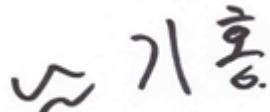


EMF TEST REPORT


Test Report No. : OT-211-RWD-015
Reception No. : 2011004466
Applicant : mikai co.,ltd
Address : #225 Shinsung Tower 25 Juanjungro Michuholgu Incheon 22140 South Korea
Manufacturer : mikai co.,ltd
Address : #225 Shinsung Tower 25 Juanjungro Michuholgu Incheon 22140 South Korea
Type of Equipment : Smartphone wireless charger with sterilizing
FCC ID. : 2AYNY-DALBITSS300
Model Name : dalbit ss300
Serial number : N/A
Total page of Report : 12 pages (including this page)
Date of Incoming : November 11, 2020
Date of issue : January 12, 2021

SUMMARY

The equipment complies with the regulation; **FCC CFR 47 PART 1.1310**

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Tested by	Reviewed by	Approved by
/ Sieon Lee / Assistant Manager ONETECH Corp.	/ Ha-Ram Lee / Manager ONETECH Corp.	/ Ki-Hong, Nam / General Manager ONETECH Corp.

CONTENTS**PAGE**

1. VERIFICATION OF COMPLIANCE	4
2. GENERAL INFORMATION	5
2.1 PRODUCT DESCRIPTION.....	5
2.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT.....	5
3. EUT MODIFICATIONS	5
4. RADIO FREQUENCY EXPOSURE	6
4.1 ENVIRONMENTAL EVALUATION AND EXPOSURE LIMIT	6
4.2 H / E FIELD STRENGTH.....	8
4.3 LIST OF TEST EQUIPMENT	12

Revision History

Issue Report No.	Issued Date	Revisions	Effect Section
OT-211-RWD-015	January 12, 2021	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant : mikai co.,ltd
Address : #225 Shinsung Tower 25 Juanjungro Michuholgu Incheon 22140 South Korea
Contact Person : Ryu, Hyunil / CEO
Telephone No. : +82-32-423-2441
FCC ID : 2AYNY-DALBITSS300
Model Name : dalbit ss300
Serial Number : N/A
Date : January 12, 2021

EQUIPMENT CLASS	DCD – Part 15 Low Power Transmitter Below 1 705 kHz
KIND OF EQUIPMENT	Smartphone wireless charger with sterilizing
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED UNDER FCC RULES PART(S)	FCC CFR 47 PART 1.1310
MODIFICATIONS ON THE EQUIPMENT TO ACHIEVE COMPLIANCE	No
FINAL TEST WAS CONDUCTED ON	3 m, Semi Anechoic Chamber

- The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The mikai co.,ltd, Model: dalbit ss300 (referred to as the EUT in this report) is an Smartphone wireless charger with sterilizing. Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Wireless Charger
OPERATING FREQUENCY	110 kHz ~ 205 kHz
RATED RF OUTPUT POWER	60.7 dB μ V/m
ANTENNA TYPE	Coil Antenna
MODULATION	ASK
RATED SUPPLY VOLTAGE	DC 5.0 V, DC 9.0 V, DC 12.0 V

2.2 Alternative type(s)/model(s); also covered by this test report.

- None

3. EUT MODIFICATIONS

- None

4. RADIO FREQUENCY EXPOSURE

4.1 Environmental evaluation and exposure limit

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of FCC part 2.1093 of this chapter

Frequency Range [MHz]	Electric Field Strength [V/m]	Magnetic Field Strength [A/m]	Power Density [mW/cm ²]	Average Time [minutes]
(A) Limits for Occupational / Control Exposures				
0.3 – 3.0	614	1.63	*(100)	6
3.0 – 30	1 842/f	4.89/f	*(900/f ²)	6
30 – 300	61.4	0.163	1.0	6
300 – 1 500			f/300	6
1 500 – 100 000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3 – 3.0	614	1.63	*(100)	30
3.0 – 30	824/f	2.19/f	*(180/f ²)	30
30 – 300	27.5	0.073	0.2	30
300 – 1 500			f/1 500	30
1 500 – 100 000			1.0	30

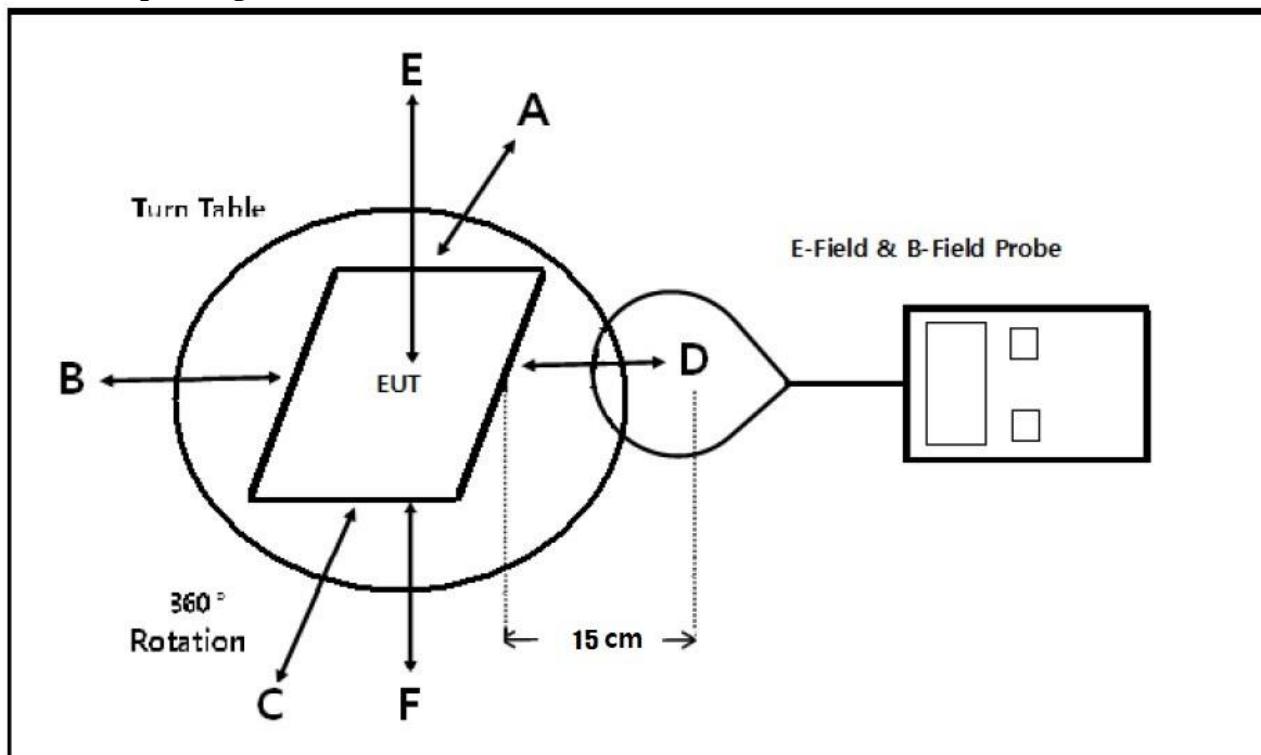
f = frequency in MHz

* = Plane wave equivalent power density

Note 1 to Table 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2 to Table 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

The EUT does meet the requirement of section 5. b) of KDB 680106 D01 RF Exposure Wireless Charging Apps v03


Conditions requirement	Answers
Power transfer frequency is less than 1MHz	After measuring the product the transfer frequency is 110-205 kHz
Output power from each primary coil is less than 15 watts	After measuring the product the each primary coil power is 15 watts
The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils.	The transfer system includes multiple primary
Client devices is inserted in or placed directly in contact with the transmitter.	Client device is placed directly in contact with the transmitter
Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).	Mobile exposure conditions only
The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.	After measuring the product the Max H-field Strength is 0.213 A/m Far less than 50% of the MPE limit.

4.2 H / E field strength

4.2.1 EUT Operating condition

Mode	Charging current	Description
Charging Mode With load	1 250 mA (12 V) / 1 670 mA (9 V) / 3 000 mA (5 V)	Using Max load
	625 mA (12 V) / 835 mA (9 V) / 1 500 mA (5 V)	Using Mid load
	100 mA (12 V, 9 V, 5 V)	Using Min load

4.2.2 EUT Operating condition

4.2.3 Measurement procedure

- 1) The RF exposure test was performed in anechoic chamber.
- 2) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface.
- 3) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E, F) were completed.
- 4) The EUT was measured according to the dictates of KDB 680106 D01 v03.

Remark: The EUT's test position A, B, C, D, E and F is valid for the E and H field measurements.

4.2.4 Data (5 V)

Mode	Field strength	Position A	Position B	Position C	Position D	Position E	Position F	50% Limits [V/m]	Limits [V/m]
Max. load	uT	0.223	0.217	0.228	0.225	0.260	0.200	-	-
	A/m	0.178	0.173	0.182	0.179	0.207	0.178	0.815	1.630
	V/m	66.73	64.93	68.23	67.33	77.80	59.85	307.00	614.00
Mid. load	uT	0.217	0.212	0.225	0.224	0.258	0.196	-	-
	A/m	0.173	0.169	0.179	0.178	0.205	0.173	0.815	1.630
	V/m	64.93	63.44	67.33	67.03	77.20	58.65	307.00	614.00
Min. load	uT	0.213	0.205	0.224	0.220	0.256	0.195	-	-
	A/m	0.170	0.163	0.178	0.175	0.204	0.155	0.815	1.630
	V/m	66.73	64.93	68.23	67.33	77.80	59.85	307.00	614.00

* Note. Calculation

$$V/m = 10^{(((dBuV/m)-120)/20)} = 10^{((dBuA/m+51.5)-120)/20} = 10^{((20\lg(A/m*10^6)+51.5)-120)/20}$$

$$A/m = uT/1.25$$

4.2.5 Data (9 V)

Mode	Field strength	Position A	Position B	Position C	Position D	Position E	Position F	50% Limits [V/m]	Limits [V/m]
Max. load	uT	0.236	0.230	0.230	0.228	0.265	0.210	-	-
	A/m	0.188	0.183	0.183	0.182	0.211	0.167	0.815	1.630
	V/m	70.62	68.82	68.82	68.23	79.30	62.84	307.00	614.00
Mid. load	uT	0.232	0.226	0.232	0.225	0.260	0.205	-	-
	A/m	0.185	0.180	0.185	0.179	0.207	0.163	0.815	1.630
	V/m	69.42	67.63	69.42	67.33	77.80	61.34	307.00	614.00
Min. load	uT	0.230	0.225	0.230	0.220	0.255	0.202	-	-
	A/m	0.183	0.179	0.183	0.175	0.203	0.161	0.815	1.630
	V/m	68.82	67.33	68.82	65.83	76.30	60.45	307.00	614.00

*** Note. Calculation**

$$V/m = 10^{(((dBuV/m)-120)/20)} = 10^{((dBuA/m+51.5)-120)/20} = 10^{((20lg(A/m*10^6))+51.5)-120)/20}$$

$$A/m = uT/1.25$$

4.2.6 Data (12 V)

Mode	Field strength	Position A	Position B	Position C	Position D	Position E	Position F	50% Limits [V/m]	Limits [V/m]
Max. load	uT	0.242	0.231	0.235	0.230	0.268	0.214	-	-
	A/m	0.193	0.184	0.187	0.183	0.213	0.170	0.815	1.630
	V/m	72.41	69.12	70.32	68.82	80.19	64.04	307.00	614.00
Mid. load	uT	0.239	0.228	0.231	0.230	0.261	0.210	-	-
	A/m	0.190	0.182	0.184	0.183	0.208	0.167	0.815	1.630
	V/m	71.52	68.23	69.12	68.82	78.10	62.84	307.00	614.00
Min. load	uT	0.232	0.221	0.228	0.232	0.262	0.207	-	-
	A/m	0.185	0.176	0.182	0.185	0.209	0.165	0.815	1.630
	V/m	69.42	66.13	68.23	69.42	78.40	61.94	307.00	614.00

※ Note. Calculation

$$V/m = 10^{(((dBuV/m)-120)/20)} = 10^{(((dBuA/m+51.5)-120)/20)} = 10^{(((20lg(A/m*10^6))+51.5)-120)/20}$$

$$A/m = uT/1.25$$

4.3 LIST OF TEST EQUIPMENT

No.	EQUIPMENTS	MFR.	MODEL	SER. NO.	LAST CAL	DUE CAL	USE
1	Exposure Level Meter	NARDA	ELT-400	G-0032	Apr. 22, 2020	One Year	■