

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC179045

1 of 44 Page:

FCC Radio Test Report FCC ID: 2AYLE-KS-V3B-U3H

Original Grant

Report No. TB-FCC179045

Shenzhen Oneking Technologies co., Ltd. **Applicant**

Equipment Under Test (EUT)

Video Conference Camera with Expansion Microphone(s) **EUT Name**

Model No. KS-V3B-U3H

KS-V3B-U1H, KS-V3B-U2H, KS-V3B-F1M, KS-V3B-F2M, Series Model No.

KS-V3B-F3M, KS-V3B-U1L, KS-V3B-U2L, KS-V3B-U3L

Brand Name

Sample ID 20210310-19-01 & 20210310-19-02

Receipt Date 2021-03-10

Test Date 2021-03-13 to 2021-03-31

Issue Date 2021-04-08

Standards FCC Part 15, Subpart C 15.247

Wadl-W

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer

: INAN SU : fay Lài. **Engineer Supervisor**

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST SOFTWARE	9
4.	TEST EQUIPMENT	10
5.	CONDUCTED EMISSION TEST	11
	5.1 Test Standard and Limit	11
	5.2 Test Setup	11
	5.3 Test Procedure	12
	5.4 Deviation From Test Standard	12
	5.5 EUT Operating Mode	12
	5.6 Test Data	12
6.	RADIATED EMISSION TEST	13
	6.1 Test Standard and Limit	13
	6.2 Test Setup	14
	6.3 Test Procedure	15
	6.4 Deviation From Test Standard	16
	6.5 EUT Operating Condition	16
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	17
	7.1 Test Standard and Limit	17
	7.2 Test Setup	17
	7.3 Test Procedure	17
	7.4 Deviation From Test Standard	18
	7.5 EUT Operating Condition	
	7.6 Test Data	
8.	BANDWIDTH TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	19
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	19

Report No.: TB-FCC179045 Page: 3 of 44

	8.6 Test Data	19
9.	PEAK OUTPUT POWER TEST	20
	9.1 Test Standard and Limit	20
	9.2 Test Setup	
	9.3 Test Procedure	20
	9.4 Deviation From Test Standard	20
	9.5 EUT Operating Condition	20
	9.6 Test Data	20
10.	POWER SPECTRAL DENSITY TEST	21
	10.1 Test Standard and Limit	21
	10.2 Test Setup	21
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	21
	10.5 EUT Operating Condition	21
	10.6 Test Data	
11.	ANTENNA REQUIREMENT	22
	11.1 Standard Requirement	22
	11.2 Deviation From Test Standard	22
	11.3 Antenna Connected Construction	22
	11.4 Result	22
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	23
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND EDG	
	ACHMENT D BANDWIDTH TEST DATA	
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
		43

Report No.: TB-FCC179045 Page: 4 of 44

Revision History

Report No.	Version	Description	Issued Date
TB-FCC179045	Rev.01	Initial issue of report	2021-04-08
4081	a Company		4033
	20		D C
TOWN TO	TWO CO	0.000	1000
THE REAL PROPERTY.		MODE TO STORE	
	408		Contract of the second
A WWW	MBI -	TODA GUIDA	
	W BY	TO TO THE REAL PROPERTY.	
133			
	WILL BY	TOP I	
WIR CO	4000		m By
			0.000

Page: 5 of 44

1. General Information about EUT

1.1 Client Information

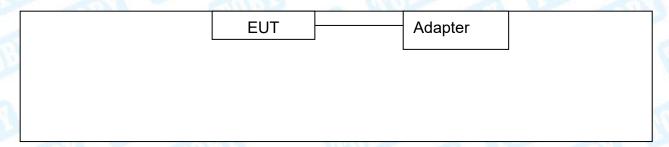
Applicant : Shenzhen Oneking Technologies co., Ltd.		
Address : F5, Bldg7, YuSheng Industrial Park, Gushu Xixiang 107 Na Road Baoan, Shenzhen, China		F5, Bldg7, YuSheng Industrial Park, Gushu Xixiang 107 National Road Baoan, Shenzhen, China
Manufacturer : Shenzhen Oneking Technologies co., Ltd.		Shenzhen Oneking Technologies co., Ltd.
Address		F5, Bldg7, YuSheng Industrial Park, Gushu Xixiang 107 National Road Baoan, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Video Conference Camer	ra with Expansion Microphone(s)			
Model(s) No.		KS-V3B-U3H, KS-V3B-U1H, KS-V3B-U2H, KS-V3B-F1M, KS-V3B-F2M, KS-V3B-F3M, KS-V3B-U1L, KS-V3B-U2L, KS-V3B-U3L				
Model Different	1	All these models are identical in the same PCB, layout and electrical circuit, The only difference is number of expansion microphone(s), or different in optical lens and with Lan port or without Lan port.				
The same	19	Operation Frequency:	2404MHz~2476MHz			
A William		Number of Channel:	19 channels see note(3)			
Product		Max. Output Power:	17.826dBm			
Description		Antenna Gain:	6.0dBi Internal Antenna			
		Modulation Type:	8FSK			
THE WAY		Bit Rate of Transmitter:	5Mbps			
Power Rating		DC 12V from adapter: Input: AC 100-240V 50/60Hz 1.5A Max Output: DC 12V2A				
Software Version	:	ZM151-HW-20200901				
Hardware Version	•	KO-CT-speaker-Main-V1.5A				
Remark		The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.				

Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.



Page: 6 of 44

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2404	08	2432	15	2460
02	2408	09	2436	16	2464
03	2412	10	2440	17	2468
04	2416	11	2444	18	2472
05	2420	12	2448	19	2476
06	2424	13	2452		
07	2428	14	2456		

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information						
Name	Used "√"					
Notebook	Inspiron 5493		Dell	1		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1 TX Mode					
F	or Radiated Test				
Final Test Mode Description					
Mode 2	TX Mode				
Mode 3 TX Mode (Channel 01/10/19)					

Page: 7 of 44

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

8FSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Pure	ePath Wireless Comm	ander
Frequency	2404MHz	2440MHz	2476MHz
8FSK	-10	-10	-10

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 44

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Report No.: TB-FCC179045 Page: 9 of 44

2. Test Summary

	FCC Pa	rt 15 Subpart C (15.24	17)/RSS 247 Issue 2	2		
Standard Se	ection	Took How	Test Complete)	ludamant	Damada	
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark	
15.203		Antenna Requirement	20210310-19-01	PASS	N/A	
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	20210310-19-02	PASS	N/A	
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	20210310-19-01	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	20210310-19-01	PASS	N/A	
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	20210310-19-01	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	20210310-19-01	PASS	N/A	
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	20210310-19-01 20210310-19-02	PASS	N/A	

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC179045 Page: 10 of 44

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021	
EIVIT TEST NECEIVE	Compliance	ESCI	100321	Jul. 00, 2020	Jul. 03, 2021	
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021	
Till Ownorming Office	Inc		01100	odi. 00, 2020	0di. 00, 2021	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021	
Radiation Emission T	est					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022	
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021	
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022	
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022	
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducted E	Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021	
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021	
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021	
KE FOWEI SEIISUI	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021	

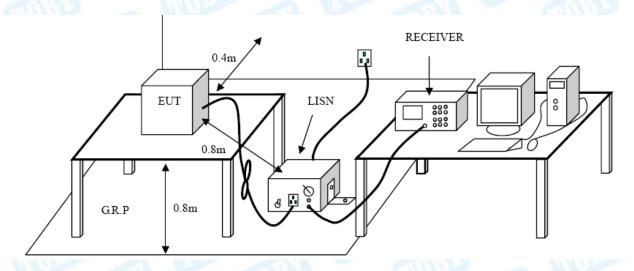
Page: 11 of 44

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguanav	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 12 of 44

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 13 of 44

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d)

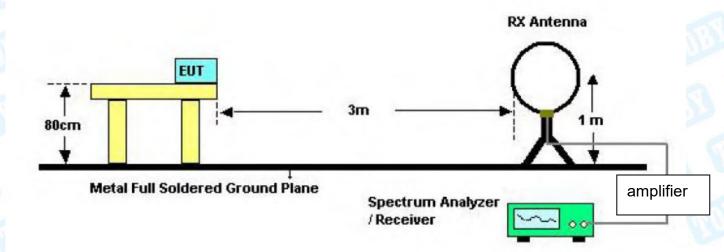
6.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

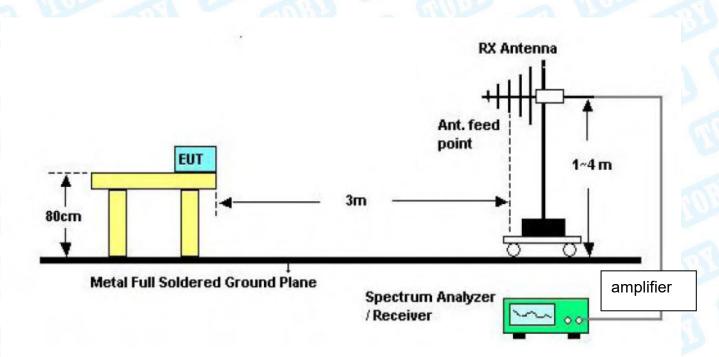
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

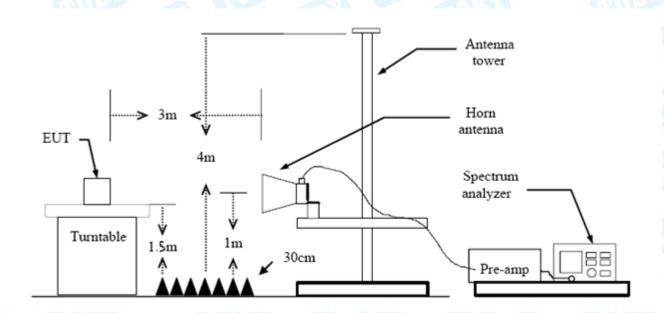

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 14 of 44

6.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Report No.: TB-FCC179045 Page: 15 of 44

Above 1GHz Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 16 of 44

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

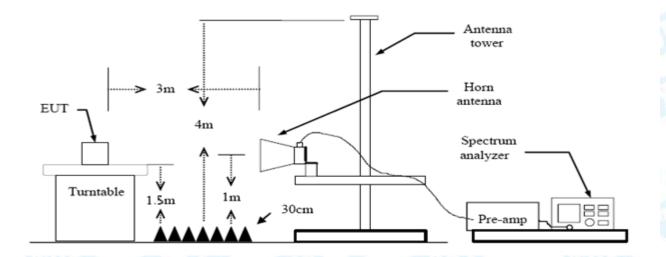
6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 17 of 44

7. Restricted Bands Requirement


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance Me	eters(at 3m)
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54

7.2 Test Setup

7.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

Report No.: TB-FCC179045 Page: 18 of 44

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

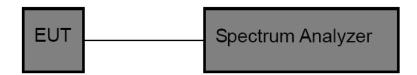
7.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 19 of 44

8. Bandwidth Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Test Item Limit Frequency Range(MHz)					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

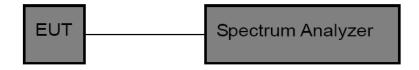
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.

Page: 20 of 44

9. Peak Output Power Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)(3)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Test Item Limit Frequency Range(MHz)					
Peak Output Power 1 Watt or 30 dBm 2400~2483.5						

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 Meas Guidance v05r02.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

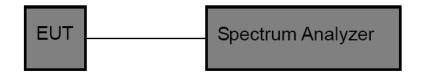
The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.

Page: 21 of 44

10. Power Spectral Density Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (e)

10.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item	Test Item Limit Frequency Range(MHz)					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5				

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 Meas Guidance v05r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

Page: 22 of 44

11. Antenna Requirement

11.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

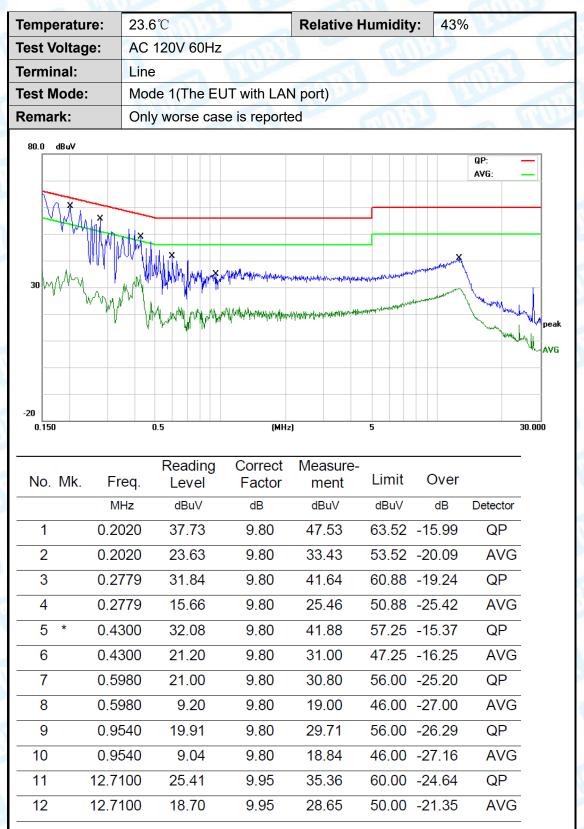
No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 6.0dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

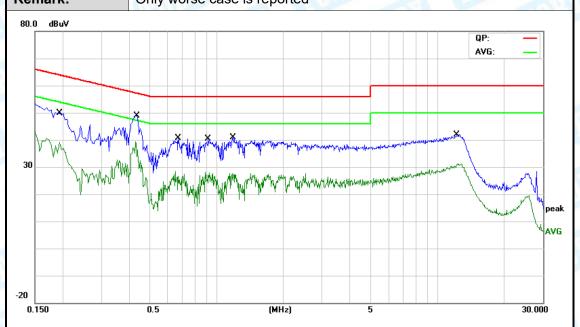
11.4 Result

The EUT antenna is a Internal Antenna. It complies with the standard requirement.


Antenna Type				
ALL WA	☐Permanent attached antenna	الإ		
W. Constitution	⊠Unique connector antenna	600		
TA WWW	☐Professional installation antenna			

Page: 23 of 44

Attachment A-- Conducted Emission Test Data



- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TB-FCC179045 Page: 24 of 44

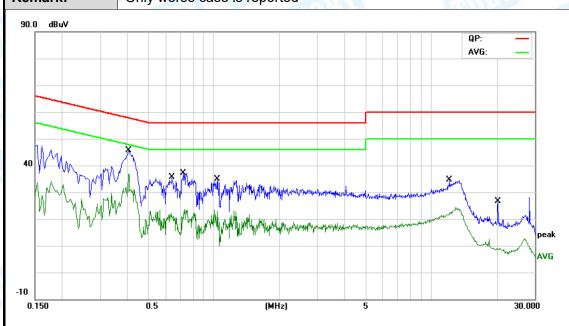
Temperature:	23.6℃	Relative Humidity:	43%
Test Voltage:	AC 120V 60Hz	NUL	Con and
Terminal:	Neutral	- MID 2	
Test Mode:	Mode 1(The EUT with LAN	port)	ANB L
Remark:	Only worse case is reported	111111111111111111111111111111111111111	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1940	37.76	9.80	47.56	63.86	-16.30	QP
2		0.1940	25.43	9.80	35.23	53.86	-18.63	AVG
3	*	0.4305	36.27	9.80	46.07	57.24	-11.17	QP
4		0.4305	25.07	9.80	34.87	47.24	-12.37	AVG
5		0.6700	24.81	9.80	34.61	56.00	-21.39	QP
6		0.6700	14.17	9.80	23.97	46.00	-22.03	AVG
7		0.9140	25.96	9.80	35.76	56.00	-20.24	QP
8		0.9140	15.26	9.80	25.06	46.00	-20.94	AVG
9		1.1860	26.51	9.80	36.31	56.00	-19.69	QP
10		1.1860	15.34	9.80	25.14	46.00	-20.86	AVG
11		12.1899	27.31	9.94	37.25	60.00	-22.75	QP
12		12.1899	19.57	9.94	29.51	50.00	-20.49	AVG

TOBY

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:
23.6 °C


Relative Humidity:
43%

Test Voltage:
AC 120V 60Hz

Terminal:
Line

Test Mode:
Mode 1(The EUT without LAN port)

Remark:
Only worse case is reported

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.4060	33.43	9.70	43.13	57.73	-14.60	QP
2		0.4060	21.92	9.70	31.62	47.73	-16.11	AVG
3		0.6419	20.39	9.70	30.09	56.00	-25.91	QP
4		0.6419	9.25	9.70	18.95	46.00	-27.05	AVG
5		0.7260	21.67	9.71	31.38	56.00	-24.62	QP
6		0.7260	10.19	9.71	19.90	46.00	-26.10	AVG
7		1.0380	20.89	9.80	30.69	56.00	-25.31	QP
8		1.0380	9.55	9.80	19.35	46.00	-26.65	AVG
9		12.1780	18.14	9.89	28.03	60.00	-31.97	QP
10		12.1780	10.86	9.89	20.75	50.00	-29.25	AVG
11		20.3380	2.88	10.01	12.89	60.00	-47.11	QP
12		20.3380	-2.31	10.01	7.70	50.00	-42.30	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

		A PAR COLOR					
Temperatu	re: 23.6℃	-	Rel	lative Humid	ity: 4	3%	
Test Voltag	e: AC 120	V 60Hz	w.			Pim?	19 3
Terminal:	Neutral			MARKET		I No	
Test Mode:	Mode 1	(The EUT w	vithout LAN	port)			a W
Remark:	Only we	orse case is	reported			ANB.	
90.0 dBuV						OD	
						QP: AVG:	
-							
™ Mπ.	×						
40	m/Man/M	X .				×	
MAN. "			and the breakhouse color	Mikela t news continues.	atusta naturalis (Allaha	du bida.	
I I I V		7 V A A A A A A A A A A A A A A A A A A	er Must M. da. bit de sar	Land Market by Price and Parkle and Land	and the second	war from	Constitution of
	A John All		properties	esphoretune of the contraction o	Loght was delivered to	James L.	pea
							Marshar AVI
-10							
0.150	0.5		(MHz)	5			30.000
		Reading	Correct	Measure-			
No. Mł	k. Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.1500	36.18	9.80	45.98	65.99	-20.01	QP
2	0.1500	18.87	9.80	28.67	55.99	-27.32	AVG
3	0.4140	26.10	9.80	35.90	57.57	-21.67	QP
4	0.4140	17.05	9.80	26.85	47.57	-20.72	AVG
5	0.5620	15.68	9.80	25.48	56.00	-30.52	QP
6	0.5620	5.46	9.80	15.26		-30.74	AVG
7	0.7500	15.96	9.80	25.76		-30.24	QP
8	0.7500	7.60	9.80	17.40		-28.60	AVG
9	1.1820	11.43	9.80	21.23		-34.77	QP
10		3.65	9.80	13.45		-32.55	AVG
	1.1820						
11	12.9100	17.08	9.96	27.04		-32.96	QP
12	12.9100	11.46	9.96	21.42	50.00	-28.58	AVG
_							

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
 2. Margin (dB) = QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 27 of 44

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

emp	eratı	ure:	2	3.9°	°C						R	elat	ive ł	lun	nidit	ty:	4	1%	3	1	
est V	/olta	ge:	Δ	C 1	20\	//60)Hz	-		671											K
nt. P	Pol.		H	loriz	zont	al			B	N			40		13				10		Y
est N	Mode	ə :	N	/lode	e 2 ((The	e E	UT v	with	LAN	l po	rt)	13						176		
ema	rk:		O	Only	WOI	se	cas	se is	rep	orte	d.	3			1					<	
80.0	dBuV/	/m																			
30	1									2	3			4 ×		(RF)FC		Ma	rgin -E	dB	
-20	Ž.	Mayay	myh	MLA	۸۰۰۰۰	~~~	~~	WWW.		Ín _{horm/h}	M	J.W.	~A ^M	WW	// v v	141	MAN Y				
		40	√w.y/w 50	ML^	70	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~~~	JANAN Y		(MHz		_w lvwl	www.	300		400	500	600			000.0
-20 30.0	000		50	60 Freq		Re		ding	C		z) Ct	Mea	asure ent	300		400	500				000.0
-20 30.0	000	40	50 F			Re	ead	ding	C	(мнг orre	ct or	Mea m	asure	300	Lin	400	500	600	700		
-20 30.0	000 No.	40	50 F	req	-	Re	ead _ev	ding el	C F	(мн orre	ct or	Mea m dB	asure ent	300	Lin	400 nit	500	600 Ver	700	1	tor
-20 30.0	000 No.	40	50 F	req MHz 798		Re L	ead Lev	ding el iV 26	C	(мн orre acto	ct or	Mea m dB	asure ent	300	Lin dBu	400 nit uV/m	500 O	600 Ver	700 D	1 etec	etor ak
-20 30.0	No.	40	50 F	req MHz 798	6 43	Rec L	ead Lev	ding el iV 26	C F	orre acto	ct or 8	Mea m dB 23	asure ent suV/m 3.48	300	Lin dBu 40	400 nit uV/m	O -11 -1	600 ver dB	700 D	etec	etor ak ak
-20 30.0 —	No. 1 2	40	50 F 33.	req MHz 798 .324	66 43	Re L	ead Lev	ding el iV 26 22	C F	мнг orre Facto dB/m 15.78	ct or 8	Mea m dB 23 3-3 30	asure ent uv/m 3.48	300	Lin dBu 400 433 433	nit uv/m 0.00	O -1 -1 -1	ooo ver dB 6.52	7000 D	etec pea	ak ak
-20 30.0 	No. 1 2 3 4	40	50 F N 33.	798 .324 .489	66 43 98	Re L	ead ev dBu 39.2	ding el IV 26 22 94 23	-2	(MHz Orre Facto 15.78 22.14	ct or 8 4 8	Measure m dB 23 3 3 3 3 3 3 4	asure ent 3.48 1.08	300	Linn dBu 40 43 43 46	nit uV/m 0.00 3.50 3.50	-1 -1 -1 -1	6.52 2.42 2.54	700 D	etec pea pea	etor ak ak ak

Remark:

*:Maximum data

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

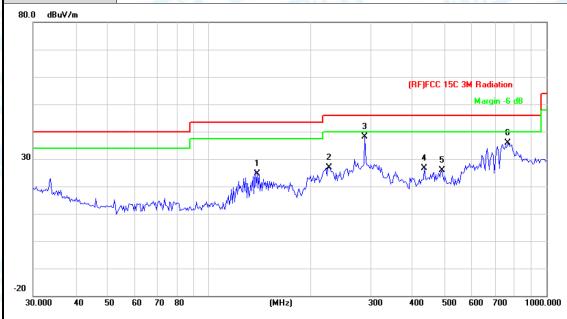
x:Over limit !:over margin

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TB-FCC179045 Page: 28 of 44

Temperature:	23.9℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz	D. C.	
Ant. Pol.	Vertical		
Test Mode:	Mode 2 (The EUT with LAI	N port)	
Remark:	Only worse case is reported	ed.	100

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		45.0583	51.89	-21.44	30.45	40.00	-9.55	peak
2		75.7113	45.89	-22.87	23.02	40.00	-16.98	peak
3		142.3243	51.45	-22.14	29.31	43.50	-14.19	peak
4		230.9068	47.93	-18.26	29.67	46.00	-16.33	peak
5		416.1791	49.92	-12.18	37.74	46.00	-8.26	peak
6	*	625.0779	49.59	-8.14	41.45	46.00	-4.55	peak


^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TB-FCC179045 Page: 29 of 44

Temperature:	23.9℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz		mn B
Ant. Pol.	Horizontal		
Test Mode:	Mode 2 (The EUT with	out LAN port)	
Remark:	Only worse case is rep	orted.	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		138.3873	46.90	-22.37	24.53	43.50	-18.97	peak
2		226.0994	45.41	-18.53	26.88	46.00	-19.12	peak
3	*	289.0020	54.52	-16.50	38.02	46.00	-7.98	peak
4		434.0650	38.78	-12.04	26.74	46.00	-19.26	peak
5		489.0269	36.66	-10.80	25.86	46.00	-20.14	peak
6		766.0571	42.26	-6.29	35.97	46.00	-10.03	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 30 of 44

Temperature:	23.9℃	Relative Humidity:	41%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical	/ertical						
Test Mode:	Mode 2 (The EUT without L	Mode 2 (The EUT without LAN port)						
Remark:	Only worse case is reported	i.						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		138.3873	51.26	-22.37	28.89	43.50	-14.61	peak
2		234.1683	50.34	-18.08	32.26	46.00	-13.74	peak
3		431.0316	46.74	-12.07	34.67	46.00	-11.33	peak
4	*	558.7301	48.52	-8.82	39.70	46.00	-6.30	peak
5		689.5643	44.13	-7.01	37.12	46.00	-8.88	peak
6		972.3374	44.56	-4.11	40.45	54.00	-13.55	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TB-FCC179045 Page: 31 of 44

Above 1GHz

Temperature:	23.2℃	Relative Humidity: 41%
Test Voltage:	AC 120V/60Hz	
Ant. Pol.	Horizontal	
Test Mode:	TX 2404 MHz Mode	URA UNDER
Remark:	No report for the emission was prescribed limit.	hich more than 10 dB below the

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4808.240	27.98	13.05	41.03	54.00	-12.97	AVG
2			4808.450	40.56	13.05	53.61	74.00	-20.39	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz	THE PARTY OF	TOTAL S
Ant. Pol.	Vertical	MUL	a W
Test Mode:	TX 2404 MHz Mode		12
Remark:	No report for the en	nission which more than 10 dB	3 below the

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4808.066	27.03	13.01	40.04	54.00	-13.96	AVG
2		4808.382	40.96	13.02	53.98	74.00	-20.02	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TB-FCC179045 Page: 32 of 44

Temperature:	23.2℃	Relative Humidity:	41%			
Test Voltage:	AC 120V/60Hz	DAME:	The second			
Ant. Pol.	Horizontal					
Test Mode:	TX 2440 MHz Mode	TX 2440 MHz Mode				
Remark: No report for the emission which more than 20 dB below the prescribed limit.						

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4879.918	42.94	13.57	56.51	74.00	-17.49	peak
2)	*	4879.950	29.45	13.57	43.02	54.00	-10.98	AVG

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.2℃	Relative Humidity:	41%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 2440 MHz Mode	W CO					
Remark:	No report for the emission w	No report for the emission which more than 20 dB below the					
	prescribed limit.						

No	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4879.888	42.65	13.57	56.22	74.00	-17.78	peak
2	*	4879.980	28.44	13.57	42.01	54.00	-11.99	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC179045 Page: 33 of 44

Temperature:	23.2℃	Relative Humidity:	41%			
Test Voltage:	AC 120V/60Hz	WU -	100			
Ant. Pol.	Horizontal					
Test Mode:	TX 2476 MHz Mode		1018 L			
Remark: No report for the emission which more than 20 dB below the prescribed limit.						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4952.196	42.34	14.10	56.44	74.00	-17.56	peak
2	*	4952.312	28.34	14.10	42.44	54.00	-11.56	AVG

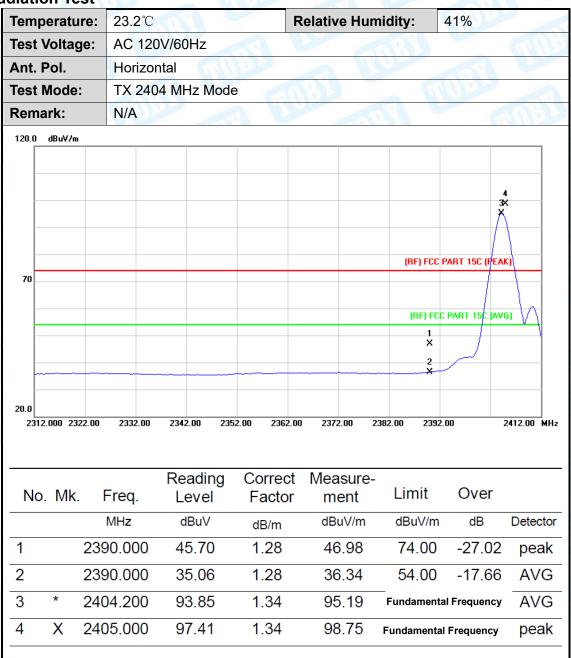
Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.2℃	Relative Humidity:	41%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	TX 2476 MHz Mode		2 _ (2				
Remark: No report for the emission which more than 20 dB below the prescribed limit.							

N	Ю.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4951.552	28.18	14.10	42.28	54.00	-11.72	AVG
2			4951.588	41.99	14.10	56.09	74.00	-17.91	peak

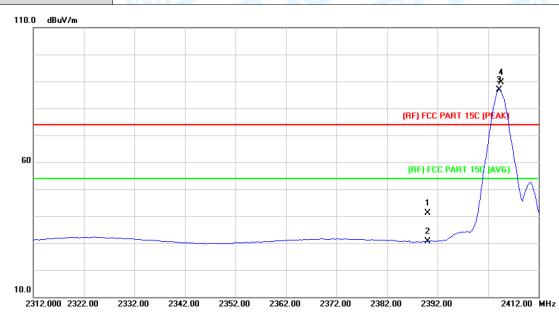
- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



Page: 34 of 44

Attachment C-- Restricted Bands Requirement and Band **Edge Test Data**

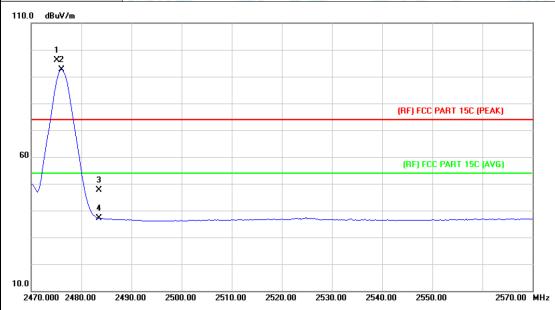
(1) Radiation Test



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC179045 Page: 35 of 44

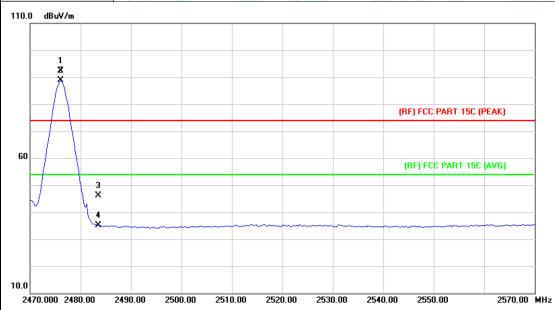
Temperature:	23.2 ℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz	THU .	100
Ant. Pol.	Vertical		
Test Mode:	TX 2404 MHz Mode		1080 m
Remark:	N/A	and a	100


No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	39.93	1.28	41.21	74.00	-32.79	peak
2		2390.000	29.42	1.28	30.70	54.00	-23.30	AVG
3	*	2404.200	85.50	1.34	86.84	Fundamenta	al Frequency	AVG
4	Χ	2404.600	88.41	1.34	89.75	Fundamenta	l Frequency	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

Report No.: TB-FCC179045 Page: 36 of 44

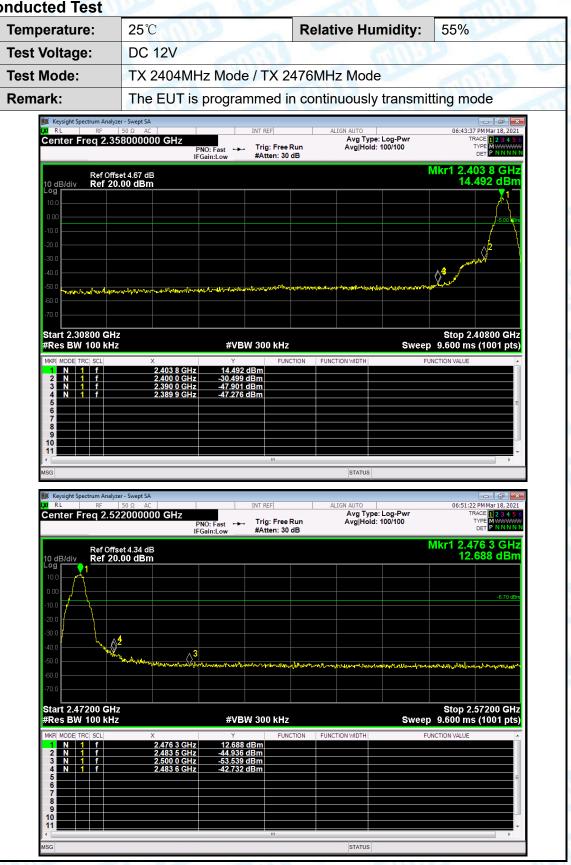
Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz	AVU-	W
Ant. Pol.	Horizontal		
Test Mode:	TX 2476 MHz Mode		an Bu
Remark:	N/A	N Park	


No. Mk. Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2475.200	94.40	1.83	96.23	Fundamental	Frequency	peak
2	*	2476.000	90.89	1.83	92.72	Fundamental	Frequency	AVG
3		2483.500	45.77	1.88	47.65	74.00	-26.35	peak
4		2483.500	35.19	1.88	37.07	54.00	-16.93	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TB-FCC179045 Page: 37 of 44

Temperature:	23.2℃	Relative Humidity:	41%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 2476 MHz Mode		ANIAL TO			
Remark:	N/A	THE PARTY OF	100			

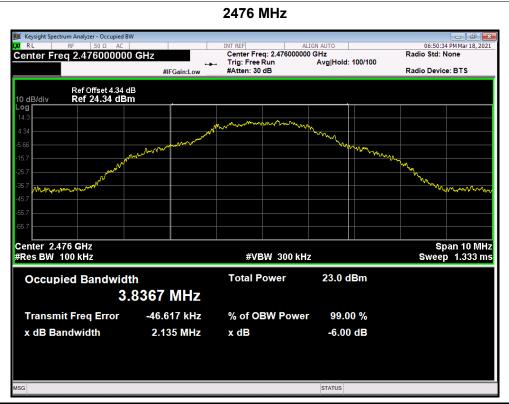

No. Mk. Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2476.000	90.44	1.83	92.27	Fundamental Frequency		peak
2	*	2476.000	87.00	1.83	88.83	Fundamental Frequency		AVG
3		2483.500	44.37	1.88	46.25	74.00	-27.75	peak
4		2483.500	33.20	1.88	35.08	54.00	-18.92	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

(2) Conducted Test

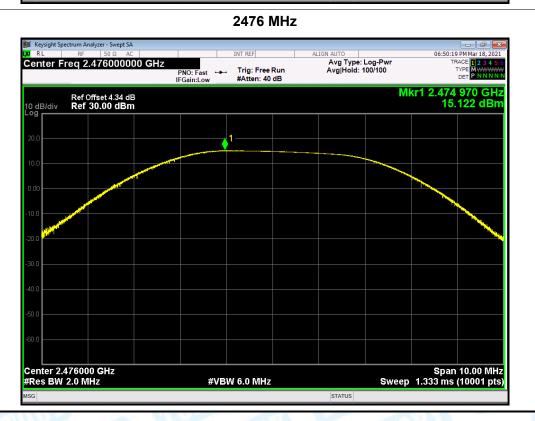
Attachment D-- Bandwidth Test Data

Temperature:	25℃	WURD -	Relative Humidity:	55%	
Test Voltage:	DC 1	2V	3 200		
Test Mode:	TX N	lode			
Channel frequency		6dB Bandwidth	99% Bandwidth	Limit	
(MHz)		(kHz)	(kHz)	(kHz)	
2404 2440 2476		2126	3856.8		
		2044	3818.6	>=500	
		2135	3836.7		

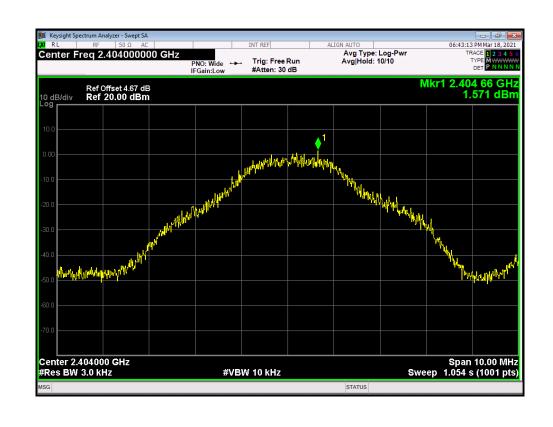

2404 MHz

Report No.: TB-FCC179045 Page: 40 of 44

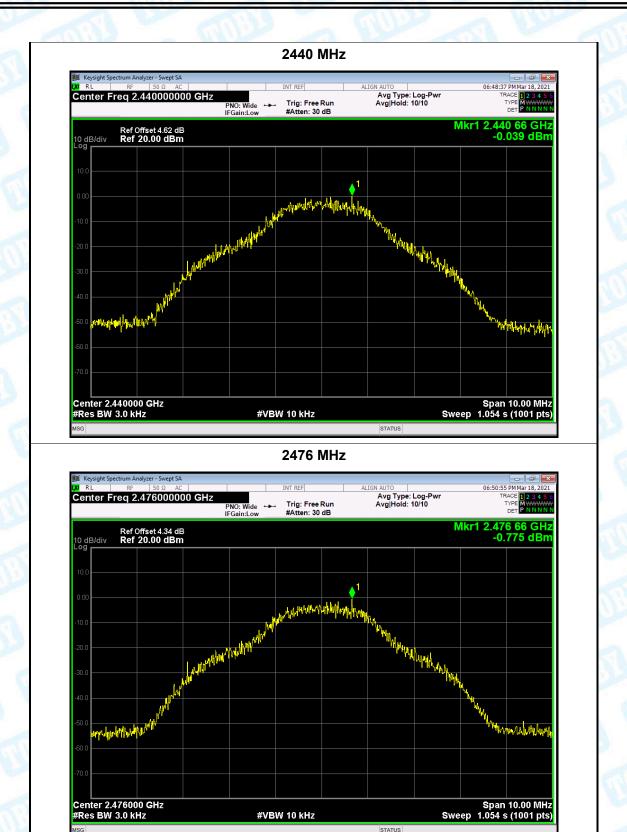
Attachment E-- Peak Output Power Test Data


Temperature:	25℃	Relative Humidity:		55%	
Test Voltage:	DC 12V		Inn		
Test Mode:	TX Mode	The same of the sa			
Channel frequency (MHz)		Test Result (dBm)		Limit (dBm)	
2404		17.826			
2440 2476		16.284 15.122		30	

2404 MHz



Attachment F-- Power Spectral Density Test Data


1	Temperature:	25℃	Relative Humidity:		midity:	55%	
	Test Voltage:	DC 12V			and the		~ 6/1
1	Test Mode:	TX Mode					
	Channel Frequency (MHz)		Power Density (dBm/3kHz)		Limit (dBm/3kHz)		Result
							Result
	2404		1.57	1	8		
	2440		-0.03	39			PASS
	2476		-0.77	' 5			

2404 MHz

Page: 44 of 44

----END OF REPORT-----