

FCC WLAN 6GHz RF Exposure

Applicant : Luxottica Group S.p.A.
Equipment : AI GLASSES
Brand Name : OAKLEY|META or OAKLEY META
Model Name : OW8002
FCC ID : 2AYOA-4003
Standard : FCC 47 CFR Part 2 (2.1093)

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

Hank Huang

Approved by: Hank Huang

Sportun International Inc. (Shenzhen)
1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055
People's Republic of China

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
3. Guidance Applied.....	5
4. Equipment Under Test (EUT) Information.....	6
4.1 General Information	6
5. RF Exposure Limits.....	7
5.1 Uncontrolled Environment.....	7
5.2 Controlled Environment.....	7
5.3 RF Exposure limit for below 6GHz	7
5.4 RF Exposure limit for above 6GHz.....	8
6. System Description and Setup	9
7. Test Equipment List	10
8. SAR System Verification	11
8.1 SAR Tissue Verification	11
8.2 SAR System Performance Check Results	11
9. RF Exposure Positions	12
9.1 Head SAR Testing for SMART GLASSES.....	12
9.2 Body SAR Testing for SMART GLASSES	12
9.3 Extremity SAR Testing for SMART GLASSES	12
9.4 Miscellaneous Testing Considerations	12
10. RF Exposure Test Results	13
10.1 Face-Worn SAR Test Result	13
10.2 Rest-on-Head SAR Test Result.....	13
10.3 Rest-on-Shirt SAR Test Result.....	13
10.4 Pocketing (outside Charging Case)SAR Test Result.....	13
10.5 Pocketing(inside Charging Case)SAR Test Result	13
10.6 Handheld(inside Charging Case) SAR Test Result	13
11. Uncertainty Assessment	14
12. References	16
Appendices	17
Appendix A. Plots of System Performance Check	17
Appendix B. Plots of High SAR and PD Measurement	17
Appendix C. DASY Calibration Certificate.....	17
Appendix D. Test Setup Photos.....	17

History of this test report

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Luxottica Group S.p.A., AI GLASSES, OW8002**, are as follows.

Frequency Band	WLAN 6GHz					
Tx Frequency	5925-7125 MHz					
Exposure Condition	Head		Body			Extremity
	Face-Worn (Separation 0mm)	Rest-on-Head (Separation 0mm)	Rest-on-Shirt (Separation 0mm)	Pocketing (outside Charging Case) (Separation 5mm)	Pocketing(inside Charging Case) (Separation 5mm)	Handheld(inside Charging Case) (Separation 0mm)
Reported SAR	1g SAR (W/kg)					10g SAR (W/kg)
	0.19	0.14	0.66	<0.10	0.26	0.22
Measured APP	(W/m^2)					
	0.87	0.71	2.15	0.21	1.34	3.70
Date of Testing:	2025/5/14 ~ 2025/5/19					

Note: This is a variant report for OW8002, The different between them refer to the OW8002_Product Equality Declaration which is exhibit separately. Based on the similarity between two models, added sample 8, only the worst cases from original test report (Sportun Report Number FA4D0649A) were verified for the differences).

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) and Power density exposure limits (1 mW/cm^2 = 10 W/m^2) specified in FCC 47 CFR part 2 (2.1093), ANSI/IEEE C95.1-1992 and FCC 47 CFR Part1.1310, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

2. Administration Data

Sportun International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Testing Laboratory			
Test Firm	Sportun International Inc. (Shenzhen)		
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	SAR05-SZ	CN1256	421272

Applicant	
Company Name	Luxottica Group S.p.A.
Address	Piazzale Cadorna 3 20123 Milan, Italy

Manufacturer	
Company Name	Luxottica Group S.p.A.
Address	Piazzale Cadorna 3 20123 Milan, Italy

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards.

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- IEC/IEEE 62209-1528:2020
- SPEAG DASY6 System Handbook
- SPEAG DASY6 Application Note (Interim Procedure for Device Operation at 6GHz-10GHz)
- IEC TR 63170:2018
- IEC 62479:2010
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- November 2017, October 2018, April 2019, November 2019, October 2020, April 2021 TCBC Workshop Notes
- TCB workshop April 2019; RF Exposure Procedures (802.11ax SAR Testing)

4. Equipment Under Test (EUT) Information**4.1 General Information**

Product Feature & Specification	
Equipment Name	AI GLASSES
Brand Name	OAKLEY META or OAKLEY META
Model Name	OW8002
FCC ID	2AYOA-4003
S/N	4W0YBB2H2R000L
Wireless Technology and Frequency Range	WLAN 2.4GHz Band: 2412 MHz ~ 2472 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz WLAN 6GHz U-NII-5: 5955 MHz ~ 6415 MHz WLAN 6GHz U-NII-6: 6435 MHz ~ 6515 MHz WLAN 6GHz U-NII-7: 6535 MHz ~ 6855 MHz WLAN 6GHz U-NII-8: 6875 MHz ~ 7095 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 2.4GHz 802.11ac/ax VHT20/VHT40/HE20/HE40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac/ax VHT20/VHT40/VHT80/VHT160/HE20/HE40/HE80/HE160 WLAN 6GHz 802.11a WLAN 6GHz 802.11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE
EUT Stage	Identical Prototype

Remark:

1. Power States and the related triggering mechanisms are following as: the detailed Sensor Fusion Algorithm and Power State Decision Logic Flow, Exposure Condition and SAR Requirement summary please refer to KDB inquiry with the FCC.

Power State	Exposure Condition
A	Face-Worn
	Rest-on-Head
B	Rest- on-Shirt
	Pocketing
C	Pocketing/Handheld (in Charging Case)
D	Free Space/Off Body

2. There eight samples of EUT. The manufacturer declares that all the equipment and models share the same radio characteristics and Software/Firmware, the only differences between each of them are color of frames, lenses, and sizes which certainly do not affect the test results.

Sample	Model Name	Brand Name
Sample 1	RW4006	Ray-Ban Meta or Ray-Ban
Sample 2	RW4008	Ray-Ban Meta or Ray-Ban
Sample 3	RW4009	Ray-Ban Meta or Ray-Ban
Sample 4	RW4009F	Ray-Ban Meta or Ray-Ban
Sample 5	RW4010	Ray-Ban Meta or Ray-Ban
Sample 6	RW4006M	Ray-Ban Meta or Ray-Ban
Sample 7	RW4006S	Ray-Ban Meta or Ray-Ban
Sample 8	OW8002	OAKLEY META or OAKLEY META

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 RF Exposure limit for below 6GHz

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

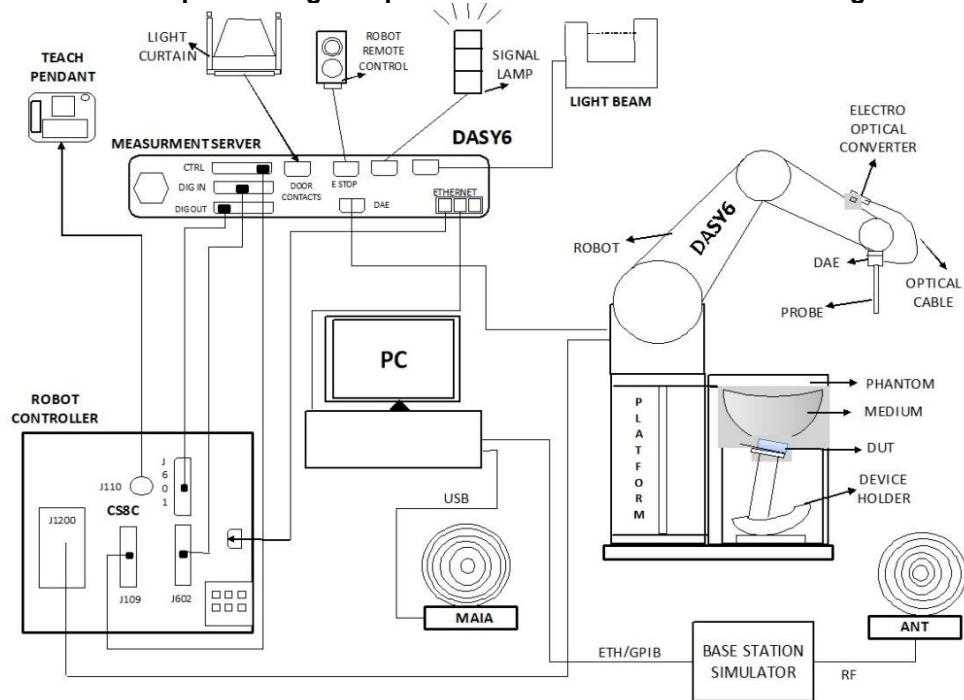
Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

5.4 RF Exposure limit for above 6GHz

According to ANSI/IEEE C95.1-1992, the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in §1.1310. The unit of power density evaluation is W/m² or mW/cm².


Peak Spatially Averaged Power Density was evaluated over a square area of 4cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

Note: 1.0 mW/cm² is 10 W/m²

6. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Windows 10 and the DASY6⁽¹⁾ software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Note: 1. DASY6 software used: DASY6 mmWave V3.0.0.841 and older generations and used the developed Plane-to-Plane Phase Reconstruction (PTP-PR) Algorithm which was used in PD measurement.

7. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	6500MHz System Validation Kit	D6.5GHzV2	1026	Jan. 28, 2025	Jan. 27, 2026
SPEAG	Data Acquisition Electronics	DAE4	1210	Dec. 17, 2024	Dec. 16, 2025
SPEAG	Dosimetric E-Field Probe	EX3DV4	7641	Jun. 03, 2024	Jun. 02, 2025
SPEAG	SAM Twin Phantom	QD 000 P41 AA	2033	NCR	NCR
SPEAG	SAM Head-Stand	QD 012 003 CC	1024	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Keysight	Network Analyzer	E5071C	MY46523671	Oct. 15, 2024	Oct. 14, 2025
Speag	Dielectric Assessment KIT	DAK-3.5	1071	Feb. 24, 2025	Feb. 23, 2026
Agilent	Signal Generator	N5181A	MY50145381	Dec. 26, 2024	Dec. 25, 2025
Anritsu	Power Senor	MA2411B	1306099	Oct. 15, 2024	Oct. 14, 2025
Anritsu	Power Meter	ML2495A	1349001	Oct. 15, 2024	Oct. 14, 2025
Anritsu	Power Sensor	MA2411B	1218010	Oct. 14, 2024	Oct. 13, 2025
Anritsu	Power Meter	ML2495A	1339473	Dec. 26, 2024	Dec. 25, 2025
R&S	Spectrum Analyzer	FSP7	100818	Jul. 04, 2024	Jul. 03, 2025
TES	Hygrometer	1310	200505600	Jul. 08, 2024	Jul. 07, 2025
Anymetre	Thermo-Hygrometer	JR593	2015030903	Dec. 28, 2024	Dec. 27, 2025
SPEAG	Device Holder	N/A	N/A	N/A	N/A
Mini-Circuits	Amplifier	ZVA-183W-S+	726202215	Note 1	
ET Industries	Dual Directional Coupler	C-058-10	N/A	Note 1	
Weinschel	Attenuator 1	3M-10	N/A	Note 1	
Weinschel	Attenuator 2	3M-20	N/A	Note 1	

General Note:

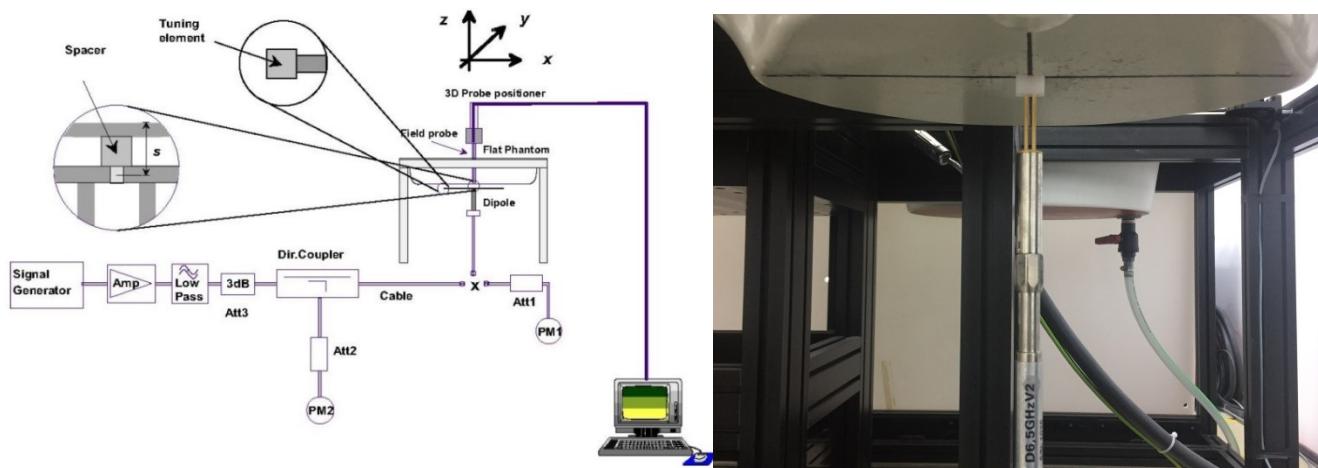
- Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

8. SAR System Verification

8.1 SAR Tissue Verification

The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18°C to 25°C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18°C to 25°C and within $\pm 2^\circ\text{C}$ of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements.

The liquid tissue depth was at least 15cm in the phantom for all SAR testing


< Tissue Dielectric Parameter Check Results >

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ϵ_r)	Conductivity Target (σ)	Permittivity Target (ϵ_r)	Delta (σ) (%)	Delta (ϵ_r) (%)	Limit (%)	Date
6500	Head	22.5	6.08	34.0	6.07	34.50	0.16	-1.45	± 5	2025/5/14
6500	Head	22.3	5.92	33.6	6.07	34.50	-2.47	-2.61	± 5	2025/5/19

8.2 SAR System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. As confirmed as appropriate through KDB inquiry with the FCC and confirmation with the manufacturer, since SPEAG has not yet developed the specific phantom SAR system check target values for the 7 GHz band. The detailed System Check on SAM Head-Stand phantom please refer to Sporton Report Number FA540302.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2025/5/14	6500	Head	100	1026	7641	1210	30.800	296.000	308	4.05	5.570	54.800	55.7	1.64
2025/5/19	6500	Head	100	1026	7641	1210	30.500	296.000	305	3.04	5.610	54.800	56.1	2.37

System Performance Check Setup

Setup Photo

9. RF Exposure Positions

9.1 Head SAR Testing for AI GLASSES

The device was mounted on the SAM Head-Stand Phantom as it is intended to be worn, the detailed please refer to KDB inquiry with the FCC.

9.2 Body SAR Testing for AI GLASSES

- a) To position the device parallel to the phantom surface to 0mm with the Device's antenna is located on the left temple arm outer edge in Rest-on-Shirt exposure condition.
- b) To position the device parallel to the phantom surface to 5mm with the Device's antenna is located on the left temple arm in Pocketing (outside Charging Case) exposure condition.
- c) To position the device parallel to the phantom surface to 5mm with the EUT's top or bottom in Pocketing(inside Charging Case) exposure condition.

9.3 Extremity SAR Testing for AI GLASSES

- a) The device shall be placed directly against the flat phantom, for those sides of the device that are in contact with the hand during intended use.
- b) To adjust the device parallel to the flat phantom.
- c) To adjust the distance between the device surface and the flat phantom to 0cm.

<EUT Setup Photos>

Please refer to Appendix D for the test setup photos.

9.4 Miscellaneous Testing Considerations

- Evaluate SAR using 6-7 GHz parameters per IEC/IEEE 62209-1528:2020.
- Per procedures of KDB Pubs. 447498 and 248227.

10. RF Exposure Test Results

10.1 Face-Worn SAR Test Result

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power State	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Measured APD (W/m^2)
01	WLAN6GHz	802.11ax-HE160 MCS0	On the Front of the Face	0mm	Ant 1	A	15	6025	9.34	10.75	1.384	98.91	1.011	0.05	0.135	0.189	0.872

10.2 Rest-on-Head SAR Test Result

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power State	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Measured APD (W/m^2)
02	WLAN6GHz	802.11ax-HE160 MCS0	On of the head	0mm	Ant 1	A	15	6025	9.34	10.75	1.384	98.91	1.011	0.03	0.103	0.144	0.517
03	WLAN6GHz	802.11ax-HE160 MCS0	On of the head	0mm	Ant 1	A	111	6505	8.91	10.25	1.361	98.91	1.011	-0.14	0.081	0.111	0.71

10.3 Rest-on-Shirt SAR Test Result

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power State	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Measured APD (W/m^2)
04	WLAN6GHz	802.11ax-HE160 MCS0	Left Temple Arm Outer Edge Touching Phantom	0mm	Ant 1	B	175	6825	4.01	5.50	1.409	98.91	1.011	0.06	0.461	0.657	2.15

10.4 Pocketing (outside Charging Case) SAR Test Result

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power State	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Measured APD (W/m^2)
05	WLAN6GHz	802.11ax-HE160 MCS0	Left Lens Kept 5mm Distance from Phantom	5mm	Ant 1	B	175	6825	4.01	5.50	1.409	98.91	1.011	0.03	0.037	0.053	0.207

10.5 Pocketing (inside Charging Case) SAR Test Result

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power State	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Measured APD (W/m^2)
06	WLAN6GHz	802.11ax-HE160 MCS0	Bottom Edge Kept 5mm Distance from Phantom	5mm	Ant 1	C	207	6985	13.74	15.00	1.337	98.91	1.011	-0.06	0.191	0.258	1.34

10.6 Handheld (inside Charging Case) SAR Test Result

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power State	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 10g SAR (W/kg)	Reported 10g SAR (W/kg)	Measured APD (W/m^2)
07	WLAN6GHz	802.11ax-HE160 MCS0	Back	0mm	Ant 1	C	207	6985	13.74	15.00	1.337	98.91	1.011	0.13	0.163	0.220	3.7

Test Engineer : Kevin Xu, David Dai, Bin He

11. Uncertainty Assessment

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

The component of uncertainty may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacturer's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	$1/k^{(b)}$	$1/\sqrt{3}$	$1/\sqrt{6}$	$1/\sqrt{2}$

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) k is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

Uncertainty Budget According to IEC/IEEE 62209-1528 (Frequency band: 4 MHz - 10 GHz range)							
Error Description	Uncert. Value (±%)	Prob. Dist.	Div.	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System errors							
Probe calibration	18.6	N	2	1	1	9.3	9.3
Probe calibration drift	1.7	R	1.732	1	1	1.0	1.0
Probe linearity and detection Limit	4.7	R	1.732	1	1	2.7	2.7
Broadband signal	2.8	R	1.732	1	1	1.6	1.6
Probe isotropy	7.6	R	1.732	1	1	4.4	4.4
Other probe and data acquisition errors	2.4	N	1	1	1	2.4	2.4
RF ambient and noise	1.8	N	1	1	1	1.8	1.8
Probe positioning errors	0.006	N	1	0.5	0.5	0.0	0.0
Data processing errors	4.0	N	1	1	1	4.0	4.0
Phantom and Device Errors							
Measurement of phantom conductivity (σ)	2.5	N	1	0.78	0.71	2.0	1.8
Temperature effects (medium)	5.4	R	1.732	0.78	0.71	2.4	2.2
Shell permittivity	14.0	R	1.732	0.5	0.5	4.0	4.0
Distance between the radiating element of the DUT and the phantom medium	2.0	N	1	2	2	4.0	4.0
Repeatability of positioning the DUT or source against the phantom	1.0	N	1	1	1	1.0	1.0
Device holder effects	3.6	N	1	1	1	3.6	3.6
Effect of operating mode on probe sensitivity	2.4	R	1.732	1	1	1.4	1.4
Time-average SAR	1.7	R	1.732	1	1	1.0	1.0
Variation in SAR due to drift in output of DUT	2.5	N	1	1	1	2.5	2.5
Validation antenna uncertainty (validation measurement only)	0.0	N	1	1	1	0.0	0.0
Uncertainty in accepted power (validation measurement only)	0.0	N	1	1	1	0.0	0.0
Correction to the SAR results							
Phantom deviation from target (ϵ', σ)	1.9	N	1	1	0.84	1.9	1.6
SAR scaling	0.0	R	1.732	1	1	0.0	0.0
Combined Std. Uncertainty						14.5%	14.4%
Coverage Factor for 95 %						K=2	K=2
Expanded STD Uncertainty						29.0%	28.8%

SAR Uncertainty Budget for frequency range 4MHz to 10GHz

12. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [5] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [6] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [7] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [8] IEC/IEEE 62209-1528:2020, "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)", Oct. 2020
- [9] IEC 62479:2010 Assessment of the compliance of low power electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields (10 MHz to 300 GHz)
- [10] IEC TR 63170: 2018 Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz
- [11] SPEAG DASY System Handbook
- [12] SPEAG DASY6 Application Note (Interim Procedures for Devices Operating at 6-10 GHz)

Appendices

Please refer to separated files for the following appendixes

Appendix A. Plots of System Performance Check

Appendix B. Plots of High SAR and PD Measurement

Appendix C. DASY Calibration Certificate

Appendix D. Test Setup Photos

-----THE END-----