements.



# 5. Measurements, Examinations and Derived Results

### **5.1. General Comments**

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.



#### 5.2. Test Results

#### 5.2.1. Transmitter Minimum 6 dB Bandwidth

#### **Test Summary:**

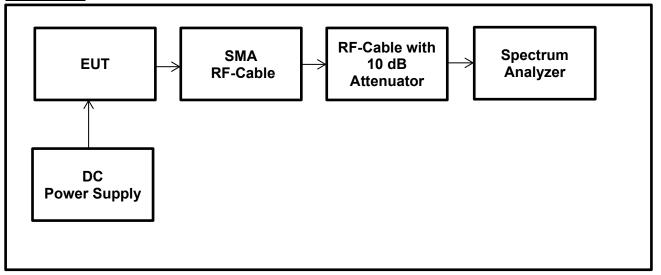
| Test Engineer:             | Sercan Usta                 | Test Date: | 01 March 2021 |
|----------------------------|-----------------------------|------------|---------------|
| Test Sample Serial Number: | KIM19005 (Conducted Sample) |            |               |
| Test Site Identification   | SR 9                        |            |               |

| FCC Reference:    | Part 15.247(a)(2)                                                                  |
|-------------------|------------------------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Section 8.2 referencing<br>ANSI C63.10:2013 Section 11.8.1 Option 1 |

### **Environmental Conditions:**

| Temperature (°C):      | 27.1 |
|------------------------|------|
| Relative Humidity (%): | 36.2 |

#### Note(s):

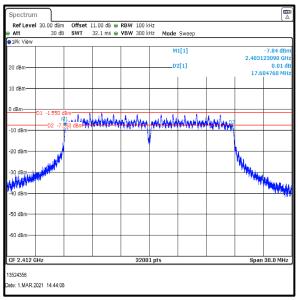

- 1. The measurements were performed using the above configurations on the bottom, middle and top channels in accordance FCC KDB 558074 Section 8.2 referencing ANSI C63.10 Section 11.8 (11.8.1 Option 1 measurement procedure).
- 2. The spectrum analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
- 3. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.5 dB at the tested frequencies.
  - The RF cable from the EUT to Analyzer with maximum attenuation of 0.5 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer

Therefore, total a reference level offset 11.0 dB was added to each of the at the tested frequencies conducted plots.



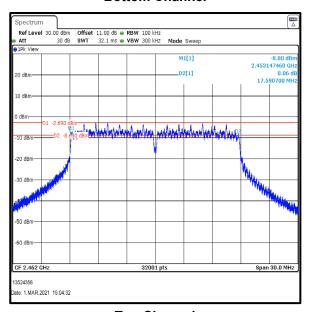
### **Transmitter Minimum 6 dB Bandwidth (continue)**

## Test Setup:






### **Transmitter Minimum 6 dB Bandwidth (continued)**


### Results: 802.11n / 20 MHz / MCS4 / PWR 14

| Channel | 6 dB Bandwidth<br>(kHz) | Limit<br>(kHz) | Margin<br>(kHz) | Result   |
|---------|-------------------------|----------------|-----------------|----------|
| Bottom  | 17604.76                | ≥ 500          | 17104.76        | Complied |
| Middle  | 17608.51                | ≥ 500          | 17108.51        | Complied |
| Тор     | 17590.70                | ≥ 500          | 17090.70        | Complied |



#### **Bottom Channel**

**Middle Channel** 



**Top Channel** 



#### 5.2.2. Transmitter Duty Cycle

#### **Test Summary:**

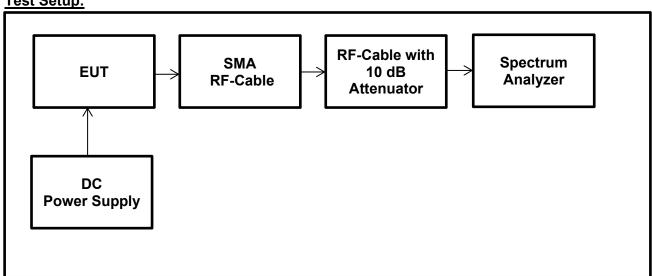
| Test Engineer:             | Sercan Usta                 | Test Date: | 09 February 2021 |
|----------------------------|-----------------------------|------------|------------------|
| Test Sample Serial Number: | KIM19005 (Conducted Sample) |            |                  |
| Test Site Identification   | SR 9                        |            |                  |

| FCC Reference:    | Part 15.35(c)                                                   |
|-------------------|-----------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Section 6.0 referencing ANSI C63.10 Section 11.6 |

#### **Environmental Conditions:**

| Temperature (°C):      | 27.1 |
|------------------------|------|
| Relative Humidity (%): | 36.2 |

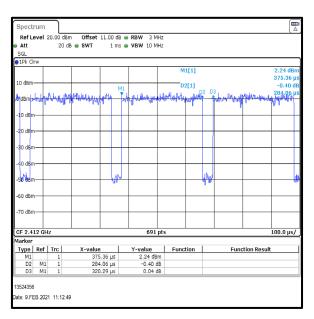
#### Note(s):


1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

Duty Cycle (%) =  $100 \times [On Time (Ton)] / [Period(Ton + Toff) or 100ms whichever is the lesser]$ Duty Cycle Correction Factor=  $10 \log 1 / [On Time (Ton)] / [Period(Ton + Toff) or 100ms whichever is the lesser]$ 

- 2. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.5 dB at the tested frequencies.
  - The RF cable from the EUT to Analyzer with maximum attenuation of 0.5 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer

Therefore, total a reference level offset 11.0 dB was added to each of the at the tested frequencies conducted plots.


### **Test Setup:**



### **Transmitter Duty Cycle (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR 14

| Pulse Duration | Period | Duty Cycle | Duty Cycle Correction Factor (dB) |
|----------------|--------|------------|-----------------------------------|
| (ms)           | (ms)   | (%)        |                                   |
| 284.06         | 320.29 | 88.69      | 0.52                              |



### 5.2.3. Transmitter Power Spectral Density

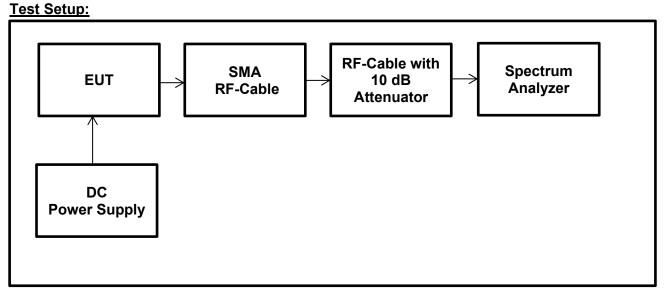
#### **Test Summary:**

| Test Engineer:             | Sercan Usta                 | Test Date: | 10 June 2021 |
|----------------------------|-----------------------------|------------|--------------|
| Test Sample Serial Number: | KIM19005 (Conducted Sample) |            |              |
| Test Site Identification   | SR 9                        |            |              |

| FCC Reference:    | Part 15.247(e)                                                      |
|-------------------|---------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Section 8.4 referencing ANSI C63.10 Sections 11.10.2 |

#### **Environmental Conditions:**

| Temperature (°C):      | 27.1 |
|------------------------|------|
| Relative Humidity (%): | 36.2 |

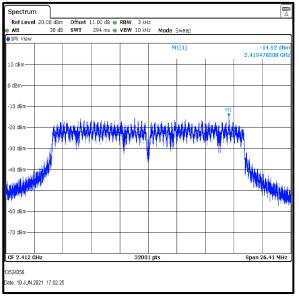

#### Note(s):

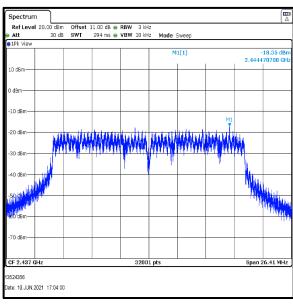
- 1. Final measurements were performed using the below configurations on the bottom, middle and top channels.
- 2. For 802.11n, the EUT was transmitting at < 98% duty cycle and testing was performed in accordance with ANSI C63.10 Section 11.10.2 Method PKPSD.
- 3. The signal analyser resolution bandwidth was set to 3 kHz and video bandwidth 10 kHz. A Peak detector was used and sweep time was set to Auto. The span was set to 1.5 times the DTS bandwidth. The highest peak of the measured signal was recorded.
- 4. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.5 dB at the tested frequencies.
  - The RF cable from the EUT to Analyzer with maximum attenuation of 0.5 dB at the tested frequencies including the 10 dB attenuator at the input of Spectrum Analyzer

Therefore, total a reference level offset 11.0 dB was added to each of the at the tested frequencies conducted plots.



# **Transmitter Power Spectral Density (continued)**




### **Transmitter Power Spectral Density (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR 14

| Channel | Peak Output<br>Power<br>(dBm/3 kHz) | Limit<br>(dBm/3kHz) | Margin<br>(dB) | Result   |
|---------|-------------------------------------|---------------------|----------------|----------|
| Bottom  | -14.92                              | 8.0                 | 22.92          | Complied |
| Middle  | -18.35                              | 8.0                 | 26.35          | Complied |
| Тор     | -16.54                              | 8.0                 | 24.54          | Complied |





#### **Bottom Channel**

**Middle Channel** 

**Top Channel** 

**Result: Pass** 

3524356 Date: 10.JUN.2021 17:05:43



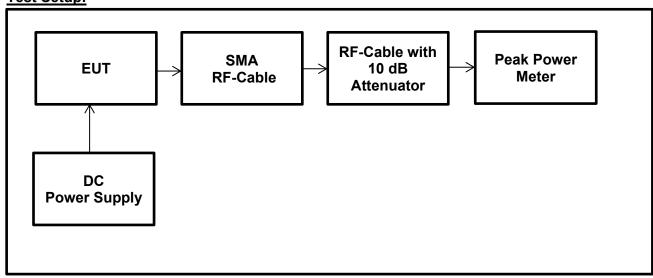
#### 5.2.4. Transmitter Maximum Output Power

### **Test Summary:**

| Test Engineer:             | Sercan Usta                 | Test Date: | 24 February 2021 |
|----------------------------|-----------------------------|------------|------------------|
| Test Sample Serial Number: | KIM19005 (Conducted Sample) |            |                  |
| Test Site Identification   | SR 9                        |            |                  |

| FCC Reference:    | Part 15.247(b)(3)                                                        |
|-------------------|--------------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Section 8.3.1.3 referencing ANSI C63.10 Sections 11.9.1.3 |

### **Environmental Conditions:**


| Temperature (°C):      | 27.1 |
|------------------------|------|
| Relative Humidity (%): | 36.2 |

#### Note(s):

- 1. Final measurements were performed using the below configurations on the bottom, middle and top channels.
- 2. For 802.11n, the EUT was transmitting at <98% duty cycle and testing was performed in accordance with ANSI C63.10 Sections 11.9.1.3 Method PKPM1. The broadband peak RF power meter (VBW ≥ EUT's DTS Bandwidth) was used to measure the signal power.
- 3. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values take into consideration the external attenuation correction factors.
  - The SMA (Female) RF Cable soldered on PCB with maximum attenuation of 0.5 dB at the tested frequencies.
  - The RF cable from the EUT to RF power meter with maximum attenuation of 0.5 dB at the tested frequencies including the 10 dB attenuator at the input of RF power meter.

Therefore, total a reference level offset 11.0 dB was added to each of the tested frequencies conducted values.

#### **Test Setup:**



### **Transmitter Maximum Output Power (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR 14

| Channel | Conducted Peak<br>Power<br>(dBm) | Conducted Power<br>Limit<br>(dBm) | Margin<br>(dB) | Result   |
|---------|----------------------------------|-----------------------------------|----------------|----------|
| Bottom  | 13.62                            | 30.0                              | 16.38          | Complied |
| Middle  | 11.50                            | 30.0                              | 18.50          | Complied |
| Тор     | 12.52                            | 30.0                              | 17.48          | Complied |

### **De Facto EIRP Limit Comparison**

| Channel | Conducted<br>Power Peak<br>(dBm) | Declared<br>Antenna<br>Gain (dBi) | EIRP<br>(dBm) | De Facto<br>EIRP Limit<br>(dBm) | Margin<br>(dB) | Result   |
|---------|----------------------------------|-----------------------------------|---------------|---------------------------------|----------------|----------|
| Bottom  | 13.62                            | 0.0                               | 13.62         | 36.0                            | 22.38          | Complied |
| Middle  | 11.50                            | 0.0                               | 11.50         | 36.0                            | 24.50          | Complied |
| Тор     | 12.52                            | 0.0                               | 12.52         | 36.0                            | 23.48          | Complied |

### 5.2.5. Transmitter Radiated Emissions

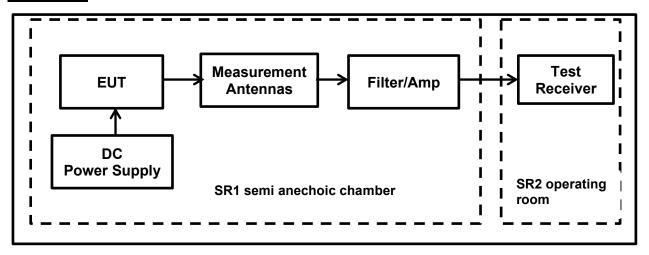
### **Test Summary:**

| Test Engineer:             | Sercan Usta             | Test Date: | 03 March 2021 |
|----------------------------|-------------------------|------------|---------------|
| Test Sample Serial Number: | 32520 (Radiated Sample) |            |               |
| Test Site Identification   | SR 1/2                  |            |               |

| FCC Reference:    | Parts 15.247(d) & 15.209(a)                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Sections 8.5 & 8.6 referencing ANSI C63.10 Sections 11.11 and 11.12 ANSI C63.10:2013 Sections 6.3 and 6.4 |
| Frequency Range:  | 9 kHz to 30 MHz                                                                                                          |

#### **Environmental Conditions:**

| Temperature (°C):      | 23.3 |
|------------------------|------|
| Relative Humidity (%): | 39.6 |


### Note(s):

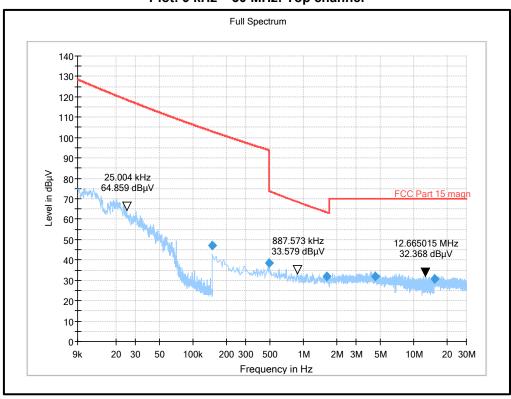
- 1. In accordance with FCC KDB 414788, an alternative test site may be used for the measurement below 30 MHz (The OATS / SAC comparison data is available upon request). Therefore, the result from the semi-anechoic chamber tests is shown in this section of the test report.
- 2. The limits are specified at a test distance of 30 meters & 300 metres. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by using the square of an inverse linear distance extrapolation factor.
- 3. Therefore, the limit values are extrapolated to a measurement distance of 3 m was measured.
  - 9 kHz- 490 kHz: limits extrapolated from 300 m to 3 m by adding 80 dB at 40 dB /decade.
  - 490 kHz-1705 kHz: limits extrapolated from 30 m to 3 m by adding 40 dB at 40 dB /decade.
- 4. Measurements below 30 MHz were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 m. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. The measurement loop antenna height was 80 cm.
- 5. The preliminary scans showed similar emission levels below 30 MHz, for each channel & modes of operation. Therefore, final radiated emissions measurements were performed with the EUT set to the Top Channel only.
- 6. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was
  - Frequency range: 9 kHz-150 kHz: RBW: 300 Hz /VBW: 1 kHz
  - Frequency range: 150 kHz 30 MHz: RBW: 10 kHz /VBW: 30 kHz
  - Detector: Max-Peak detector
  - Trace Mode: Max Hold
- 7. All emissions shown on the pre-scans were investigated and are reported in result table. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 8. All other emissions shown on the pre-scans were investigated and found to be > 20 dB below the applicable limits.



### **Transmitter Radiated Emissions (continued)**

### **Test Setup:**






### **Transmitter Radiated Emissions (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR14 / Top Channel

| Frequency<br>(MHz) | Loop Antenna<br>Orientation | MaxPeak<br>Level<br>(dBμV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) | Result   |
|--------------------|-----------------------------|------------------------------|-------------------|----------------|----------|
| 0.150              | 0 ° to EUT                  | 47.00                        | 102.96            | 55.96          | Complied |
| 0.490              | 0 ° to EUT                  | 38.68                        | 73.79             | 35.11          | Complied |
| 1.618              | 0 ° to EUT                  | 32.02                        | 63.39             | 31.37          | Complied |
| 4.453              | 0 ° to EUT                  | 32.13                        | 70.00             | 37.87          | Complied |
| 15.581             | 90 ° to EUT                 | 30.84                        | 70.00             | 39.16          | Complied |

Plot: 9 kHz - 30 MHz: Top channel



#### **Transmitter Radiated Emissions (continued)**

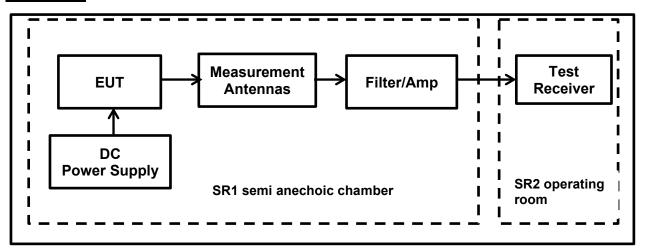
#### **Test Summary:**

| Test Engineer:             | Sercan Usta             | Test Date: | 03 March 2021 |
|----------------------------|-------------------------|------------|---------------|
| Test Sample Serial Number: | 32520 (Radiated Sample) |            |               |
| Test Site Identification   | SR 1/2                  |            |               |

| FCC Reference:    | Parts 15.247(d) & 15.209(a)                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Sections 8.5 & 8.6 referencing ANSI C63.10 Sections 11.11 and 11.12 ANSI C63.10:2013 Sections 6.3 and 6.5 |
| Frequency Range:  | 30 MHz to 1000 MHz                                                                                                       |

#### **Environmental Conditions:**

| Temperature (°C):      | 23.3 |
|------------------------|------|
| Relative Humidity (%): | 39.6 |


### Note(s):

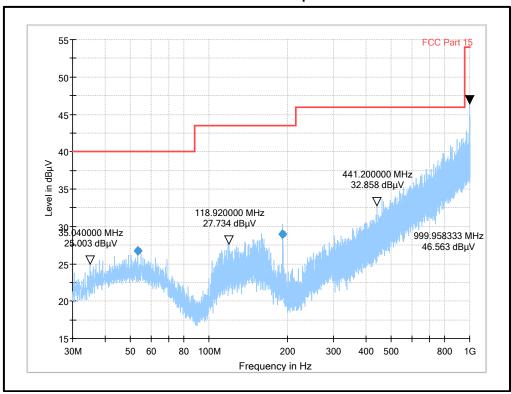
- 1. Measurements below 1 GHz were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 m. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m.#
- 2. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore, final radiated emissions measurements were performed with the EUT set to the Top Channel only.
- 3. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
- 4. All emissions shown on the pre-scans were investigated and are reported in result table. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 5. All other emissions shown on the pre-scans were investigated and found to be > 20 dB below the applicable limits.



### **Transmitter Radiated Emissions (continued)**

### **Test Setup:**






### **Transmitter Radiated Emissions (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR14 / Top Channel

| Frequency<br>(MHz) | Antenna<br>Polarization | MaxPeak<br>Level<br>(dBμV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) | Result   |
|--------------------|-------------------------|------------------------------|-------------------|----------------|----------|
| 53.175             | Vertical                | 26.72                        | 40.00             | 13.28          | Complied |
| 192.000            | Horizontal              | 29.02                        | 43.50             | 14.48          | Complied |

Plot: 30 MHz - 1GHz: Top channel



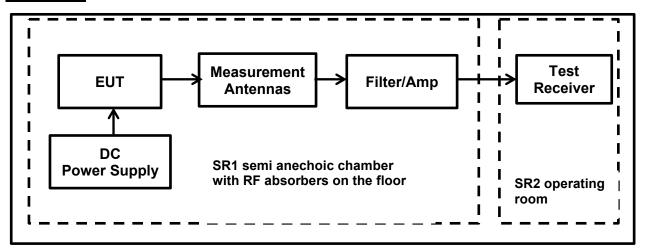
### **Transmitter Radiated Emissions (continued)**

### **Test Summary:**

| Test Engineer:             | Sercan Usta             | Test Date: | 01 March 2021 to<br>03 March 2021 |
|----------------------------|-------------------------|------------|-----------------------------------|
| Test Sample Serial Number: | 32520 (Radiated Sample) |            |                                   |
| Test Site Identification   | SR 1/2                  |            |                                   |

| FCC Reference:    | Parts 15.247(d) & 15.209(a)                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|
| Test Method Used: | FCC KDB 558074 Sections 8.5 & 8.6 referencing ANSI C63.10 Sections 11.11 and 11.12 ANSI C63.10:2013 Sections 6.3 and 6.6 |
| Frequency Range:  | 1 GHz to 25 GHz                                                                                                          |

#### **Environmental Conditions:**

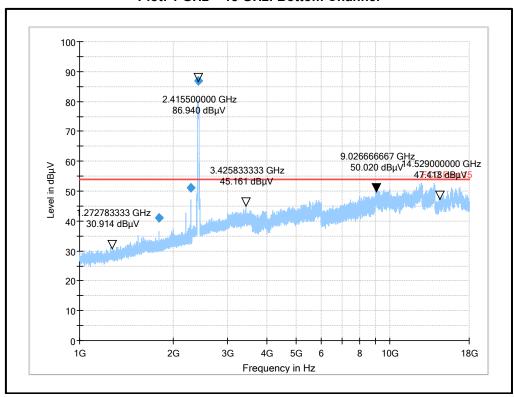

| Temperature (°C):      | 23.3 to 24 |
|------------------------|------------|
| Relative Humidity (%): | 35 to 39.6 |

#### Note(s):

- 1. Pre-scans above 1 GHz were performed in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) with RF absorbers on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 m above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) with absorber on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m.
- Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto.
- 3. The emissions shown at frequencies approximately 2.4 GHz to 2.4835 GHz on the 1 GHz to 18 GHz plots are the EUT fundamental for the tested channel.
- 4. All emissions shown on the pre-scan plots were investigated and are reported in result table. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 5. All other emissions shown on the pre-scans were investigated and found to be below the noise floor of the measurement system.
- 6. \*In accordance with ANSI C63.10 Section 6.6.4.3 (Note 1), if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 7. The preliminary scans showed similar emission levels above 18 GHz, for each channel of operation. Therefore, final radiated emissions measurements were performed with the EUT set to the Top channel only.
- 8. For frequency range between 18 GHz and 25 GHz, no critical emissions were found. All emissions shown on the pre-scans were investigated and found to be below the noise floor of the measurement system.

### **Transmitter Radiated Emissions (continued)**

### **Test Setup:**

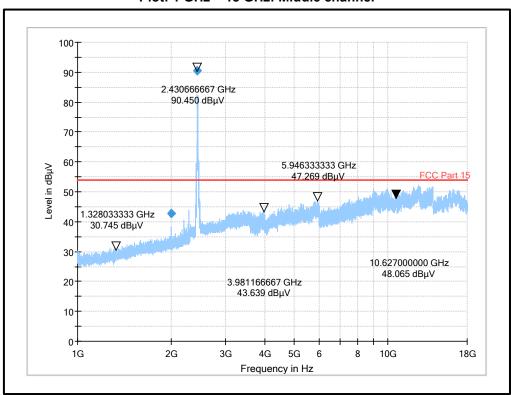



### **Transmitter Radiated Emissions (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR14 / Bottom Channel

| Frequency<br>(MHz) | Antenna<br>Polarization | MaxPeak<br>Level<br>(dBμV/m) | Average Limit<br>(dBμV/m) | Margin<br>(dB) | Result    |
|--------------------|-------------------------|------------------------------|---------------------------|----------------|-----------|
| 1799.933           | Horizontal              | 41.10                        | 54.00                     | 12.90          | Complied* |
| 2288.083           | Horizontal              | 51.06                        | 54.00                     | 2.94           | Complied* |

Plot: 1 GHz - 18 GHz: Bottom Channel

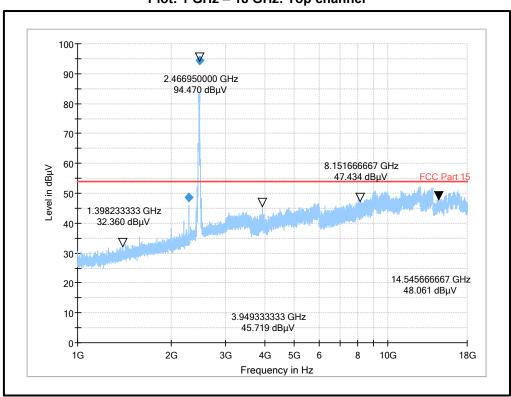



### **Transmitter Radiated Emissions (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR14 / Middle Channel

| Frequency<br>(MHz) | Antenna<br>Polarization | MaxPeak<br>Level<br>(dBμV/m) | Average Limit<br>(dBμV/m) | Margin<br>(dB) | Result    |
|--------------------|-------------------------|------------------------------|---------------------------|----------------|-----------|
| 2000.133           | Horizontal              | 42.85                        | 54.00                     | 11.15          | Complied* |

Plot: 1 GHz - 18 GHz: Middle channel

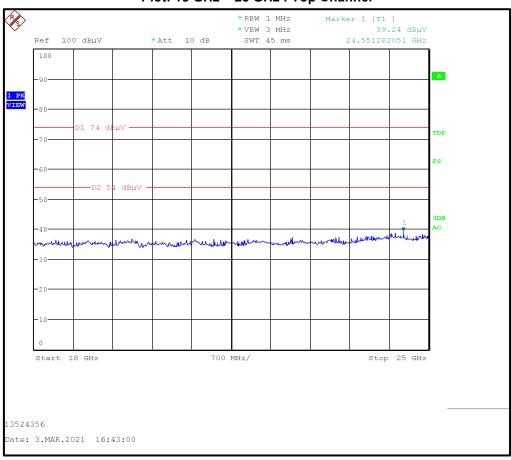



# Transmitter Radiated Emissions (continued)

### Results: 802.11n / 20 MHz / MCS4 / PWR14 / Top Channel

| Frequency<br>(MHz) | Antenna<br>Polarization | MaxPeak<br>Level<br>(dBμV/m) | Average Limit<br>(dBμV/m) | Margin<br>(dB) | Result    |
|--------------------|-------------------------|------------------------------|---------------------------|----------------|-----------|
| 2288.083           | Horizontal              | 48.62                        | 54.00                     | 5.38           | Complied* |

Plot: 1 GHz - 18 GHz: Top channel




### **Transmitter Radiated Emissions (continued)**

### Results: 802.11n / 20 MHz / MCS4 / PWR14 / Top Channel

| Frequency<br>(MHz)                                                        | Antenna<br>Polarization | Peak Level<br>(dBμV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) | Result |
|---------------------------------------------------------------------------|-------------------------|------------------------|-------------------|----------------|--------|
| All emissions were below the level of the measurement system noise floor. |                         |                        |                   |                |        |

#### Plot: 18 GHz - 25 GHz: Top Channel



### 5.2.6. Transmitter Band Edge Radiated Emissions

#### **Test Summary:**

| Test Engineer:             | Sercan Usta             | Test Date: | 01 March 2021 |
|----------------------------|-------------------------|------------|---------------|
| Test Sample Serial Number: | 32520 (Radiated Sample) |            |               |
| Test Site Identification   | SR 1/2                  |            |               |

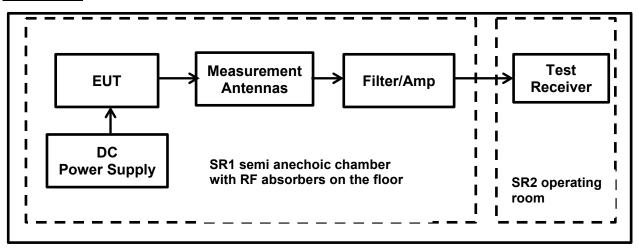
| FCC Reference:    | Parts 15.247(d) & 15.209(a)                                                                                                   |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method Used: | DTS emissions in non-restricted frequency bands:<br>FCC KDB 558074 Section 8.5 referencing<br>ANSI C63.10:2013 Sections 11.11 |  |
|                   | DTS emissions in restricted frequency bands:<br>FCC KDB 558074 Section 8.6 referencing<br>ANSI C63.10:2013 Sections 11.12     |  |
|                   | ANSI C63.10:2013 Sections 6.10.4, 6.10.5                                                                                      |  |

#### **Environmental Conditions:**

| Temperature (°C):      | 23.3 |
|------------------------|------|
| Relative Humidity (%): | 39.6 |

#### Note(s):

- 1. The measurments were in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) with RF absorbers on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the test chamber floor in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m
- As the lower band edge falls within a non-restricted band, measurements were performed in accordance with FCC KDB 558074 Section 8.5 referencing ANSI C63.10 Section 11.11.
   As the maximum peak conducted output power was previously measured, in accordance with ANSI C63.10 Section 11.11.1(a) lower band edge measurement was performed with a peak detector and the 20 dBc limit applied.
- 3. As the lower band edge falls within a non-restricted band, only peak measurements are required. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. Marker frequencies and levels were recorded.
- 4. The restricted band peak measurements were performed in accordance with ANSI C63.10 Section 11.12.2.4.
- 5. As the EUT continuous transmission of the EUT ( $D \ge 98\%$ ) cannot be achieved and the duty cycle is constant (duty cycle variations are less than  $\pm 2\%$ ), the restricted band average measurements were performed in accordance with ANSI C63.10 Section 11.12.2.5.2.
- 6. As the upper band edge falls within a restricted band both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A RMS detector in linear power averaging mode was used. The test receiver was left to trace averaged over 300 sweeps. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.




### **Transmitter Band Edge Radiated Emissions (continued)**

#### Note(s):

- 7. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
- 8. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 9. \*\*As the EUT was transmitting continuously with a Duty Cycle of 88.69 %, a Duty Cycle Correction Factor of 0.52 dB was added to all average measurements.

#### **Test Setup:**



### **Transmitter Band Edge Radiated Emissions (continued)**

Results: 802.11n / 20 MHz / MCS4 / PWR14

Results: Lower Band Edge / Peak

| Frequency<br>(MHz) | Peak Level<br>(dBμV/m) | -20 dBc Limit<br>(dBμV/m) | Margin<br>(dB) | Result   |
|--------------------|------------------------|---------------------------|----------------|----------|
| 2399.839           | 47.13                  | 60.01                     | 12.88          | Complied |
| 2400.000           | 49.05                  | 60.01                     | 10.96          | Complied |

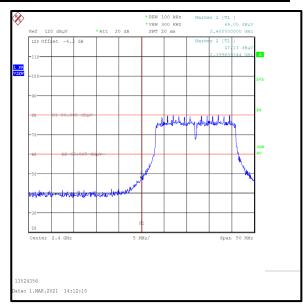
### Results: 2310 to 2390 MHz Restricted Band / Peak

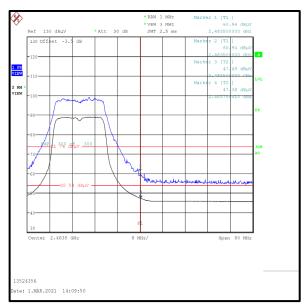
| Frequency | Peak Level | Peak Limit | Margin | Result   |
|-----------|------------|------------|--------|----------|
| (MHz)     | (dBμV/m)   | (dΒμV/m)   | (dB)   |          |
| 2339.358  | 49.09      | 74.0       | 24.91  | Complied |

### Results: 2310 to 2390 MHz Restricted Band / Average

| Frequency<br>(MHz) | Average<br>Level<br>(dBµV/m) | Duty Cycle<br>Correction<br>Factor<br>(dB) | Corrected<br>Average<br>Level<br>(dBµV/m) | Average<br>Limit<br>(dBµV/m) | Margin<br>(dB) | Result   |
|--------------------|------------------------------|--------------------------------------------|-------------------------------------------|------------------------------|----------------|----------|
| 2338.076           | 37.01                        | 0.52                                       | 37.53                                     | 54.0                         | 16.47          | Complied |

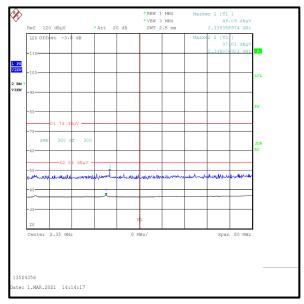
### Results: Upper Band Edge / Peak


| Frequency | Peak Level | Peak Limit | Margin | Result   |
|-----------|------------|------------|--------|----------|
| (MHz)     | (dBμV/m)   | (dΒμV/m)   | (dB)   |          |
| 2483.500  | 60.94      | 74.0       | 13.06  | Complied |


### Results: Upper Band Edge / Average

| Frequency<br>(MHz) | Average<br>Level<br>(dBµV/m) | Duty Cycle<br>Correction<br>Factor<br>(dB) | Corrected<br>Average<br>Level<br>(dBµV/m) | Average<br>Limit<br>(dBµV/m) | Margin<br>(dB) | Result   |
|--------------------|------------------------------|--------------------------------------------|-------------------------------------------|------------------------------|----------------|----------|
| 2483.500           | 47.49                        | 0.52                                       | 48.01                                     | 54.0                         | 5.99           | Complied |
| 2483.756           | 47.38                        | 0.52                                       | 47.90                                     | 54.0                         | 6.10           | Complied |

### **Transmitter Band Edge Radiated Emissions (continued)**


### Results: 802.11n / 20 MHz / MCS4 / PWR14





**Lower Band Edge Peak Measurement** 

**Upper Band Edge Peak & Average Measurement** 



Restricted Band 2310 MHz to 2390 MHz

### **6. Measurement Uncertainty**

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type                    | Confidence Level (%) | Calculated<br>Uncertainty |
|-------------------------------------|----------------------|---------------------------|
| Conducted Maximum Peak Output Power | 95%                  | ±0.59 dB                  |
| Radiated Spurious Emissions         | 95%                  | ±3.10 dB                  |
| Band Edge Radiated Emissions        | 95%                  | ±3.10 dB                  |
| Transmitter Duty Cycle              | 95%                  | ±3.4%                     |
| Minimum 6 dB Bandwidth              | 95%                  | ±0.87 %                   |
| Spectral Power Density              | 95%                  | ±0.59 dB                  |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.



# 7. Used equipment

Test site: SR 1/2

| ID      | Manufacturer                        | Туре                            | Model        | Serial                | Calibration<br>Date | Cal. Cycle (months) |
|---------|-------------------------------------|---------------------------------|--------------|-----------------------|---------------------|---------------------|
| 1       | Rohde & Schwarz                     | Antenna, Loop                   | HFH2-Z2      | 831247/012            | 10/07/2020          | 36                  |
| 377     | BONN Elektronik                     | Amplifier, Low Noise Pre        | BLMA 0118-1A | 025294B               | 08/07/2020          | 12                  |
| 423     | Bonn Elektronik                     | Amplifier, Low Noise Pre        | BLMA 1840-1A | 55929                 | 09/07/2020          | 12                  |
| 460     | Deisel                              | Turntable                       | DT 4250 S    | n/a                   | n/a                 | n/a                 |
| 452     | Schwarzbeck                         | Antenna, Trilog<br>Broadband    | VULB 9168    | 9168-240              | 02/09/2020          | 24                  |
| 496     | Rohde & Schwarz                     | Antenna, log periodical         | HL050        | 100297                | 05/08/2020          | 36                  |
| 607     | Schwarzbeck                         | Antenna broadband horn antenna  | BBHA 9170    | 9170-561              | 15/10/2019          | 36                  |
| 587     | Maturo                              | antenna mast, tilting           | TAM 4.0-E    | 011/7180311           | n/a                 | n/a                 |
| 588     | Maturo                              | Controller                      | NCD          | 029/7180311           | n/a                 | n/a                 |
| 591     | Rohde & Schwarz                     | Receiver                        | ESU 40       | 100244/040            | 07/072020           | 12                  |
| 608     | Rohde & Schwarz                     | Switch Matrix                   | OSP 120      | 101227                | lab verification    | n/a                 |
| 628     | Maturo                              | Antenna mast                    | CAM 4.0-P    | 224/19590716          | n/a                 | n/a                 |
| 629     | Maturo                              | Kippeinrichtung                 | KE 2.5-R-M   | MAT002                | n/a                 | n/a                 |
| -/-     | Testo                               | Thermo-Hygrometer               | 608-H1       | 01                    | lab verification    | n/a                 |
| 328     | SPS                                 | AC/DC power distribution system | PAS 5000     | A2464 00/2<br>0200    | lab verification    | n/a                 |
| 1603665 | Siemens<br>Matsushita<br>Components | semi-anechoic chamber<br>SR1/ 2 | -/-          | B83117-A1421-<br>T161 | n/a                 | n/a                 |

Test site: SR 9

| ID      | Manufacturer                        | Туре                            | Model      | Serial                | Calibration<br>Date | Cal. Cycle (months) |
|---------|-------------------------------------|---------------------------------|------------|-----------------------|---------------------|---------------------|
| 445     | Huber & Suhner                      | RF Attenuator (10dB)            | 6810.17.AC |                       | lab verification    | 12                  |
| 637     | Rohde & Schwarz                     | Spectrum Analyzer               | FSV40      | 101587                | 08/07/2020          | 12                  |
| 636     | Rohde & Schwarz                     | Switching Unit Power Meter      | OSP-B157W8 | 101698                | 07/07/2020          | 12                  |
| -/-     | Testo                               | Thermo-Hygrometer               | 608-H1     | 07                    | lab verification    | n/a                 |
| -/-     | Huber & Suhner                      | RF Cable (upto 18GHz)           | -/-        | -/-                   | lab verification    | n/a                 |
| 327     | SPS                                 | AC/DC power distribution system | PAS 5000   | A2464 00/1<br>0200    | lab verification    | n/a                 |
| 1603668 | Siemens<br>Matsushita<br>Components | shielded room                   |            | B83117-<br>B1422-T161 | n/a                 | n/a                 |



# 8. Report Revision History

| Version | Revision De        | etails        |                                                                                                                                                                                            |
|---------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number  | Page No(s)         | Clause        | Details                                                                                                                                                                                    |
| 1.0     | -                  | -             | Initial Version                                                                                                                                                                            |
| Tes     | t Report No. UL-RP | T-RP-13524356 | rsede Version 1.0 with immediate effect<br>6-616-FCC Version 1.1, Issue Date 25 JUNE 2021 replaces<br>6-616-FCC Version 1.0, Issue Date 16 JUNE 2021, which is no longer valid.            |
|         | as below           | as below      | Intermediate Version                                                                                                                                                                       |
|         | 5                  | 2.1           | Test Dates corrected 09 February 2021 to 10 June 2021                                                                                                                                      |
| 1.1     | 14                 | 5.2.2         | Test Dates corrected 09 February 2021                                                                                                                                                      |
| 1.1     | 27                 | 5.2.5         | Test Dates corrected 01 March 2021 to 03 March 2021                                                                                                                                        |
|         | 33                 | 5.2.6         | Test Dates corrected 01 March 2021                                                                                                                                                         |
|         | 38                 | 7             | Test site: SR 1/2 Used equipment list corrected.                                                                                                                                           |
| Tes     | t Report No. UL-RP | T-RP-13524356 | rsede Version 1.1 with immediate effect 3-616-FCC Version 1.2, Issue Date 25 JUNE 2021 replaces 3-616-FCC Version 1.1, Issue Date 25 JUNE 2021, which is no longer valid.  Current Version |
|         | 12                 | 5.2.1         | Test Setup diagram corrected to include Spectrum Analyzer reference                                                                                                                        |
| 1.2     | 14                 | 5.2.2         | Test Setup diagram corrected to include Spectrum Analyzer reference                                                                                                                        |
| 1.4     | 17                 | 5.2.3         | Test Setup diagram corrected to include Spectrum Analyzer reference                                                                                                                        |
|         | 19                 | 5.2.4         | Note 3 corrected to include RF power meter reference                                                                                                                                       |
|         | 27                 | 5.2.5         | Temperature & Humidity values updated                                                                                                                                                      |

--- END OF REPORT ---

