

FCC PART 15C

TEST REPORT

For

Sichuan Weiyu Electric Co.,Ltd

No.1, Tumenjiang Road (C2# Building, Tianyu Science & Technology Park),
Deyang, Sichuan, China

FCC ID: 2AZGWM3P-2104

Report Type: Original Report	Product Name: LEVEL 2 AC EV CHARGER
Report Number:	RSC210316004-0C
Date of Report Issue:	2021-04-09
Reviewed By:	Sula Huang
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Chengdu) No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China Tel: 028-65525123 Fax: 028-65525125 www.baclcorp.com

Note: BACL is not responsible for the authenticity of any test data or information provided by the applicant. Test data or information included from the applicant that may affect test results are marked with an asterisk **. Do not include customer model name, addresses, names and trademarks.

This report cannot be reproduced except in full, without prior written approval of the company.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk ★.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
MEASUREMENT UNCERTAINTY	4
TEST METHODOLOGY	4
TEST FACILITY.....	4
SYSTEM TEST CONFIGURATION.....	5
JUSTIFICATION.....	5
EUT EXERCISE SOFTWARE.....	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS.....	8
TEST EQUIPMENTS LIST	9
FCC§15.203 - ANTENNA REQUIREMENT	10
APPLICABLE STANDARD.....	10
ANTENNA INFORMATION*	10
FCC §15.207 CONDUCTED EMISSION TEST	11
APPLICABLE STANDARD.....	11
EUT SETUP.....	11
EMI TEST RECEIVER SETUP	11
TEST PROCEDURE	12
CORRECTED AMPLITUDE & MARGIN CALCULATION.....	12
SUMMARY OF TEST RESULTS	12
TEST DATA	13
FCC§15.225, §15.205 & §15.209 - RADIATED EMISSIONS TEST	15
APPLICABLE STANDARD.....	15
EUT SETUP.....	15
EMI TEST RECEIVER SETUP	16
CORRECTED AMPLITUDE & MARGIN CALCULATION.....	16
TEST RESULTS SUMMARY	16
TEST DATA	17
FCC§15.225(E) - FREQUENCY STABILITY	21
APPLICABLE STANDARD.....	21
TEST PROCEDURE	21
TEST DATA	22
FCC §15.215(C) – 20 DB EMISSION BANDWIDTH	23
APPLICABLE STANDARD.....	23
TEST PROCEDURE	23
TEST DATA	23

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Sichuan Weiyu Electric Co.,Ltd
Product	LEVEL 2 AC EV CHARGER
Tested Model	M3P140U
Multiple Model	M3P132U
FCC ID	2AZGWM3P-2104
Voltage Range	AC 177-264V, 47-63Hz
Test Voltage	AC240V, 60Hz
Measure approximately	238 mm (L) x 323 mm (W) x 36 mm (H)
Frequency*	13.56 MHz
Measure approximately	309 mm (L) x 215 mm (W) x 114 mm (H)
Sample serial number	210316004/01 (assigned by the BACL, Chengdu)
Sample/EUT Status	The test sample was in good condition and received: 2021-03-16

Note: The EUT conformed to test requirements and all measurement and test data in this report was gathered from final production sample. It may have deviation from any other sample.

Objective

This Type approval report is prepared on behalf of **Sichuan Weiyu Electric Co.,Ltd** in accordance with Part 2, Subpart J, and Part 15, Subparts A and C of the Federal Communications Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules, sec 15.203, 15.205, 15.207, 15.209 and 15.225.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AZGWM3P-2104

Measurement Uncertainty

Item	Uncertainty	
Conducted Emission	2.48 dB	
Radiated Emission(Field Strength)	9 kHz-30 MHz	
	30MHz-200MHz	H 4.31 dB
		V 4.57 dB
	200MHz-1GHz	H 4.68 dB V 5.78 dB
Occupied Bandwidth	±5%	
Humidity	±5%	
Temperature	±1°C	
Voltage(AC,<10kHz)	±1%	
Time	±1%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the corresponding inclusion factor K when the inclusion probability is about 95%.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Chengdu) to collect test data is located No.5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Bay Area Compliance Laboratories Corp. (Chengdu) lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4324.01) and the FCC designation No. CN1186 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

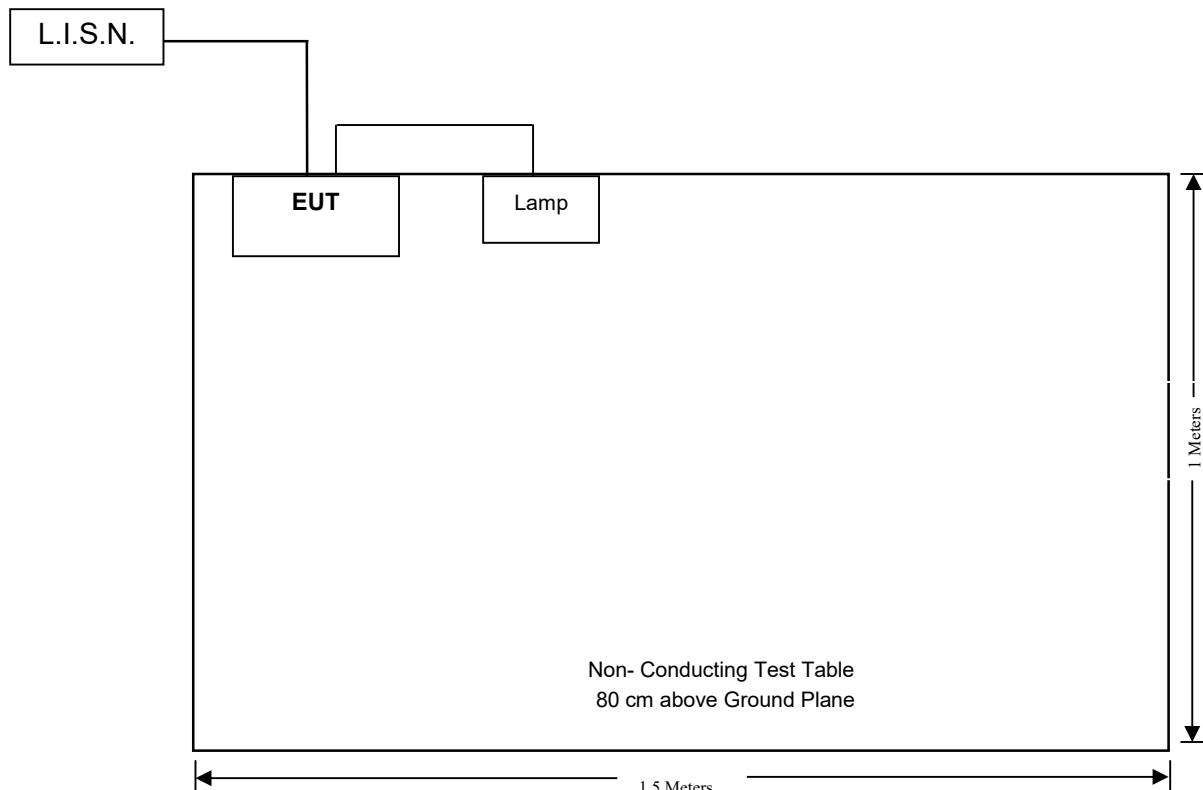
Justification

The system was configured for testing in a test mode.

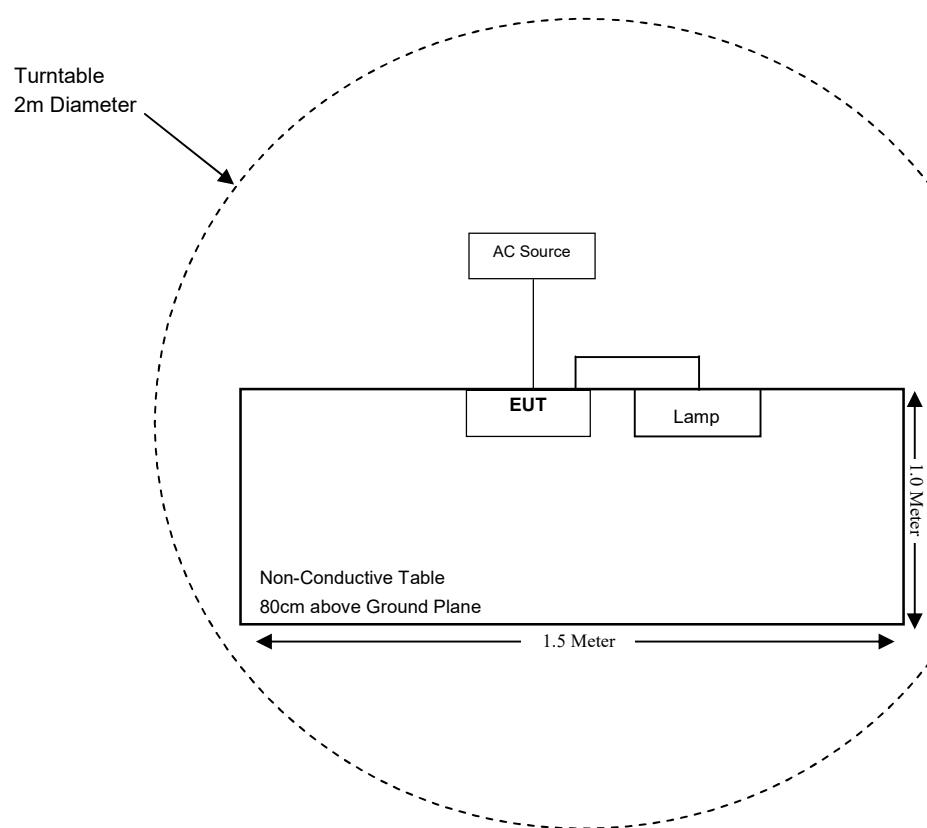
EUT Exercise Software

No

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
PHILIPS	Load(Lamp)	Unknown	Unknown

External I/O Cable


Cable Description	Length (m)	From	To
Unshielded AC Power Cable	5.0	EUT	Load(Lamp)

Block Diagram of Test Setup

For Conducted Emissions:

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207	Conducted Emissions	Compliance
§15.225 §15.209 §15.205	Radiated Emission Test	Compliance
§15.225(e)	Frequency Stability	Compliance
§15.215(c)	20 dB Emission Bandwidth	Compliance

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

TEST EQUIPMENTS LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2020-04-13	2021-04-12
ROHDE&SCHWARZ	L.I.S.N.	ENV216	3560.6550.16	2021-01-13	2022-01-12
HP	RF Limiter	11947A	3107A01270	2020-08-13	2021-08-12
Unknown	Conducted Cable	L-E-003	000003	2020-08-04	2021-08-03
Rohde & Schwarz	EMC32	EMC32	V 8.52.0	NCR	NCR
Radiated Emission Test (9 kHz-30 MHz)					
EMCT	Semi-Anechoic Chamber	966	001	2020-07-24	2025-07-23
Rohde & Schwarz	EMI Test Receiver	ESR3	102456	2020-04-13	2021-04-12
EMCO	Active loop antenna	6507	9506-1345	2019-08-26	2022-08-25
Unknown	RF Cable (Below 1GHz)	T-E128	000128	2020-10-16	2021-10-15
UTIFLEX	RF Cable (Below 1GHz)	T-E237	233522-001	2020-07-17	2021-07-16
Rohde & Schwarz	EMC32	EMC32	V9.10.00	NCR	NCR
Radiated Emission Test (30 MHz-1 GHz)					
EMCT	Semi-Anechoic Chamber	966	001	2020-07-24	2025-07-23
SONOMA INSTRUMENT	Pre-Amplifier	310 N	186684	2020-08-10	2021-08-09
SUNOL SCIENCES	Broadband Antenna	JB3	A121808	2019-12-10	2022-12-09
Rohde & Schwarz	EMI Test Receiver	ESR3	102456	2020-04-13	2021-04-12
Unknown	RF Cable (Below 1GHz)	L-E-005	000005	2020-09-04	2021-09-03
Unknown	RF Cable (Below 1GHz)	T-E128	000128	2020-10-16	2021-10-15
UTIFLEX	RF Cable (Below 1GHz)	T-E237	233522-001	2020-07-17	2021-07-16
Rohde & Schwarz	EMC32	EMC32	V9.10.00	NCR	NCR
Frequency Stability Test					
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2020-04-13	2021-04-12
RF Superstore	DC Block	RF-530004	Unknown	2020-08-04	2021-08-03
HPC	AC POWER SOURCE	HPA-3120	Unknown	2021-01-13	2022-01-12
EMCO	Active Loop Antenna	6507	9506-1345	2019-08-26	2022-08-25
Shenzhen BACL	High Temperature Test Chamber	BTH-150	30024	2020-04-13	2021-04-12
FLUKE	Digital Multimeter	FLUKE 1587	27870099	2020-04-23	2021-04-22

FCC§15.203 - ANTENNA REQUIREMENT

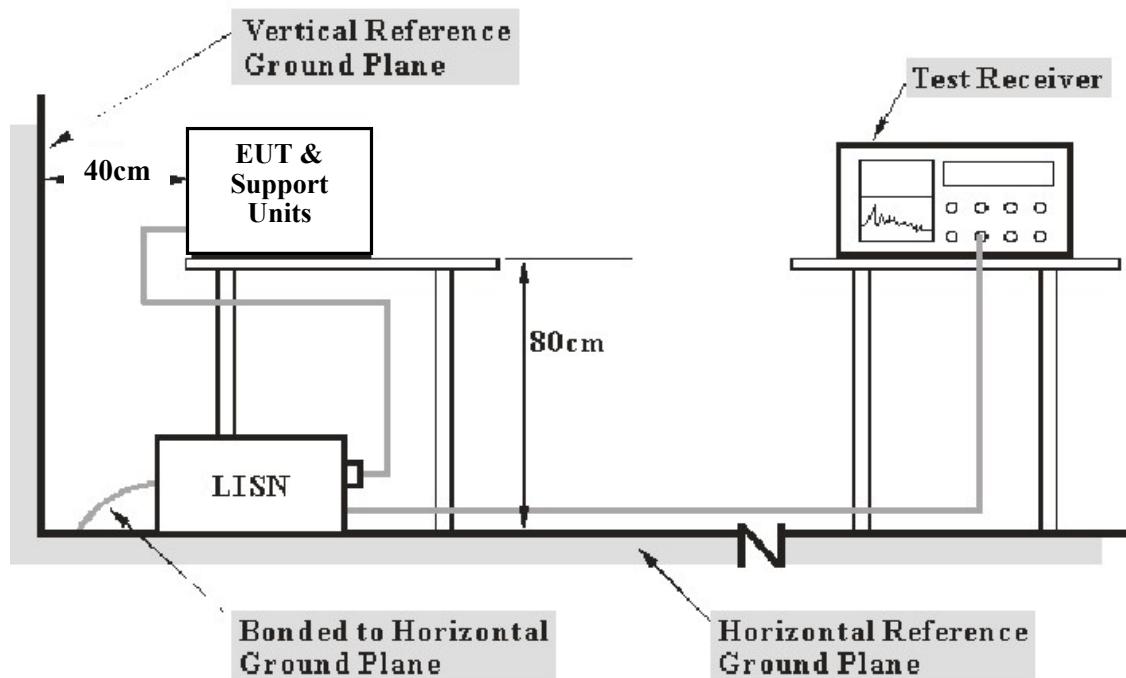
Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Information*


The device has one internal PCB loop antenna arrangement and the antenna gain is 0dBi, which was permanently attached and fulfill the requirement of this section.

FCC §15.207 CONDUCTED EMISSION TEST

Applicable Standard

FCC §15.207

EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The power cables and excess cables shall be folded at the cable center into a bundle no longer than 40 cm.

The spacing between the peripherals unit & EUT was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combination.

All data are recorded in the Quasi-peak and Average detection mode. Quasi-peak readings are distinguished with a "QP". Average readings are distinguished with an "AV".

The EUT is in the normal operating mode during the final qualification test to represent the worst cases results.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R : reading voltage amplitude

A_C : attenuation caused by cable loss

VDF: voltage division factor of AMN

C_f : Correction Factor

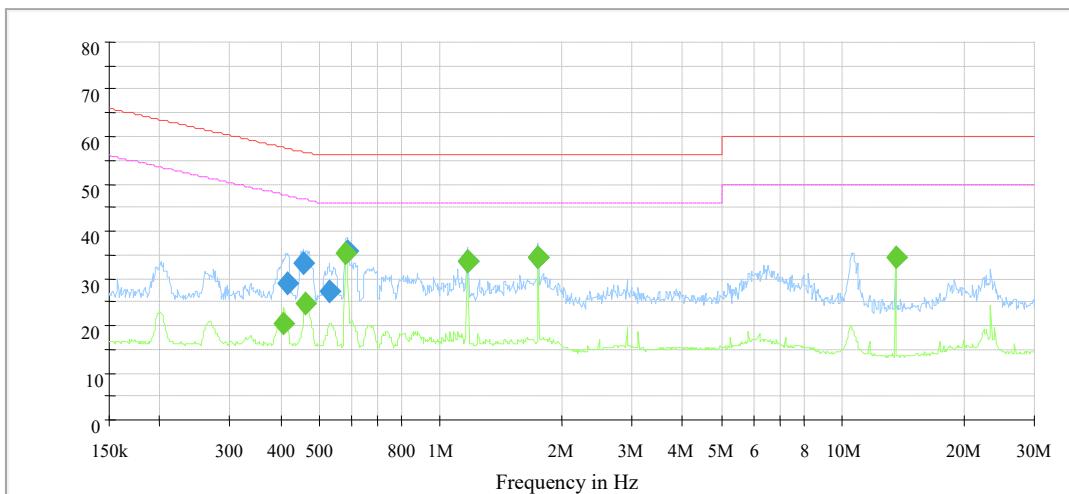
The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Summary of Test Results

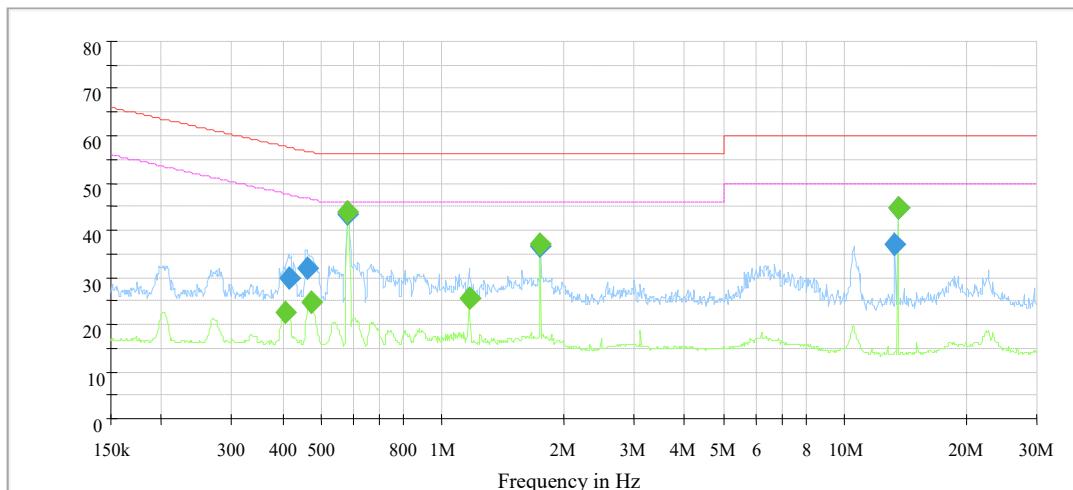
According to the data in the following, the EUT complied with the FCC Part 15.207.

Test Data


Test Environment Conditions

Temperature:	22 °C
Relative Humidity:	49 %
ATM Pressure:	95.6 kPa

The testing was performed by Winfred Wang on 2021-03-31.


Test Mode: Running

Line 1:

Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.416998	29.0	300.0	9.000	L1	19.6	28.5	57.5
0.456166	33.0	300.0	9.000	L1	19.6	23.8	56.8
0.529792	27.4	300.0	9.000	L1	19.6	28.6	56.0
0.585365	35.9	300.0	9.000	L1	19.6	20.1	56.0
1.165046	33.8	300.0	9.000	L1	19.6	22.2	56.0
1.753719	34.6	300.0	9.000	L1	19.6	21.4	56.0

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.408761	20.3	300.0	9.000	L1	19.6	27.4	47.7
0.463043	24.7	300.0	9.000	L1	19.6	21.9	46.6
0.582452	35.2	300.0	9.000	L1	19.6	10.8	46.0
1.165046	33.6	300.0	9.000	L1	19.6	12.4	46.0
1.753719	34.4	300.0	9.000	L1	19.6	11.6	46.0
13.553308	34.7	300.0	9.000	L1	19.6	15.3	50.0

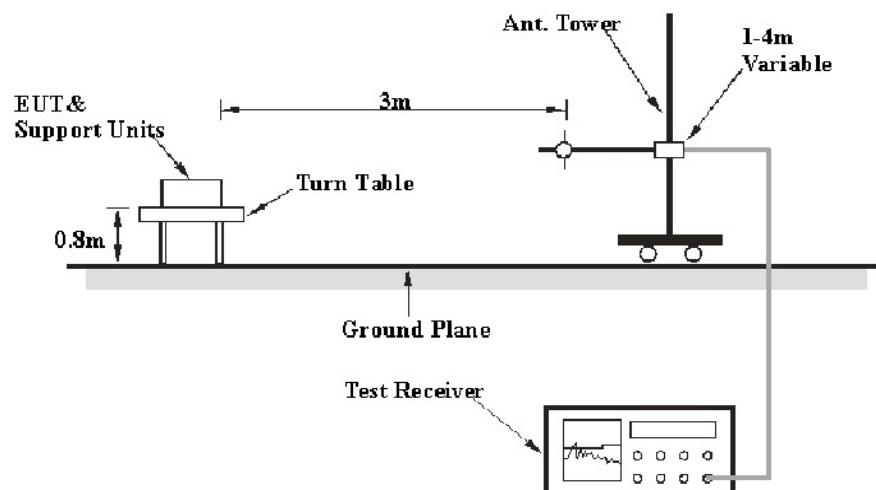
Line 2:

Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.414924	29.6	300.0	9.000	L2	19.6	27.9	57.5
0.460739	32.1	300.0	9.000	L2	19.6	24.6	56.7
0.582452	43.6	300.0	9.000	L2	19.6	12.4	56.0
1.753719	36.5	300.0	9.000	L2	19.6	19.5	56.0
13.352025	37.8	300.0	9.000	L2	19.6	22.2	60.0
13.553308	44.5	300.0	9.000	L2	19.6	15.5	60.0

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.406728	22.5	300.0	9.000	L2	19.6	25.2	47.7
0.470024	24.7	300.0	9.000	L2	19.6	21.8	46.5
0.582452	43.8	300.0	9.000	L2	19.6	2.2	46.0
1.165046	25.7	300.0	9.000	L2	19.6	20.3	46.0
1.753719	36.8	300.0	9.000	L2	19.6	9.2	46.0
13.553308	44.7	300.0	9.000	L2	19.6	5.3	50.0

Note:

- 1) Corrected Amplitude = Reading + Correction Factor
- 2) Correction Factor = LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
- 3) Margin = Limit – Corrected Amplitude


FCC§15.225, §15.205 & §15.209 - RADIATED EMISSIONS TEST

Applicable Standard

As per FCC Part 15.225

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

EUT Setup

All measurements contained in this report were conducted with ANSI C63.10-2013. The specification used was the FCC Part Subpart C limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The system was investigated from 9 kHz to 1 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
9 kHz – 150 kHz	200 Hz	1 kHz	QP
150 kHz – 30 MHz	9 kHz	30 kHz	QP
30 MHz – 1000 MHz	120 kHz	300 kHz	QP

If the maximizes peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

or

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna factor} + \text{Cable Loss}$$

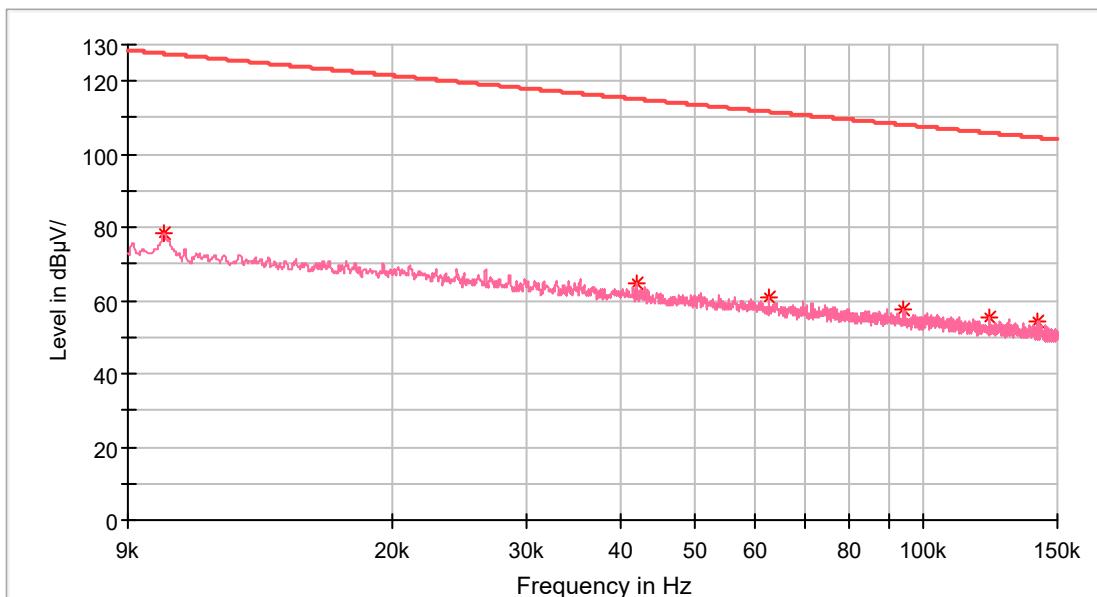
The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

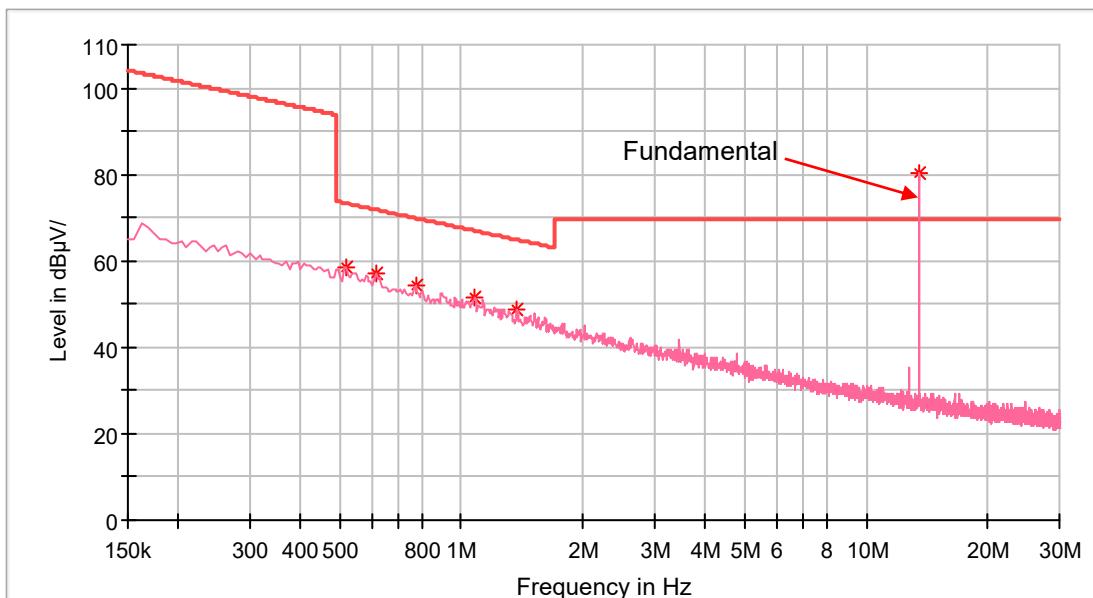
According to the data in the following table, the EUT complied with the ECC Part 15.209; 15.225.

Test Data

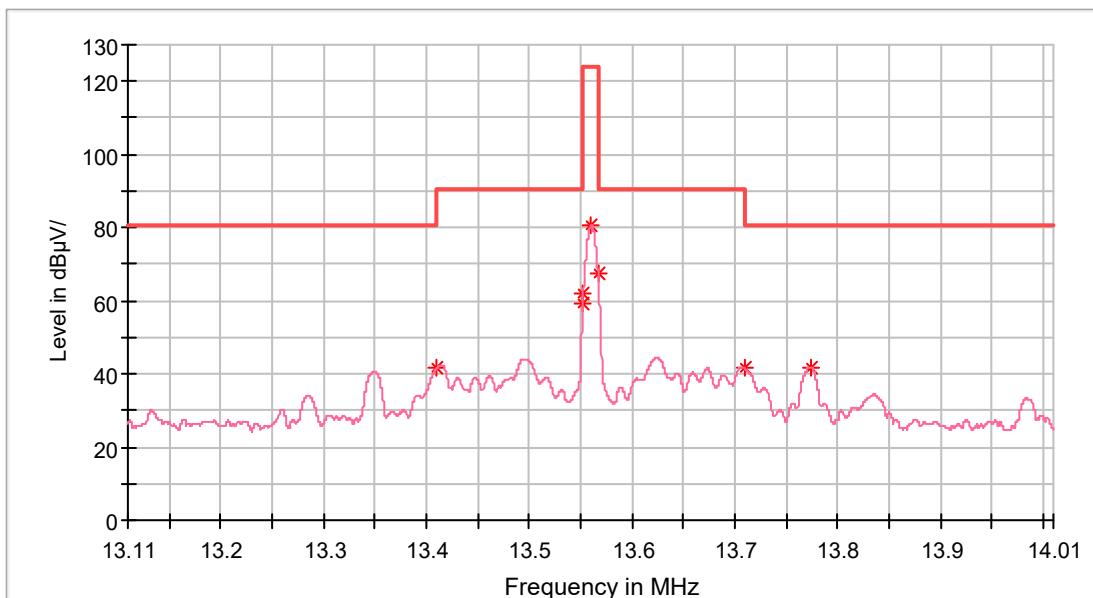

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	45 %
ATM Pressure:	95.7 kPa

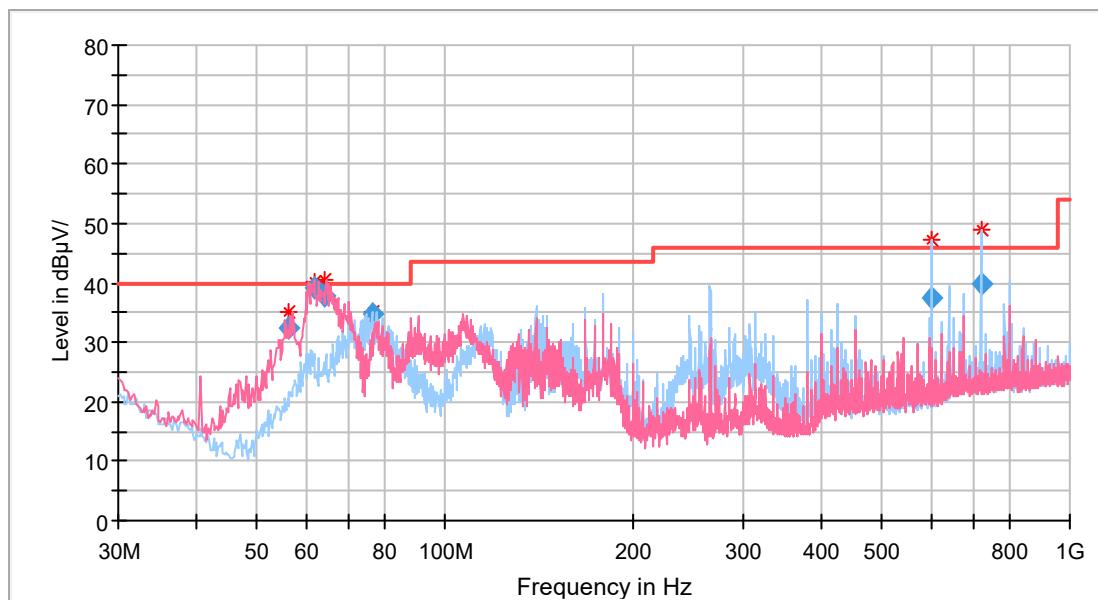
The testing was performed by Winfred Wang on 2021-03-31.


Test mode: Transmitting

1) Radiated Emissions (9 kHz ~150 kHz):


Frequency (MHz)	MaxPeak (dB µV/m)	Limit (dB µV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
0.010040	78.33	127.55	49.22	100.0	V	355.0	24.0
0.041924	64.47	115.14	50.67	100.0	V	0.0	16.6
0.062686	61.02	111.65	50.63	120.0	V	227.0	16.0
0.093917	57.77	108.14	50.38	100.0	V	198.0	15.8
0.121888	55.48	105.88	50.40	100.0	V	0.0	15.8
0.141593	54.23	104.58	50.35	100.0	V	358.0	15.8

2) Radiated Emissions (150 kHz ~30 MHz):


Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
0.520140	58.46	73.28	14.83	100.0	V	96.0	15.8
0.615660	57.16	71.82	14.66	100.0	V	115.0	15.9
0.770880	54.11	69.88	15.77	100.0	V	134.0	15.9
1.081320	51.72	66.94	15.22	100.0	V	163.0	16.0
1.373850	48.93	64.87	15.94	100.0	V	60.0	15.9
13.558620	80.52	124.00	43.48	100.0	V	186.0	16.0

3) Emissions Mask (13.11MHz-14.01MHz):

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
13.409880	41.49	80.50	39.01	100.0	V	0.0	16.0
13.552440	59.03	90.47	31.44	100.0	V	191.0	16.0
13.552980	62.09	90.47	28.38	100.0	V	191.0	16.0
13.560540	80.53	124.00	43.47	100.0	V	191.0	16.0
13.567020	67.62	90.47	22.85	100.0	V	191.0	16.0
13.710120	41.51	80.50	38.99	100.0	V	0.0	16.0
13.773480	41.92	80.50	38.58	100.0	V	0.0	16.0

4) Radiated Emissions (30 MHz ~1 GHz):

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
56.138875	32.41	40.00	7.59	1000.0	120.000	115.0	V	313.0	-18.1
61.782125	39.01	40.00	0.99	1000.0	120.000	102.0	V	298.0	-17.6
64.052375	37.79	40.00	2.21	1000.0	120.000	124.0	V	306.0	-17.4
76.516000	34.73	40.00	5.27	1000.0	120.000	124.0	H	0.0	-17.2
599.889125	37.41	46.00	8.59	1000.0	120.000	124.0	H	311.0	-5.8
720.044125	39.75	46.00	6.25	1000.0	120.000	102.0	H	2.0	-3.3

Note:

Corrected Amplitude = Corrected Factor + Reading

Corrected Factor=Antenna factor (RX) + Cable Loss – Amplifier Factor

Margin = Limit- Corrected Amplitude

FCC§15.225(e) - FREQUENCY STABILITY

Applicable Standard

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to AC power source and loop antenna was connected to a Spectrum Analyzer.

The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable AC power Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	49 %
ATM Pressure:	95.6 kPa

The testing was performed by Winfred Wang on 2021-03-31.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the below table.

$f_o = 13.56 \text{ MHz}$				
Temperature	Voltage	Measured frequency	Frequency Error	Limit
°C	V _{ac}	MHz		
-20	240	13.56049	0.0036%	±0.01%
-10		13.56052	0.0038%	±0.01%
0		13.56059	0.0044%	±0.01%
10		13.56057	0.0042%	±0.01%
20		13.56056	0.0041%	±0.01%
30		13.56054	0.0040%	±0.01%
40		13.56053	0.0039%	±0.01%
50		13.56051	0.0038%	±0.01%
25	177	13.56054	0.0040%	±0.01%
25	264	13.56053	0.0039%	±0.01%

The extreme voltage condition was declared by manufacturer.

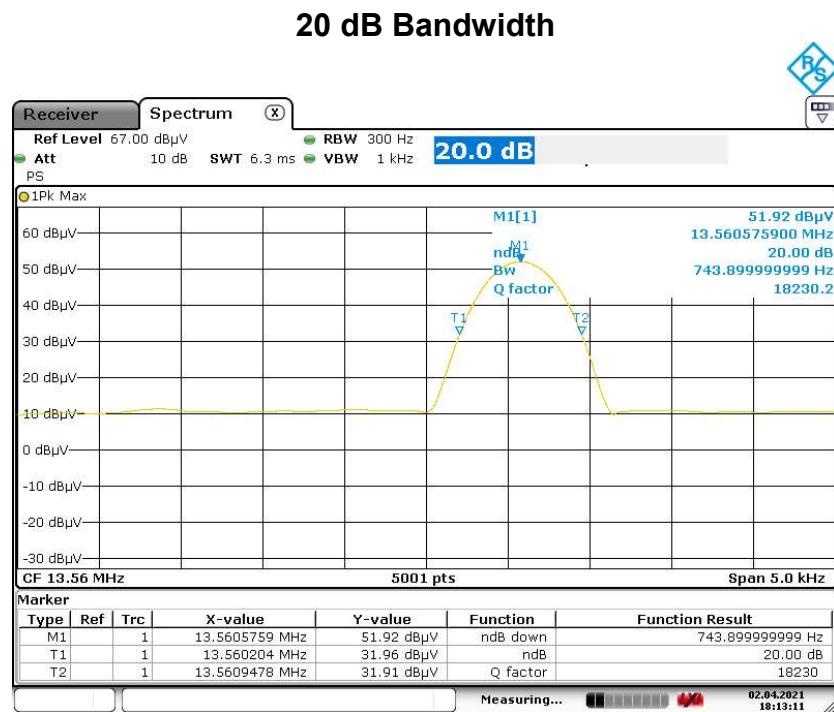
FCC §15.215(c) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Per FCC §15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or one known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.


Test Data

Environmental Conditions

Temperature:	20 °C
Relative Humidity:	52 %
ATM Pressure:	95.6 kPa

The testing was performed by Winfred Wang on 2021-04-02.

Test Mode: Transmitting

END OF REPORT