

EMC TEST REPORT

Report No.: SET2021-04247

Product Name: AX1800 Dual Band Wi-Fi6 Router

FCC ID: 2AZKI-COM-11

Model No.: AX1800

Applicant: Shenzhen Youbo Life Technology Co., Ltd

Address: Room A3 523, building 9, Shenzhen Bay ecological science and Technology Park, Yuehai street, Nanshan District, Shenzhen, China

Dates of Testing: 2021.01.27 —2021.04.09

Issued by: CCIC Southern Testing Co., Ltd.

Lab Location: Electronic Testing Building, No. 43 Shahe Road, Xili Street, Nanshan District, Shenzhen, Guangdong, China.

Tel: 86 755 26627338 **Fax:** 86 755 26627238

This test report consists of **21** pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product Name..... AX1800 Dual Band Wi-Fi6 Router

Model No. AX1800

Trade name marsboy

Brand name marsboy

Applicant..... Shenzhen Youbo Life Technology Co., Ltd

Applicant Address..... Room A3 523, building 9, Shenzhen Bay ecological science and Technology Park, Yuehai street, Nanshan District, Shenzhen, China.

Manufacturer Shenzhen Youbo Life Technology Co., Ltd

Manufacturer Address Room A3 523, building 9, Shenzhen Bay ecological science and Technology Park, Yuehai street, Nanshan District, Shenzhen, China.

Test Standards..... 47 CFR Part 15 Subpart B

Test Result..... PASS

Tested by Zhang Pei Sen

PeiSen Zhang Test Engineer

2021.04.22

Reviewed by Chris You

Chris You Senior Engineer

2021.04.22

Approved by Shuangwen Zhang

Shuangwen Zhang, Manager

2021.04.22

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 EUT Description	4
1.2 Test Standards and Results	5
1.3 Facilities and Accreditations.....	6
1.3.1 Facilities	6
1.3.2 Test Environment Conditions.....	6
1.3.3 Measurement Uncertainty	6
2. TEST CONDITIONS SETTING	7
2.1 Test Peripherals	7
2.2 Use of Software Checklist	7
2.3 Test Mode	7
2.4 Test Setup and Equipments List.....	8
2.4.1 Conducted Emission	8
2.4.2 Radiated Emission.....	8
3. 47 CFR PART 15B REQUIREMENTS	11
3.1 Conducted Emission.....	11
3.1.1 Requirement	11
3.1.2 Test Description	11
3.1.3 Test Result.....	11
3.2 Radiated Emission	14
3.2.1 Requirement	14
3.2.2 Test Description	15
3.2.3 Test Result.....	15

Change History		
Issue	Date	Reason for change
1.0	2021.04.22	First edition

1. GENERAL INFORMATION

1.1 EUT Description

EUT Name : AX1800 Dual Band Wi-Fi6 Router

Trade Name..... : marsboy

Brand Name..... : marsboy

Hardware Version..... : V1.0

Software Version : V1.0

Note 1: The EUT is a AX1800 Dual Band Wi-Fi6 Router;

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B:

No.	Identity	Document Title
1	47 CFR Part 15 Subpart B	Radio Frequency Devices
2	ICES-003 Issue 6 Published: January 2016 Updated: April 2017	Information Technology Equipment (Including Digital Apparatus) — Limits and Methods of Measurement

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.107	Conducted Emission	PASS
2	15.109	Radiated Emission	PASS

NOTE:

(1) The EUT has been tested according to 47 CFR Part 15 Subpart B, Class B. The test procedure is according to ANSI C63.4:2014.

1.3 Facilities and Accreditations

1.3.1 Facilities

FCC-Registration No.: CN1283

CCIC Southern Testing Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN1283, valid time is until April 19th, 2023.

ISED Registration: 11185A-1

CCIC Southern Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on Aug. 04, 2016, valid time is until April 20th, 2023.

A2LA Code: 5721.01

CCIC-SET is a third party testing organization accredited by A2LA according to ISO/IEC 17025. The accreditation certificate number is 5721.01.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 °C - 35 °C
Relative Humidity (%):	25% -75%
Atmospheric Pressure (kPa):	86kPa-106kPa

1.3.3 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission:	$U_c = 2.6 \text{ dB (k=2)}$
Uncertainty of Radiated Emission: (30MHz~1GHz)	$U_c = 3.91 \text{ dB (k=2)}$
Uncertainty of Radiated Emission: (1~18GHz)	$U_c = 4.5 \text{ dB (k=2)}$
Uncertainty of Radiated Emission: (18~40GHz)	$U_c = 4.9 \text{ dB (k=2)}$

2. TEST CONDITIONS SETTING

2.1 Test Peripherals

The following is a listing of the EUT and peripherals utilized during the performance of EMC test:

Support Equipment:

Description	Brand name	Model	Serial No.	FCCID
Notebook	ThinkPad	E430C	A131101550	N/A

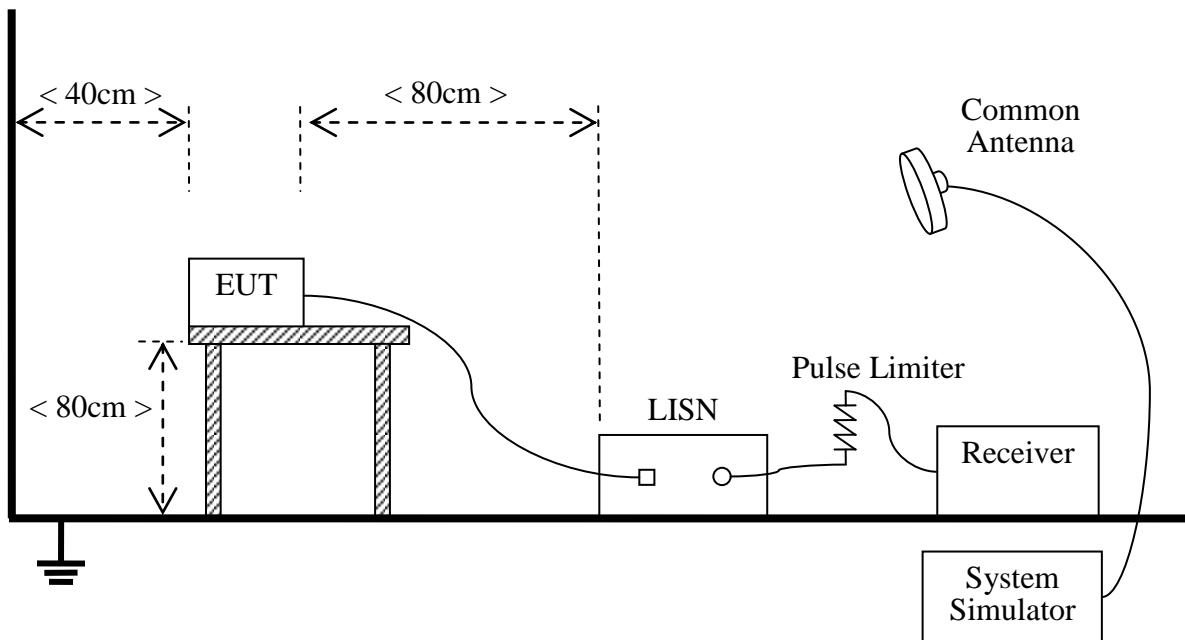
Support Cable:

Description	Shield Type	Ferrite Core	Length
Antenna Cable	Un- shielding	No	1.2m

2.2 Use of Software Checklist

Software	Version number	Manufacturer	Use the project
ES-K1	V1.73	ROHDE&SCHWARZ	Radiated Emissions below 1GHz
TS+	JS32-RE 2.5.2.0	Tonsceng	Radiated Emissions above 1GHz
EMC32	Version 10.35.10	ROHDE&SCHWARZ	Conducted Emission

2.3 Test Mode


The EUT have the following typical setups during the test:

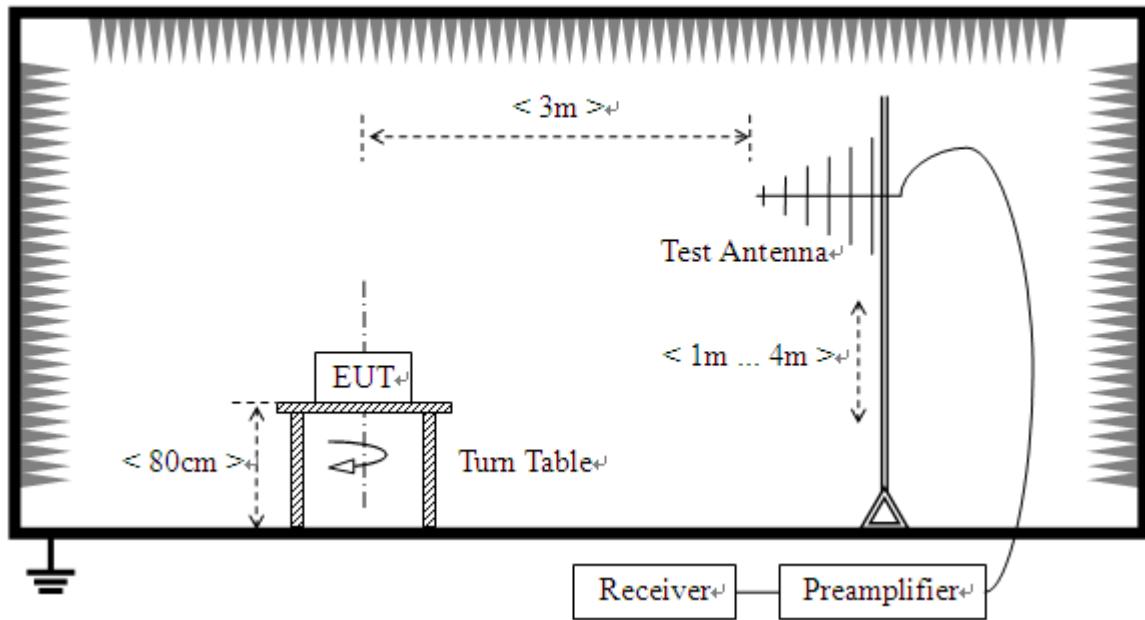
Setup1: EUT LAN Port+ Connecting notebooks.

2.4 Test Setup and Equipments List

2.4.1 Conducted Emission

A. Test Setup:

The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu\text{H}$ of coupling impedance for the measuring instrument. The Common Antenna is used for the call between the EUT and the System Simulator (SS). A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.


B. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due. Date
Test Receiver	KEYSIGHT	N9038A	A141202036	2020.11.21	2021.09.20
LISN	ROHDE&SCHWARZ	ENV216	A140701847	2020.11.21	2021.09.21
Cable	MATCHING PAD	W7	/	2020.08.02	2021.08.01


2.4.2 Radiated Emission

A. Test Setup:

- 1) For radiated emissions from 30MHz to 1GHz

2) For radiated emissions above 1GHz

B. Test Procedure

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a

variable-height antenna master tower.

For the test Antenna:

- 1) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

C. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due. Date
Test Receiver	KEYSIGHT	N9038A	A141202036	2020.11.21	2021.09.20
LISN	ROHDE&SCHWARZ	ENV216	A140701847	2020.11.21	2021.09.21
Shield Room	Xinju Electronics	L7300*W4500 *H3100	A181003226	2018.09.06	2021.09.05
EMI Test Receiver	ROHDE&SCHWARZ	ESIB7	A0501375	2020.06.24	2021.06.23
Broadband Ant.	2786	ETC	A150402239	2018.09.17	2021.09.16
3M Anechoic Chamber	Albatross	SAC-3MAC 9*6*6m	A0412375	2019.03.26	2023.03.25
EMI Test Receiver	ROHDE&SCHWARZ	ESW26	A180502935	2020.10.21	2021.08.12
System Simulator	ROHDE&SCHWARZ	CMW500	A150802214	2019.07.30	2021.07.29
5M Anechoic Chamber	Albatross	SAC-5MAC 12.8x6.8x6.4m	A0304210	2019.03.25	2023.03.24
EMI Horn Ant.	ROHDE&SCHWARZ	HF906	A0304225	2019.04.17	2022.04.17

3. 47 CFR PART 15B REQUIREMENTS

3.1 Conducted Emission

3.1.1 Requirement

According to FCC section 15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

Note:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

3.1.2 Test Description

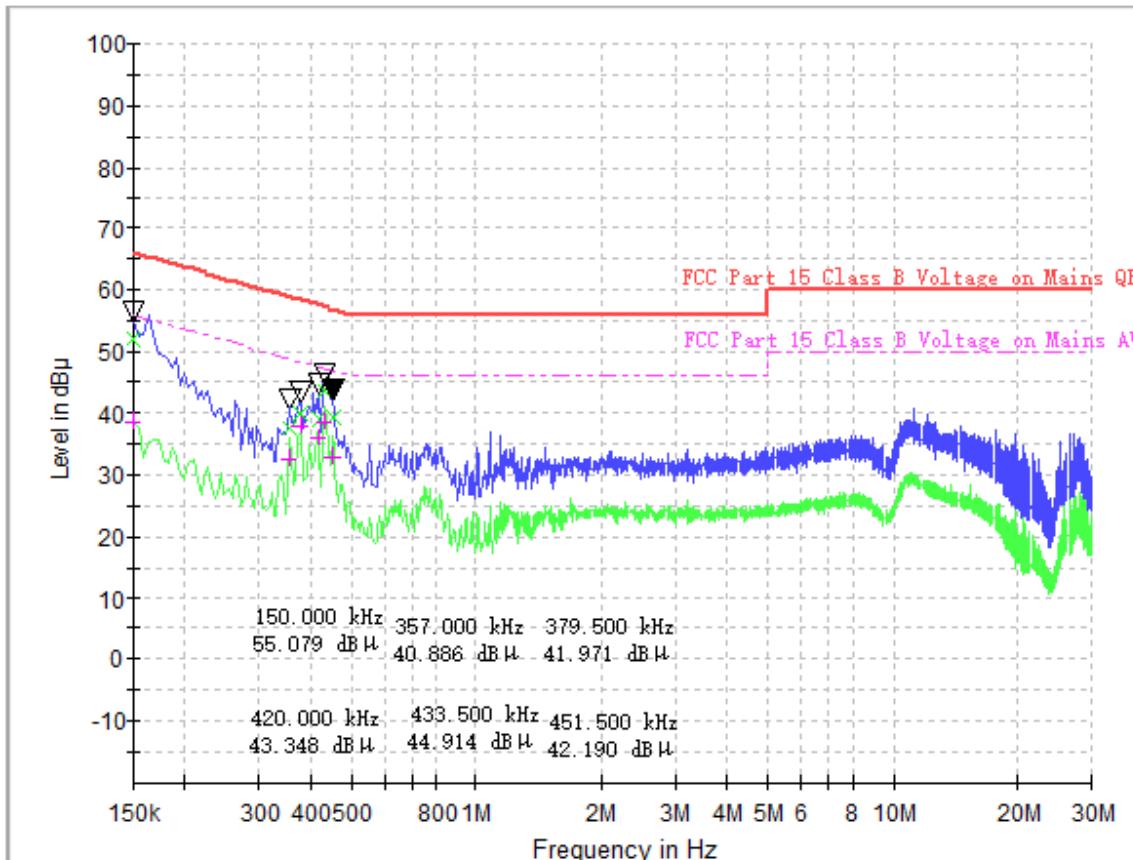
See section 2.4.1 of this report.

3.1.3 Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

Note:

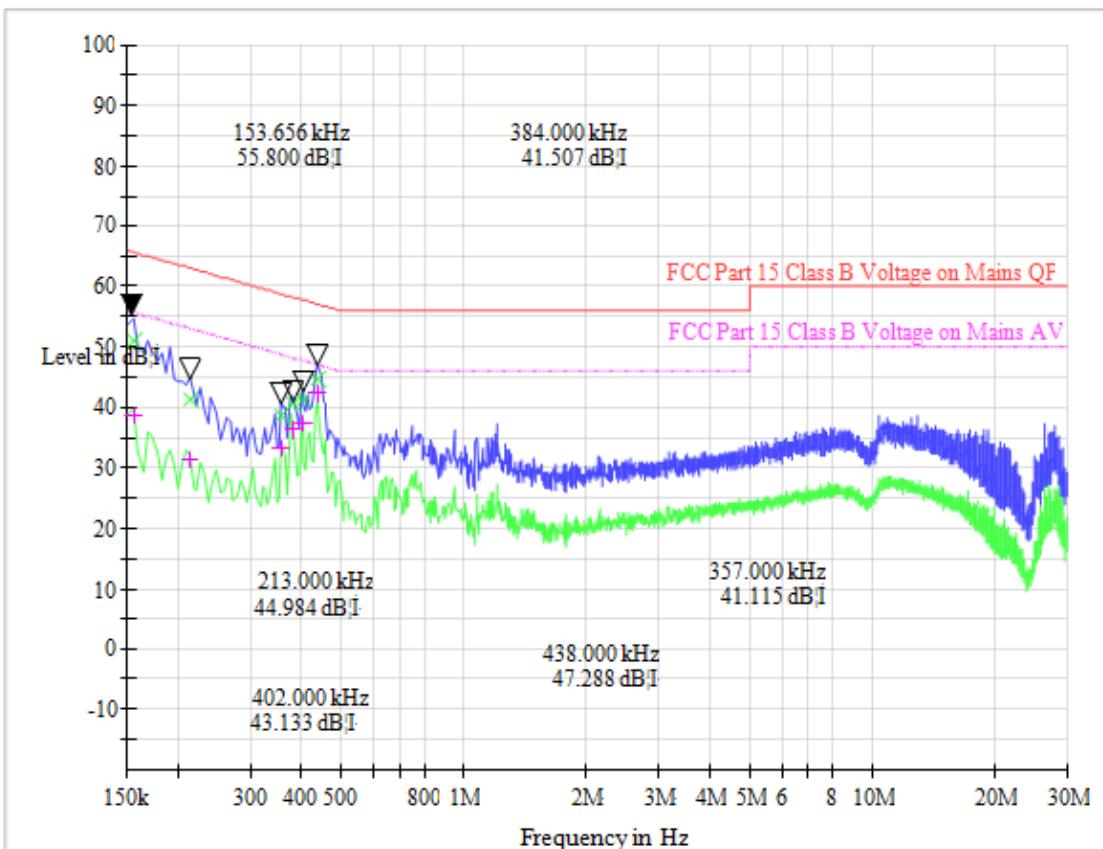
Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a Nominal 120V AC,50/60Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.


-Level(dBuv)=Read Level(dBuv)+Correction Factor(dB)

-Margin= Read Level(dBuv)-Limit Line(dBuv)

-Correction factor= LISN Factor(dB)+Cable Loss(dB)+ attenuation factor(dB)

Test voltage and frequency


A. Mains terminal disturbance voltage, L phase

(Plot A: L Phase)

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Cabel Loss (dB)	Corr. (dB)	Margin - QPK	Limit - QPK	Margin - AV	Limit - AV (dB μ V)
0.150000	52.21	38.67	0.1	10.1	13.79	66.0	17.33	56.0
0.357000	37.64	32.62	0.1	10.1	21.16	58.8	16.18	48.8
0.379500	40.15	37.97	0.2	10.2	18.14	58.3	10.32	48.3
0.420000	38.85	36.08	0.1	10.1	18.60	57.4	11.37	47.4
0.433500	43.75	38.72	0.1	10.1	13.44	57.2	8.47	47.2
0.451500	39.43	33.02	0.2	10.2	17.42	56.8	13.83	46.8

B. Mains terminal disturbance voltage, N phase

(Plot B: N Phase)

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Cable Loss (dB)	Corr. (dB)	Margin - QPK	Limit - QPK	Margin - AV	Limit - AV (dB μ V)
0.154500	51.02	38.65	0.1	10.1	14.73	65.8	17.10	55.8
0.213000	41.48	31.42	0.1	10.1	21.61	63.1	21.67	53.1
0.357000	38.52	33.38	0.2	10.2	20.28	58.8	15.42	48.8
0.384000	40.60	36.40	0.3	10.3	17.59	58.2	11.79	48.2
0.402000	41.33	37.29	0.2	10.2	16.48	57.8	10.52	47.8
0.438000	44.82	42.37	0.2	10.2	12.28	57.1	4.73	47.1

3.2 Radiated Emission

3.2.1 Requirement

According to FCC section 15.109, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency range (MHz)	Field Strength		Field Strength Limitation at 3m Measurement Dist	
	μ V/m	Dist	(uV/m)	(dBuV/m)
0.009 - 0.490	2400/F(kHz)	300m	10000* 2400/F(kHz)	20log 2400/F(kHz) + 80
0.490 - 1.705	2400/F(kHz)	30m	100* 2400/F(kHz)	20log 2400/F(kHz) + 40
1.705 - 30.00	30	30m	100*30	20log 30 + 40
30.0 - 88.0	100	3m	100	20log 100
88.0 - 216.0	150	3m	150	20log 150
216.0 - 960.0	200	3m	200	20log 200
Above 960.0	500	3m	500	20log 500

- a) As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.
- b) Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.
- c) For below 1G :QP detector RBW 120kHz ,VBW 300kHz.
- d) For Above 1G: PK detector RBW 1MHz,VBW 3MHz for PK value ;AV detector RBW 1MHz, VBW 10Hz for AV value.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBuV/m is calculated by 20log Emission Level(uV/m).
- 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $Ld1 = Ld2 * (d2/d1)^2$.

Example:

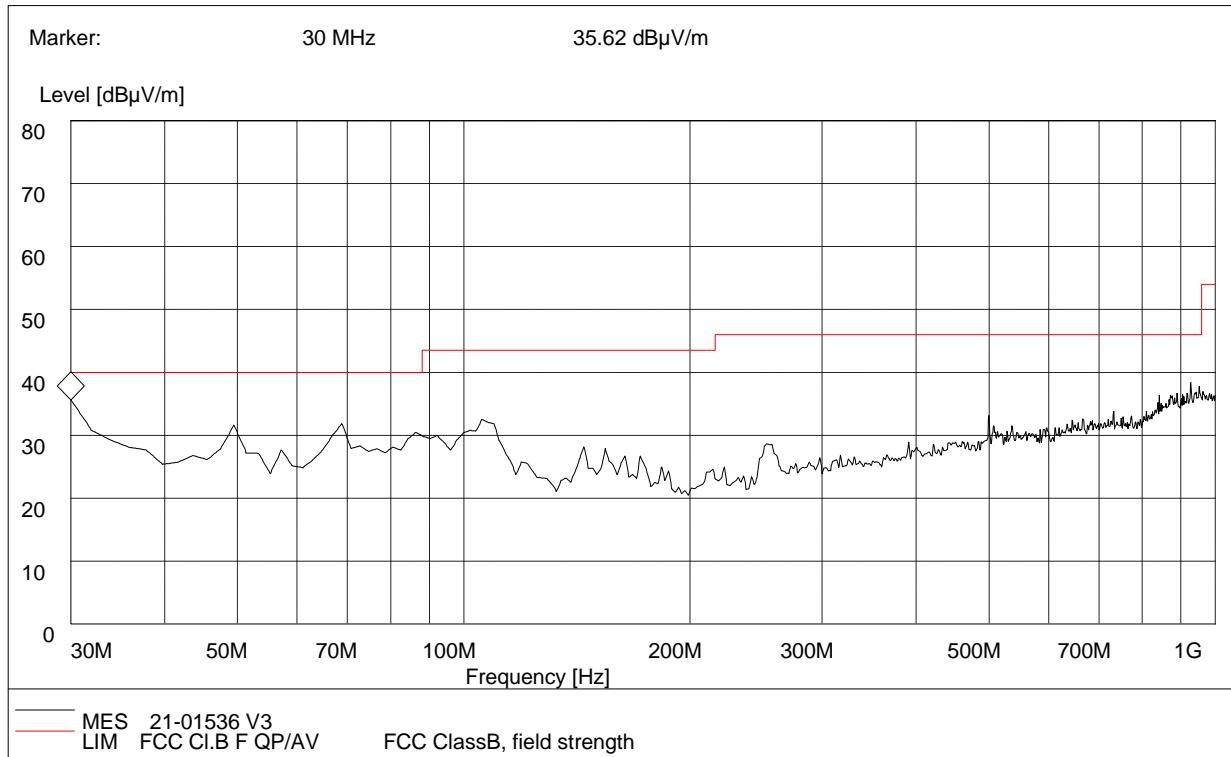
F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as $Ld1 = L1 = 30uV/m * (10)^2 = 100 * 30uV/m$.

3.2.2 Test Description

See section 2.3.2 of this report.

3.2.3 Test Result

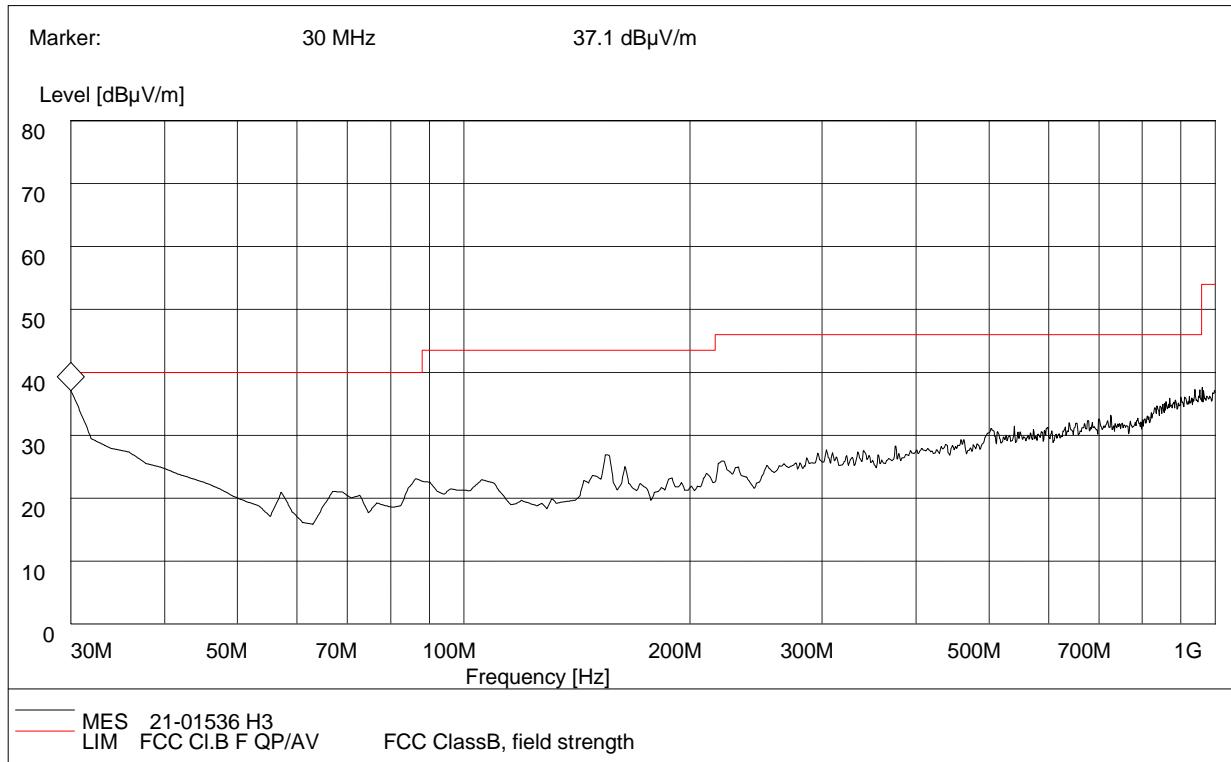
The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below.


The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report.

-Emission Level(dBuV/m)= $20\log \text{Emission Level}(\mu\text{V/m})$

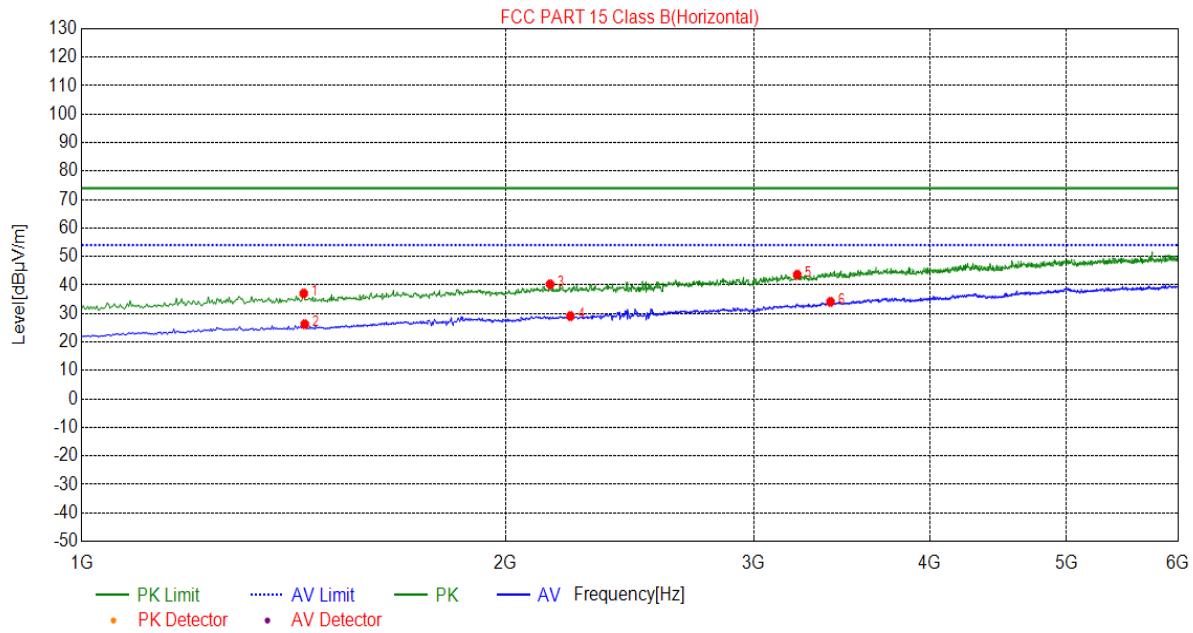
-Corrected Reading=Antenna factor+Cable Loss+Read Level-Preamp Factor= Level


A.Radiation disturbances, antenna polarization:Vertical

(Plot C: Test Antenna Vertical 30M - 1G)

Frequency (MHz)	QuasiPeak (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dB μ V/m)	Margin (dB)	Antenna	Cable Loss(dB)	ANT. Factor(dB)	Verdict
30.00	33.52	120	100	40.0	10.86	Vertical	0.4	26.3	Pass
49.40	29.14	120	100	40.0	9.82	Vertical	0.6	26.3	Pass
68.80	30.18	120	100	40.0	8.42	Vertical	0.5	26.3	Pass
105.00	31.58	120	100	43.5	15.58	Vertical	0.7	27.0	Pass
144.46	27.92	120	100	43.5	16.58	Vertical	0.5	28.0	Pass
154.16	26.92	120	100	43.5	43.5	Vertical	1.1	28.9	Pass

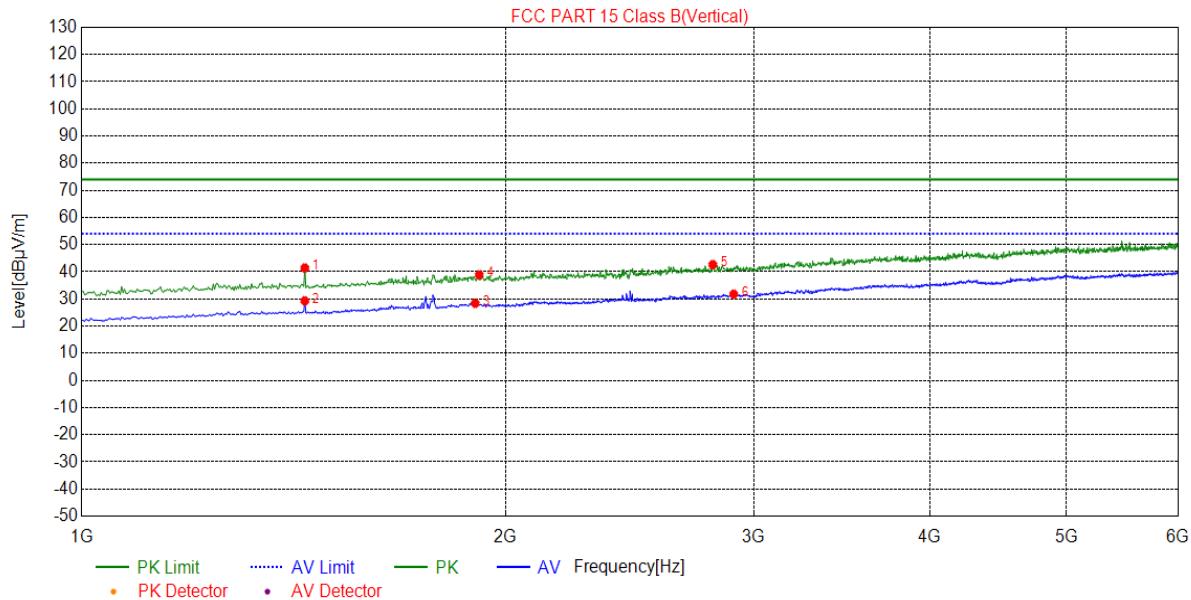
B.Radiation disturbances, antenna polarization: Horizontal



(Plot D: Test Antenna Horizontal 30M - 1G)

Frequency (MHz)	QuasiPeak (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dB μ V/m)	Margin (dB)	Antenna	Cable Loss(dB)	ANT. Factor(dB)	Verdict
30.00	35.15	120	100	40.0	4.85	Horizont	0.5	26.3	Pass
31.92	28.24	120	100	40.0	11.76	Horizont	0.5	26.3	Pass
57.16	20.94	120	100	40.0	19.06	Horizont	0.6	27.0	Pass
86.26	22.39	120	100	40.0	17.61	Horizont	0.6	27.0	Pass
154.16	26.80	120	100	43.5	16.70	Horizont	0.6	28.0	Pass
163.86	25.04	120	100	43.5	18.46	Horizont	1.2	28.9	Pass

Test Result: PASS


A.Radiation disturbances, antenna polarization: Horizontal

(Plot E: Test Antenna Horizontal 1G – 18G)

NO.	Freq. [MHz]	Level [dB μ V/m]	Factor [dB]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1437.71	37.03	-12.55	74.00	36.97	100	180	Horizontal
2	1440.22	26.25	-12.54	54.00	27.75	100	230	Horizontal
3	2150.57	40.27	-9.03	74.00	33.73	100	60	Horizontal
4	2223.11	29.09	-9.00	54.00	24.91	100	300	Horizontal
5	3221.11	43.62	-3.87	74.00	30.38	100	200	Horizontal
6	3401.20	34.10	-2.87	54.00	19.90	100	190	Horizontal

B.Radiation disturbances, antenna polarization: Vertical

(Plot F: Test Antenna Vertical 1G – 18G)

NO.	Freq. [MHz]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1440.22	41.40	-12.54	74.00	32.60	100	100	Vertical
2	1440.22	29.30	-12.54	54.00	24.70	100	110	Vertical
3	1902.95	28.37	-9.72	54.00	25.63	100	310	Vertical
4	1915.45	38.85	-9.78	74.00	35.15	100	80	Vertical
5	2805.90	42.64	-6.21	74.00	31.36	100	140	Vertical
6	2903.45	31.77	-5.37	54.00	22.23	100	150	Vertical

-----End of Report-----