FCC TEST REPORT

For

Guangzhou EZVALO Technology Company Limited

Wireless Charger Music Lamp

Test Model: LYYD02

Additional Model No.: N/A

Prepared for Guangzhou EZVALO Technology Company Limited

Unit 1503 and 1504, 15/F, 166 Huangpu Park West Road, Huangpu

District, Guangzhou, China

Shenzhen LCS Compliance Testing Laboratory Ltd. Prepared by

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei,

Shajing Street, Baoan District, Shenzhen, 518000, China

Tel (+86)755-82591330 Fax (+86)755-82591332 Web www.LCS-cert.com

Mail webmaster@LCS-cert.com

Date of receipt of test sample April 10, 2022

Number of tested samples

Address

Address

Sample No. 220406102A-1, 220406102A-2 Date of Test April 10, 2022 ~ April 15, 2022

Date of Report April 16, 2022

FCC TEST REPORT FCC CFR 47 PART 15 C (15.247)

Report Reference No.: LCS220406102AEA

Date of Issue.....: April 16, 2022

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Shajing Street, Baoan District, Shenzhen, 518000, China

. Full application of Harmonised standards

Testing Location/ Procedure...... Partial application of Harmonised standards □

Other standard testing method

Applicant's Name.....: Guangzhou EZVALO Technology Company Limited

Unit 1503 and 1504, 15/F, 166 Huangpu Park West Road, Huangpu

District, Guangzhou, China

Test Specification

Standard..... : FCC CFR 47 PART 15 C (15.247)

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

EUT Description.....: Wireless Charger Music Lamp

Trade Mark.....: EZVALO

Test Model.....: LYYD02

Input: 5VDC 2A Wireless Charger Output: 5W MAX Input: 9VDC 2A Wireless Charger Output: 10W MAX

Ratings...... : DC 3.7V by Rechargeable Li-ion Battery 1, 1800mAh

DC 3.7V by Rechargeable Li-ion Battery 2, 1800mAh DC 3.7V by Rechargeable Li-ion Battery 3, 1800mAh

Result: Positive

Compiled by: Supervised by: Approved by:

Keyin Huang

Jin Wang/ Technique principal

Gavin Liang/ Manager

Grino Limos

Kevin Huang/ File administrators

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 2 of 22

FCC -- TEST REPORT

April 16, 2022 Test Report No.: LCS220406102AEA Date of issue

Test Model.....: LYYD02 EUT.....: Wireless Charger Music Lamp Applicant..... : Guangzhou EZVALO Technology Company Limited Unit 1503 and 1504, 15/F, 166 Huangpu Park West Road, Huangpu Address..... District, Guangzhou, China Telephone..... Fax..... Manufacturer..... : Guangzhou EZVALO Technology Company Limited Unit 1503 and 1504, 15/F, 166 Huangpu Park West Road, Huangpu Address..... District, Guangzhou, China Telephone..... Fax..... : Guangzhou EZVALO Technology Company Limited Factory..... Unit 1503 and 1504, 15/F, 166 Huangpu Park West Road, Huangpu Address..... District, Guangzhou, China Telephone..... Fax.....

Test Result Positive	Test Result	Positive
----------------------	-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	April 16, 2022	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION 1.1. DESCRIPTION OF DEVICE (EUT) 1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS 1.3. EXTERNAL I/O CABLE 1.4. DESCRIPTION OF TEST FACILITY 1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY 1.6. MEASUREMENT UNCERTAINTY 1.7. DESCRIPTION OF TEST MODES	
2. TEST METHODOLOGY	9
2.1. EUT CONFIGURATION	9 9
3. SYSTEM TEST CONFIGURATION	10
3.1. JUSTIFICATION	
4. SUMMARY OF TEST RESULTS	11
5. MEASUREMENT RESULTS	12
5.2. RESTRICTED BAND EMISSION LIMIT	
6. SUMMARY OF TEST EQUIPMENT	21
7. TEST SETUP PHOTOGRAPHS OF EUT	22
8. EXTERIOR PHOTOGRAPHS OF THE EUT	22
9. INTERIOR PHOTOGRAPHS OF THE EUT	22

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Wireless Charger Music Lamp

Test Model : LYYD02

Additional Model No : N/A

Model Declaration : N/A

> Input: 5VDC 2A Wireless Charger Output: 5W MAX Input: 9VDC 2A Wireless Charger Output: 10W MAX

Power Supply : DC 3.7V by Rechargeable Li-ion Battery 1, 1800mAh

> DC 3.7V by Rechargeable Li-ion Battery 2, 1800mAh DC 3.7V by Rechargeable Li-ion Battery 3, 1800mAh

Hardware Version : S-21PRO-01-V2.0

Software Version : V2.0

Bluetooth

Frequency Range : 2402MHz ~ 2480MHz

Channel Number : 79 channels for Bluetooth V5.0(DSS)

Channel Spacing : 1MHz for Bluetooth V5.0(DSS)

Modulation Type : GFSK, $\pi/4$ -DQPSK for Bluetooth V5.0(DSS)

Bluetooth Version : V5.0

Antenna Description : PCB Antenna, -0.58dBi(Max.)

Wireless Charging

Operating Frequency : 111.0~205.0KHz Modulation Type : Continuous Wave

Antenna Type : Coil Antenna

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
OPPO	ADAPTER	OP52KAUH		SDOC
Huawei	Mobile phone	FRD-AL10	FRD-AL10C00B373	SDOC

Note: The are only used test, not shipped

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
Type-C Port	1	USB Cable: 0.8m, unshielded

1.4. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

FCC Test Firm Registration Number: 254912.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
Radiation Uncertainty		30MHz~200MHz	±2.96dB	(1)
	:[200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. With basic data rate feature, the data rates can be up to 1 Mb/s by modulating the RF carrier using GFSK techniques. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)		
	2402	1/2		
BT V5.0(DSS)	2441	1/2		
	2480	1/2		
For Conducted Emission				
Test Mode		TX Mode		
For Radiated Emission				
Test Mode		TX Mode		

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be TX (1Mbps).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps-Low Channel).

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the normal operating mode for Hopping Numbers and Dwell Time test and a continuous transmits mode for other tests.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is directly placed on the ground. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turntable, which is directly placed on the ground. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(220406102A-1)	Engineer sample – continuous transmit
Sample 2(220406102A-2)	Normal sample – Intermittent transmit

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (RF TEST TOOL) provided by application.

3.3. Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C				
FCC Rules	Description of Test	Test Sample	Result	Remark
§15.247(b)(1)	Maximum Conducted Output Power	N/A	N/A	N/A
§15.247(c)	99% and 20 dB Bandwidth	N/A	N/A	N/A
§15.247(c)	Frequency Separation	N/A	N/A	N/A
§15.247(a)(1)(ii)	Number of Hopping Frequency	N/A	N/A	N/A
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	N/A	N/A	N/A
§15.209, §15.205	Conducted Spurious Emissions and Band Edges Test	N/A	N/A	N/A
§15.209, §15.247(d)	Radiated Spurious Emissions	Sample 1	Compliant	Note 1
§15.205	Emissions at Restricted Band	N/A	N/A	N/A
§15.207(a)	AC Conducted Emissions	Sample 1	Compliant	Note 1
§15.203	Antenna Requirements	N/A	N/A	N/A
§15.247(i)§2.1093	RF Exposure	N/A	N/A	N/A

Remark:

- 1. Note 1 Test results inside test report;
- 2. Note 2 Test results in other test report (RF Exposure Evaluation).

5. MEASUREMENT RESULTS

5.1. Restricted Band Emission Limit

5.1.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.1.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

5.1.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

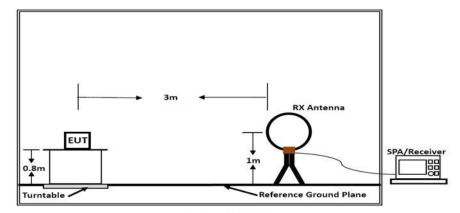
Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

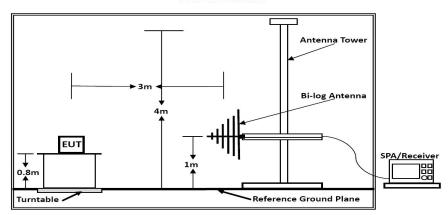
2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.


Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.


Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

5.1.4. Test Setup Layout

Below 30MHz

Below 1GHz

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Results of Radiated Emissions (9 KHz~30MHz)

Temperature	23.5℃	Humidity	52.2%	
Test Engineer	Kay Hu	Configurations	ВТ	

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

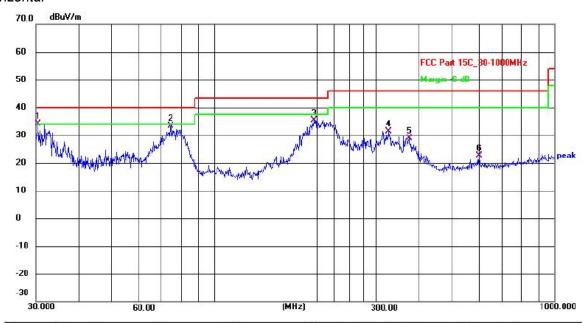
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

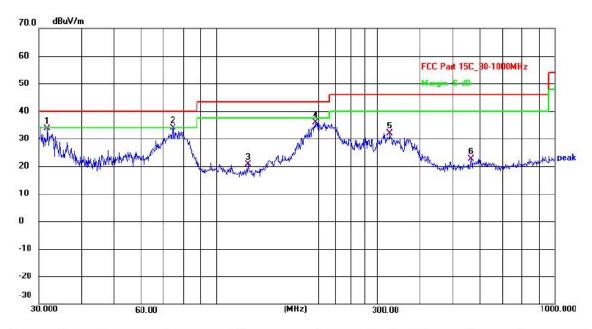
5.1.7. Results of Radiated Emissions (30 MHz – 1000 MHz)

PASS.


Only record the worst test result in this report.

Temperature	23.5℃	Humidity	52.2%	
Test Engineer	Kay Hu	Configurations	BT	

The test data please refer to following page.


Below 1GHz

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	30.5304	52.43	-18.39	34.04	40.00	-5.96	QP
2	74.6568	53.03	-19.66	33.37	40.00	-6.63	QP
3	196.5098	52.71	-17.37	35.34	43.50	-8.16	QP
4	325.5957	45.64	-14.21	31.43	46.00	-14.57	QP
5	374.6225	43.67	-14.74	28.93	46.00	-17.07	QP
6	601.4265	33.19	-10.47	22.72	46.00	-23.28	QP

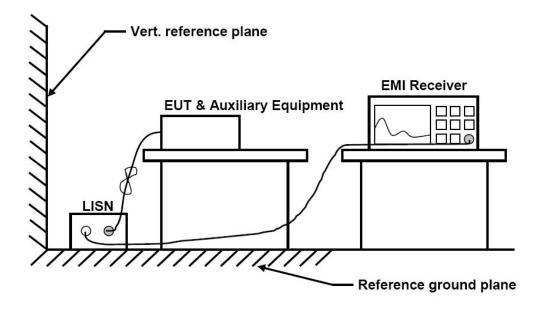
Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	31.8427	51.89	-18.22	33.67	40.00	-6.33	QP
2	74.6568	53.53	-19.66	33.87	40.00	-6.13	QP
3	124.5690	40.77	-20.23	20.54	43.50	-22.96	QP
4	196.5098	53.21	-17.37	35.84	43.50	-7.66	QP
5	325.5957	46.14	-14.21	31.93	46.00	-14.07	QP
6	566.6221	33.76	-11.17	22.59	46.00	-23.41	QP

Note:

- 1). Pre-scan all modes and recorded the worst case results in this report (BT 1Mbps (Low Channel)).
- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3). Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level.

5.2. AC Power Line Conducted Emissions


5.2.1 Standard Applicable

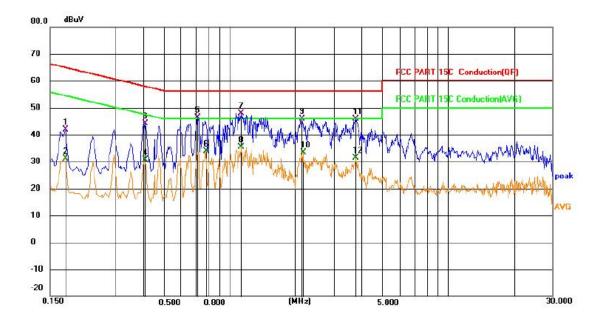
According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

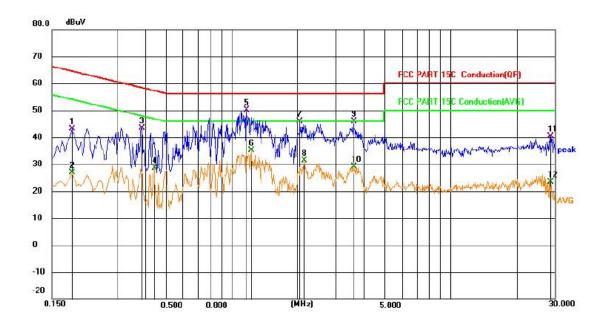
5.2.2 Block Diagram of Test Setup

5.2.3 Test Results


PASS.

The test data please refer to following page.

Temperature	22.5 ℃	Humidity	53.7%
Test Engineer	Kay Hu	Configurations	ВТ


AC Conducted Emission of charge from Adapter mode @ AC 120V/60Hz @ GFSK (worst case)

Line

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1771	22.09	19.76	41.85	64.62	-22.77	QP
2	0.1771	11.41	19.76	31.17	54.62	-23.45	AVG
3	0.4111	24.25	19.77	44.02	57.63	-13.61	QP
4	0.4111	10.90	19.77	30.67	47.63	-16.96	AVG
5	0.7125	26.67	19.81	46.48	56.00	-9.52	QP
6	0.7753	14.03	19.79	33.82	46.00	-12.18	AVG
7 *	1.1310	28.14	19.79	47.93	56.00	-8.07	QP
8	1.1310	15.56	19.79	35.35	46.00	-10.65	AVG
9	2.1480	26.10	19.85	45.95	56.00	-10.05	QP
10	2.1749	13.51	19.85	33.36	46.00	-12.64	AVG
11	3.7951	26.03	19.89	45.92	56.00	-10.08	QP
12	3.7951	11.38	19.89	31.27	46.00	-14.73	AVG

Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1859	23.46	19.75	43.21	64.22	-21.01	QP
2	0.1859	7.16	19.75	26.91	54.22	-27.31	AVG
3	0.3886	23.71	19.76	43.47	58.09	-14.62	QP
4	0.4425	8.86	19.77	28.63	47.01	-18.38	AVG
5 *	1.1670	30.30	19.78	50.08	56.00	-5.92	QP
6	1.2255	15.34	19.79	35.13	46.00	-10.87	AVG
7	2.0535	26.01	19.83	45.84	56.00	-10.16	QP
8	2.1480	11.47	19.83	31.30	46.00	-14.70	AVG
9	3.6105	25.89	19.88	45.77	56.00	-10.23	QP
10	3.6105	9.23	19.88	29.11	46.00	-16.89	AVG
11	28.4639	19.71	20.65	40.36	60.00	-19.64	QP
12	28.4639	2.71	20.65	23.36	50.00	-26.64	AVG

***Note: Pre-scan all modes and recorded the worst case results in this report (GFSK). Result = Reading + Correct, Margin = Result – Limit.

6. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R&S	NRVS	100444	2021-06-21	2022-06-20
2	Power Sensor	R&S	NRV-Z81	100458	2021-06-21	2022-06-20
3	Power Sensor	R&S	NRV-Z32	10057	2021-06-21	2022-06-20
4	Test Software	Tonscend	JS1120-2	1	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-2	N/A	2021-06-21	2022-06-20
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2021-11-20	2022-11-19
7	DC Power Supply	Agilent	E3642A	N/A	2021-11-12	202211-11
8	EMI Test Software	Farad	EZ	1	N/A	N/A
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-06-21	2022-06-20
10	Positioning Controller	MF	MF7082	MF78020803	2021-06-21	2022-06-20
11	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-07-25	2022-07-24
12	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2022-07-24
13	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2022-06-30
14	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2021-09-19	2022-09-18
15	Broadband Preamplifier	SCHWARZBECK	BBV9745	9719-025	2021-06-21	2022-06-20
16	EMI Test Receiver	R&S	ESR 7	101181	2021-06-21	2022-06-20
17	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2021-11-12	2022-11-11
18	Broadband Preamplifier	/	BP-01M18G	P190501	2021-06-21	2022-06-20
19	RF Cable-R03m	Jye Bao	RG142	CB021	2021-06-21	2022-06-20
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2021-06-21	2022-06-20
21	6dB Attenuator	1	100W/6dB	1172040	2021-06-21	2022-06-20
22	3dB Attenuator	1	2N-3dB	/	2021-06-21	2022-06-20
23	EMI Test Receiver	R&S	ESPI	101840	2021-06-21	2022-06-20
24	Artificial Mains	R&S	ENV216	101288	2021-06-21	2022-06-20
25	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2021-06-21	2022-06-20

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.
THE END OF REPORT