

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name: Wireless USB Adapter

Trademark: N/A

Model Name: AJ-4512AC

Family Model: N/A

Report No.: S22050701701001

FCC ID: 2AYK2-AJ-4512AC

Prepared for

Shenzhen Haosheng Electronic Technology Co., Ltd.

02 Building B Xinleiou Electronic Factory District 71 Xin'an Street Baoan District,

Shenzhen China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China.

Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090

Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name.....: Shenzhen Haosheng Electronic Technology Co., Ltd.

02 Building B Xinleiou Electronic Factory District 71 Xin'an Street Address:

Baoan District, Shenzhen China

Manufacturer's Name.....: Shenzhen Haosheng Electronic Technology Co., Ltd.

02 Building B Xinleiou Electronic Factory District 71 Xin'an Street

Baoan District, Shenzhen China

Product description

Product name: Wireless USB Adapter

Trademark: N/A

Model Name : AJ-4512AC

Family Model: N/A

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

Standards..... IEEE Std 1528-2013

Published RF exposure KDB procedures

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Date of Test

Date of Issue May 18, 2022

Test Result Pass

Prepared By (Test Engineer)

Approved By (Lab Manager)

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	May 18, 2022	Jacob Chen

TABLE OF CONTENTS

		_
1.		
	1.1. RF exposure limits	
	1.2. Statement of Compliance	
	1.3. EUT Description	
	1.4. Test specification(s)	
_	1.5. Ambient Condition	
2.	SAR Measurement System	
	2.1. SATIMO SAR Measurement Set-up Diagram	
	2.2. Robot	
	2.3. E-Field Probe	
	2.3.1. E-Field Probe Calibration	
	2.4. SAM phantoms	
	2.4.1. Technical Data	
	2.5. Device Holder	
_	2.6. Test Equipment List	
3.	SAR Measurement Procedures	
	3.1. Power Reference	
	3.2. Area scan & Zoom scan	
	3.3. Description of interpolation/extrapolation scheme	
	3.4. Volumetric Scan	
	3.5. Power Drift	
4.	System Verification Procedure	
	4.1. Tissue Verification	
	4.1.1. Tissue Dielectric Parameter Check Results	
	4.2. System Verification Procedure	
	4.2.1. System Verification Results	23
5.	SAR Measurement variability and uncertainty	24
	5.1. SAR measurement variability	24
	5.2. SAR measurement uncertainty	24
6.	RF Exposure Positions	25
	6.1. Generic Device	25
7.	RF Output Power	26
	7.1. WLAN Output Power	26
8.	SAR Results	27
	8.1. SAR measurement results	27
	8.1.1. SAR measurement Result of WLAN 2.4G	27
	8.1.2. SAR measurement Result of WLAN 5.2G	27
	8.1.3. SAR measurement Result of WLAN 5.8G	
9.	Appendix A. Photo documentation	28

NT	EK 北测 [®]	ACCREDITED Certificate #4298.01	Page 5 of 76	Report No.: S220	050701701001
10. 11.	Appendix B. Sys Appendix C. Plo	tem Check Plots . ts of High SAR Me	easurement		35
12.	Appendix D. Cal	ibration Certifica	te		42

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.4	8.0	20.0		

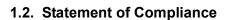
(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).


General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT

The maximum results of Specific Absorption Rate (SAR) found during testing for AJ-4512AC are as follows.

	Max Reported SAR Value(W/kg)		
Band	1-g Hotspot		
	(Separation distance of 5mm)		
WLAN 2.4G	0.198		
WLAN 5.2G	0.185		
WLAN 5.8G	0.354		

Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

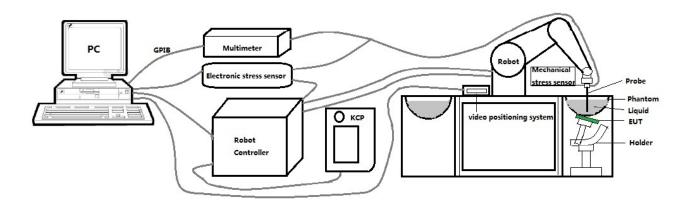
Device Information						
Product Name	Wireless USB Adapter					
Trade Name	N/A					
FCC ID	2AYK2-AJ-4512AC					
Model Name	AJ-4512AC					
Family Model	N/A					
Device Phase	Identical Prototype					
Exposure Category	General population / Uncontrol	lled environment				
Antenna	Metal Antenna					
Battery Information	N/A					
Hardware version	N/A					
Software version	N/A					
Device Operating Configurat	ions					
Supporting Mode(s)	WLAN 2.4G/ 5G					
Test Modulation	WLAN(DSSS/OFDM)					
Device Class	В					
	Band Tx (MHz) Rx (MHz)					
Operating Frequency	WLAN 2.4G 2412-2462					
Range(s)	WLAN 5.2G 5180-5240					
	WLAN 5.8G 5745-5825					

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)
ANSI/IEEE C95.1-1992
IEEE Std 1528-2013
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting
KDB 447498 D01 General RF Exposure Guidance
KDB 248227 D01 802.11 Wi-Fi SAR
KDB 941225 D06 Hotspot SAR

1.5. Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%



Page 9 of 76

Report No.: S22050701701001

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Report No.: S22050701701001

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 2.5 mm

- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

Probe linearity: ±0.08 dBAxial isotropy: ±0.01 dB

- Hemispherical Isotropy: ±0.01 dB

- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.

- Lower detection limit: 8mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

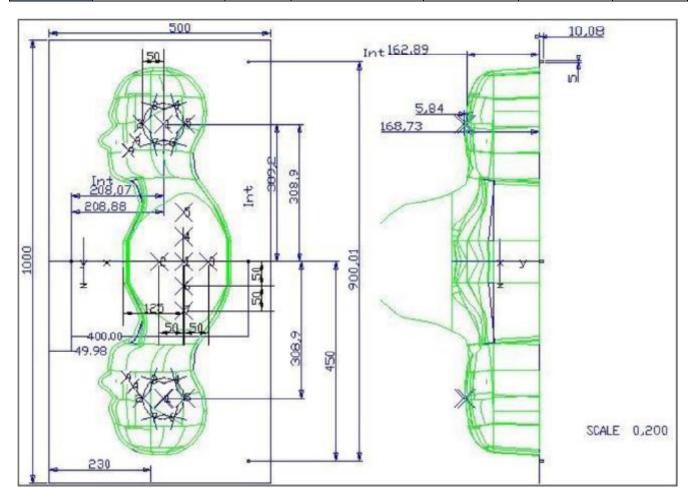
2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

Photo of SAM phantom SN 16/15 SAM119

The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

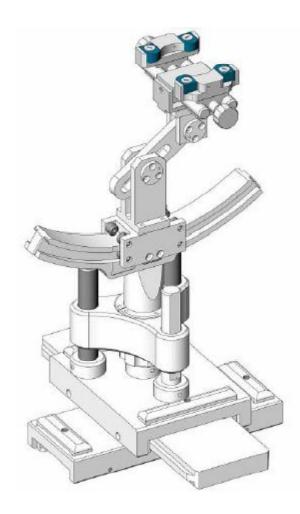


2.4.1. **Technical Data**

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000 mm Width:500 mm Height:200 mm	Gelcoat with fiberglass	3.4	0.02

Serial Number	Left Head(mm) Right Head(n		nt Head(mm)	Flat	Part(mm)	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
SN 16/15 SAM119	5	2.08	5	2.08	4	2.10
	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 µm.



2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent	
SN 16/15 MSH100	Delrin	3.7	0.005	

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked

		Name of	_		Calib	ration
	Manufacturer	Equipment	Type/Model	Serial Number	Last Cal.	Due Date
\boxtimes	MVG	E FIELD PROBE	SSE2	SN 08/16 EPGO287	Feb. 01,	Jan. 31,
	WVG	E FIELD PROBE	SSEZ	3N 00/10 EFGO207	2022	2023
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP	Mar. 01,	Feb. 28,
	WVG	730 WII 12 DIPOIE	310730	0G750-355	2021	2024
	MVG	835 MHz Dipole	SID835	SN 03/15 DIP	Mar. 01,	Feb. 28,
	WVO	000 WI 12 DIPOIE	51055	0G835-347	2021	2024
	MVG	900 MHz Dipole	SID900	SN 03/15 DIP	Mar. 01,	Feb. 28,
	WVG	900 WII 12 DIPOIE	310900	0G900-348	2021	2024
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP	Mar. 01,	Feb. 28,
	WVG	1000 IVII IZ DIPOIE	יייייייייייייייייייייייייייייייייייייי	1G800-349	2021	2024
	MVG	1900 MHz Dipole	SID1900	SN 03/15 DIP	Mar. 01,	Feb. 28,
	WVG	1900 WILIZ DIPOLE	טטפו טוט	1G900-350	2021	2024
	MVG	2000 MHz Dipole	SID2000	SN 03/15 DIP	Mar. 01,	Feb. 28,
	WVG	2000 MHZ Dipole	3102000	2G000-351	2021	2024
\boxtimes	MVG	2450 MHz Dipole	SID2450	SN 03/15 DIP	Mar. 01,	Feb. 28,
	IVIVG	2430 MINZ DIPOIE	SID2430	2G450-352	2021	2024
	MVG	2600 MHz Dipole	SID2600	SN 03/15 DIP	Mar. 01,	Feb. 28,
	WVG	2000 MHZ Dipole	3102000	2G600-356	2021	2024
	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Mar. 01,	Feb. 28,
	WVG	3000 MHZ Dipole	34493300	3N 13/14 WGA 33	2021	2024
	MVG	Liquid	SCLMP	ON 24/45 OODO 72	NCR	NCR
	IVIVO	measurement Kit	OOLIVII	SN 21/15 OCPG 72	NOIX	NOIX
	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR
	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR
		Universal radio			11. 04	l 20
	R&S	communication	CMU200	117858	Jul. 01,	Jun. 30,
		tester			2021	2022
		Wideband radio			lul 04	lum 20
	R&S	communication	CMW500	103917	Jul. 01,	Jun. 30,
		tester			2021	2022
	HP	National Assistance	07500	2440 104420	Jul. 01,	Jun. 30,
	111	Network Analyzer	8753D	3410J01136	2021	2022
	Agilent	PSG Analog	E0257D	MV51440440	Jul. 01,	Jun. 30,
	, ignorit	Signal Generator	E8257D	MY51110112	2021	2022

Page 16 of 76 Report No.: S22050701701001

			Certificate #4258.01			
	Agilent	Power meter	E4419B	MY45102538	Jul. 01, 2021	Jun. 30, 2022
	Agilent	Power sensor	E9301A	MY41495644	Jul. 01, 2021	Jun. 30, 2022
	Agilent	Power sensor	E9301A	US39212148	Jul. 01, 2021	Jun. 30, 2022
\boxtimes	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Jul. 17, 2020	Jul. 16, 2023

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz	
Maximum distance from (geometric center of pr			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the m			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan sp	atial resolu	ntion: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
surface	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume			≥ 30 mm	$3 - 4 \text{ GHz: } \ge 28 \text{ mm}$ $4 - 5 \text{ GHz: } \ge 25 \text{ mm}$ $5 - 6 \text{ GHz: } \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% of weight)		Head Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800	
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53	
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00	
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24	
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23	

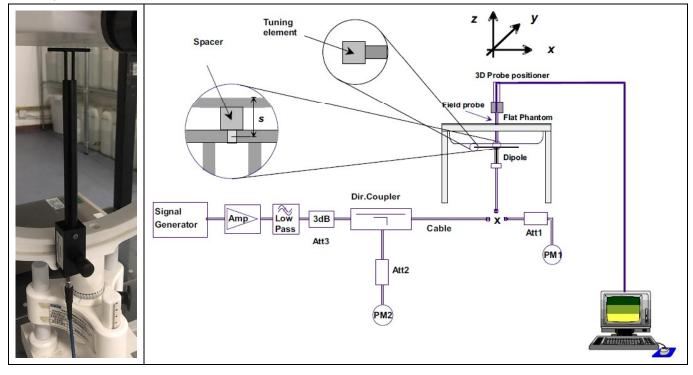
For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. **Tissue Dielectric Parameter Check Results**

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

			<u>*</u>						
	Measured	Target T	Measure	d Tissue					
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	εr	σ (S/m)	Liquid Temp.	Test Date		
Head 2450	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	38.28	1.78	21.3 °C	May 07, 2022		
Head 5200	5200	36.00 (34.20~37.80)	4.66 (4.43~4.89)	36.17	4.68	21.6 °C	May 16, 2022		
Head 5800	5800	35.30 (33.54~37.07)	5.27 (5.01~5.53)	35.03	5.29	21.6 °C	May 13, 2022		

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.



4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

System	Target SA (±10	` ,	Measure (Normalize		Liquid		
Verification	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date	
2450MHz	53.69 23.94 (48.33~59.05) (21.55~26.33)		54.50	25.43	21.3 °C	May 07, 2022	
5200MHz	162.34 55.		168.62	56.64	21.6 °C	May 16, 2022	
5800MHz	178.89 (161.01~196.77)	59.32 (53.39~65.25)	165.80	63.90	21.6 °C	May 13, 2022	

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. RF Exposure Positions

6.1. Generic Device

The SAR evaluation shall be performed for surface of the DUT that are accessible during intended use, as indicated in Figure 6.1. Adjust the distance between the device surface and the flat phantom to 5mm.

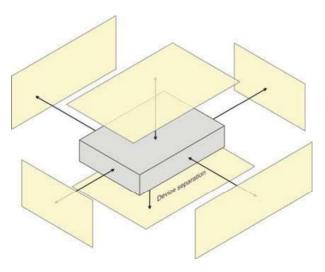


Figure 6.1 – Test positions for Generic device

7. RF Output Power

7.1. WLAN Output Power

Mode	Mode Channel		Tune-up	Output Power (dBm)
	1	2412	24.00	23.56
802.11b	6	2437	24.00	23.10
	11	2462	24.00	22.82
	1	2412	22.50	22.34
802.11g	6	2437	22.50	22.33
	11	2462	22.50	22.13
	1	2412	21.00	20.79
802.11n HT20	6	2437	21.00	20.45
	11	2462	21.00	20.12
	3	2422	21.00	20.54
802.11n HT40	6	2437	21.00	20.33
	9	2452	21.00	20.14

NOTE: Power measurement results of WLAN 2.4G.

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	36	5180	17.00	16.09
802.11a	40	5200	17.00	15.79
	48	5240	17.00	16.44
	36	5180	16.50	16.33
802.11n HT20	40	5200	16.50	16.47
	48	5240	16.50	16.25
802.11n HT40	38	5190	17.00	16.68
002.111111140	46	5230	17.00	16.41
	36	5180	16.00	15.80
802.11ac VHT20	40	5200	16.00	15.79
	48	5240	16.00	15.53
902 11cc V/UT40	38	5190	16.50	16.01
802.11ac VHT40	46	5230	16.50	15.87
802.11ac VHT80	42	5210	16.50	16.20

NOTE: Power measurement results of WLAN 5.2G.

Page 27 of 76

Report No.: S22050701701001

	CCI	Tificate #4298.01		
Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	149	5745	18.50	17.71
802.11a	157	5785	18.50	17.36
	165	5825	18.50	16.89
	149	5745	17.50	17.43
802.11n HT20	157	5785	17.50	17.32
	165	5825	17.50	16.65
902 11n UT40	151	5755	18.50	18.08
802.11n HT40	159	5795	18.50	16.24
	149	5745	16.50	16.47
802.11ac VHT20	157	5785	16.50	15.61
	165	5825	16.50	15.24
802.11ac VHT40	151	5755	17.50	17.04
002.11aC VH140	159	5795	17.50	16.61
802.11ac VHT80	155	5775	17.50	17.19

NOTE: Power measurement results of WLAN 5.8G.

8. SAR Results

8.1. SAR measurement results

8.1.1. SAR measurement Result of WLAN 2.4G

	Test		(W/kg)		Dower	Conducted	Tune-up	Scaled	
Test Position of	channel	Test			Power Drift		power	SAR	Date
Hotspot with 5mm	/Freq.	Mode	1g	10g	(±5%)	power (dBm)	(dBm)	1g	Dale
	/i ieq.		19	109	(±3 /0)	(dDIII)	(מטווו)	(W/Kg)	
Horizontal-Up	6/2437	802.11b	0.108	0.050	2.48	23.10	24.00	0.133	2022/5/7
Horizontal-Down	6/2437	802.11b	0.161	0.074	-3.17	23.10	24.00	0.198	2022/5/7
Vertical-Front	6/2437	802.11b	0.084	0.037	-0.96	23.10	24.00	0.103	2022/5/7
Vertical-Back	6/2437	802.11b	0.085	0.039	-3.61	23.10	24.00	0.105	2022/5/7
Tip Side	6/2437	802.11b	0.038	0.017	-3.49	23.10	24.00	0.047	2022/5/7

NOTE: Hotspot SAR test results of WLAN 2.4G

8.1.2. SAR measurement Result of WLAN 5.2G

Test Position of	channel	Test		Value Power		Conducted	Tune-up	Scaled SAR	Date
Hotspot with 5mm	/Freq.	Mode	1g	10g	(±5%)	power (dBm)	power (dBm)	1g (W/Kg)	Date

Page 28 of 76

Report No.: S22050701701001

Horizontal-Up	40/5200	802.11a	0.096	0.049	0.71	15.79	17.00	0.127	2022/5/16
Horizontal-Down	40/5200	802.11a	0.140	0.073	2.42	15.79	17.00	0.185	2022/5/16
Vertical-Front	40/5200	802.11a	0.072	0.038	1.13	15.79	17.00	0.095	2022/5/16
Vertical-Back	40/5200	802.11a	0.075	0.039	0.32	15.79	17.00	0.099	2022/5/16
Tip Side	40/5200	802.11a	0.034	0.017	1.06	15.79	17.00	0.045	2022/5/16

NOTE: Hotspot SAR test results of WLAN 5.2G

8.1.3. SAR measurement Result of WLAN 5.8G

	Test		SAR Value Test (W/kg)		Dower	Power Conducted	Tungun	Scaled		
Test Position of	channel	Test			Drift	power	Tune-up power	SAR	Date	
Hotspot with 5mm	/Freq.	Mode	1g	10g	(±5%)	(dBm)	(dBm)	1g	Date	
	л теч.		19	109	(±370)	(dbiii)	(dDIII)	(W/Kg)		
Horizontal-Up	157/5785	802.11a	0.180	0.077	1.96	17.36	18.50	0.234	2022/5/13	
Horizontal-Down	157/5785	802.11a	0.272	0.118	1.09	17.36	18.50	0.354	2022/5/13	
Vertical-Front	157/5785	802.11a	0.116	0.049	1.63	17.36	18.50	0.151	2022/5/13	
Vertical-Back	157/5785	802.11a	0.155	0.065	-3.18	17.36	18.50	0.202	2022/5/13	
Tip Side	157/5785	802.11a	0.056	0.024	1.85	17.36	18.50	0.073	2022/5/13	

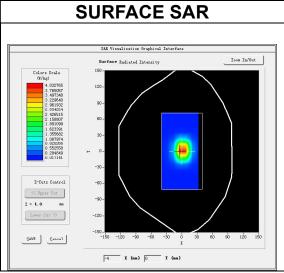
NOTE: Hotspot SAR test results of WLAN 5.8G

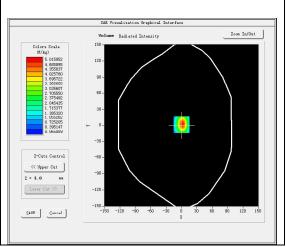
9. Appendix A. Photo documentation

Refer to appendix Test Setup photo---SAR

10. Appendix B. System Check Plots

Table of contents
MEASUREMENT 1 System Performance Check - 2450MHz
MEASUREMENT 2 System Performance Check - 5200MHz
MEASUREMENT 3 System Performance Check - 5800MHz


Date of measurement: 7/5/2022

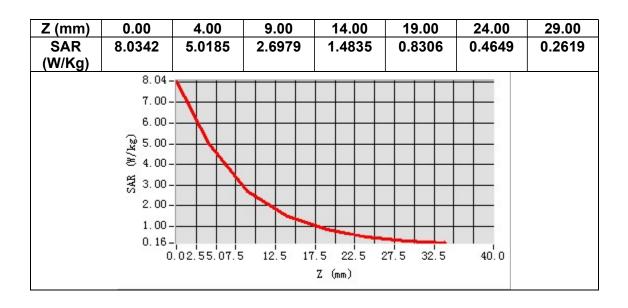

A Experimental conditions

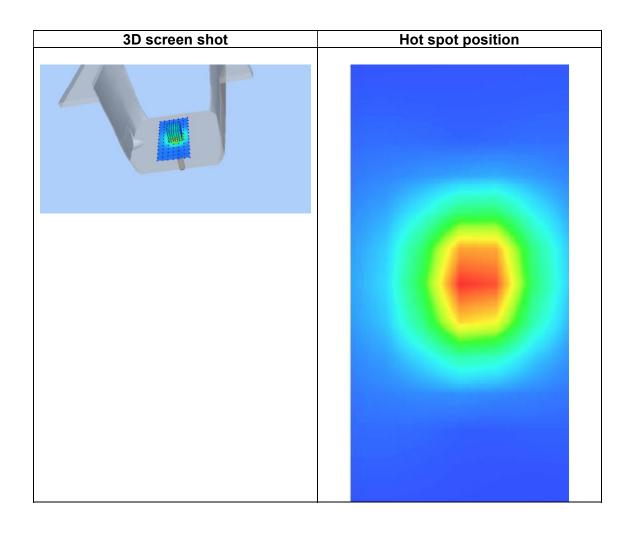
A. Experimental conditions	
<u>Area Scan</u>	dx=12mm dy=12mm, h= 5.00 mm
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
<u>Phantom</u>	<u>Validation plane</u>
Device Position	<u>Dipole</u>
Band	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
Signal	CW (Crest factor: 1.0)

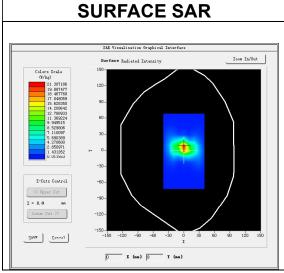
B. SAR Measurement Results

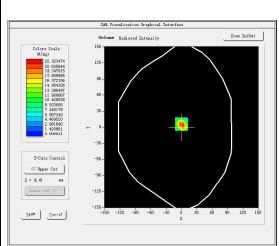
Frequency (MHz)	2450.000000		
Relative permittivity (real part)	38.280244		
Relative permittivity (imaginary part)	13.068313		
Conductivity (S/m)	1.778743		
Variation (%)	-3.640000		

VOLUME SAR


Maximum location: X=0.00, Y=1.00 SAR Peak: 8.14 W/kg


	<u> </u>
SAR 10g (W/Kg)	2.543231
SAR 1g (W/Kg)	5.450129


Date of measurement: 16/5/2022


A. Experimental conditions.

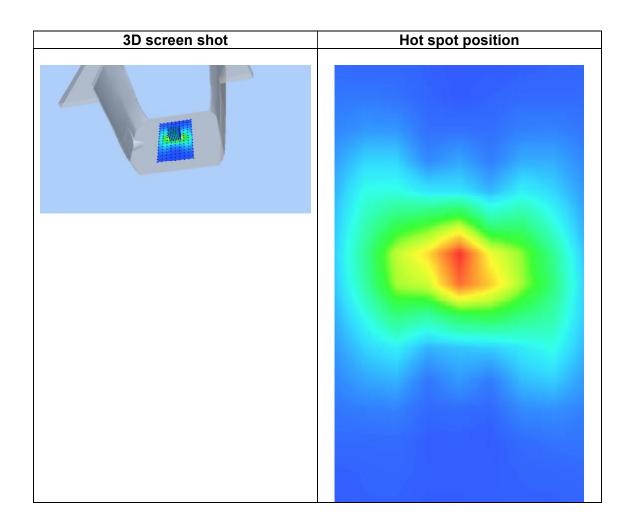
- 1. =21p 0 :	
Area Scan	dx=10mm dy=10mm, h= 2.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	<u>Validation plane</u>
Device Position	<u>Dipole</u>
<u>Band</u>	<u>CW5200</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

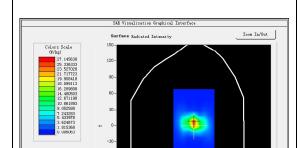
Frequency (MHz)	5200.000000
rioquonoy (iiii iz)	0200.00000
Relative permittivity (real part)	36.170820
·	
Relative permittivity	16.214207
(imaginary part)	
Conductivity (S/m)	4.684104
Variation (%)	-2.960000

VOLUME SAR

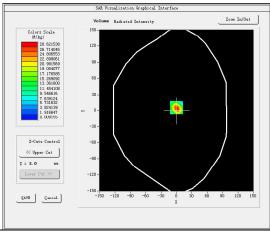
Maximum location: X=0.00, Y=6.00 SAR Peak: 40.06 W/kg


SAR 10g (W/Kg)	5.664168
SAR 1g (W/Kg)	16.862132

Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0 0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0
SA R (W/ Kg)	37.8 03	22.3 59	11.3 54	5.66 88	2.82 67	1.40 93	0.71 44	0.36 61	0.18 45	0.10 85	0.05 45	0.03 26
			00 - 00	2 4	6 8	10 12 Z	14 16 (mm)	18 20	0 22 2	24 26		


Date of measurement: 13/5/2022

A. Experimental conditions.


Area Scan	dx=10mm dy=10mm, h= 2.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	<u>Validation plane</u>
Device Position	<u>Dipole</u>
<u>Band</u>	<u>CW5800</u>
<u>Channels</u>	<u>Middle</u>
Signal	CW (Crest factor: 1.0)

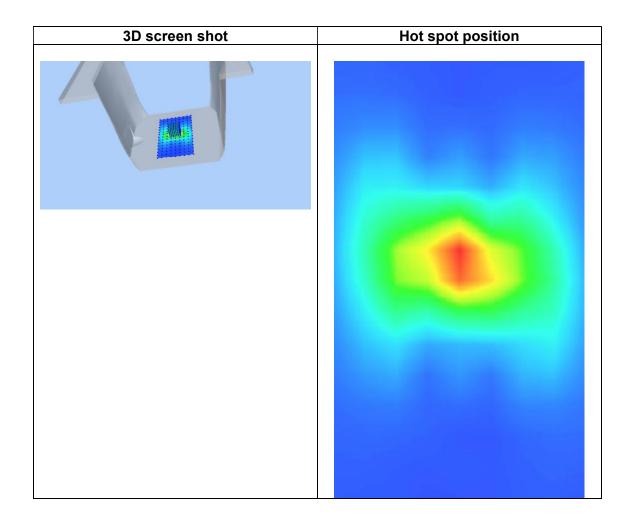
B. SAR Measurement Results

Frequency (MHz)	5800.000000
Relative permittivity (real part)	35.029926
Relative permittivity (imaginary part)	16.420876
Conductivity (S/m)	5.291171
Variation (%)	-2.800000

SURFACE SAR

VOLUME SAR

Maximum location: X=0.00, Y=6.00 SAR Peak: 51.30 W/kg


SAR 10g (W/Kg)	6.390255		
SAR 1g (W/Kg)	16.580047		

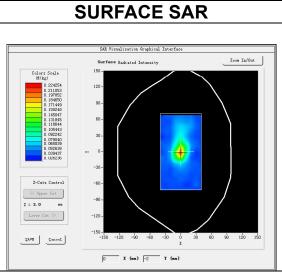
Z 0.00 (m m)	2.00	4.00	6.00	8.00	10.0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0 0
SA 48.3 R 52	28.6 53	14.6 84	7.40 16	3.68 76	1.83 71	0.93 82	0.47 90	0.25 07	0.13 34	0.07 11	0.05 10
(W/											
Kg)	48. 40. 30. 30. 20. 10.	0-	4 6	3 8	10 12	14 16	18 20	0 22 2	24 26		

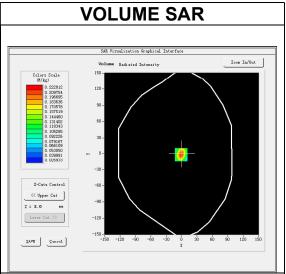
Page 35 of 76

Report No.: S22050701701001

11. Appendix C. Plots of High SAR Measurement

	Table of contents
MEASUREMENT 1 WI AN 5 2C Pody	
MEASUREMENT 1 WLAN 5.2G Body	
MEASUREMENT 2 WLAN 5.8G Body	
MEACUREMENT 2 WI AN 2 4C Rody	
MEASUREMENT 3 WLAN 2.4G Body	


Date of measurement: 16/5/2022

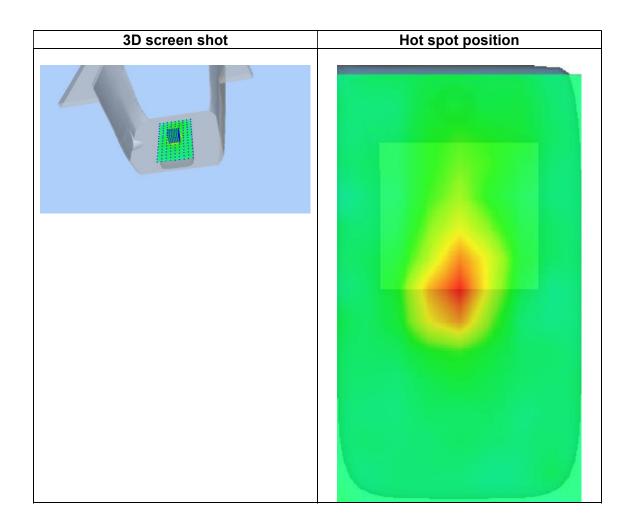

A. Experimental conditions.

<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11a U-NII</u>
<u>Channels</u>	<u>Middle</u>
Signal	IEEE802.11a (Crest factor: 1.0)

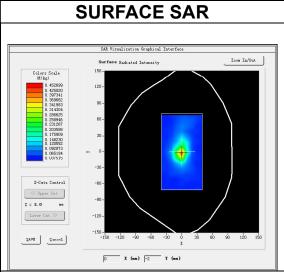
B. SAR Measurement Results

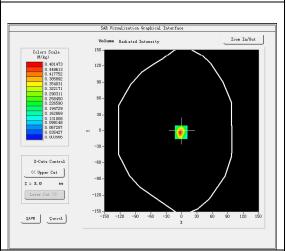
Frequency (MHz)	5200.000000
Deletive nemoittivity (neel neut)	20.470040
Relative permittivity (real part)	36.170818
Relative permittivity	16.214207
(imaginary part)	
Conductivity (S/m)	4.684104
Variation (%)	2.420000

Maximum location: X=-1.00, Y=-2.00 SAR Peak: 0.36 W/kg


SAR 10g (W/Kg)	0.072549			
SAR 1g (W/Kg)	0.140051			

Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0 0
SA R	0.33 95	0.22 28	0.13 40	0.09 58	0.06 08	0.05 07	0.04 84	0.03 63	0.03 46	0.03 65	0.03 75	0.03 60
(W/ Kg)												
		0.3 0.2 0.2 0.2 0.1 0.1	0- 5- 0- 5-	4 6	8	10 12 Z (14 16	18 20) 22 2	24 26		


Date of measurement: 13/5/2022


A. Experimental conditions.

<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11a U-NII</u>
<u>Channels</u>	<u>Middle</u>
Signal	IEEE802.11a (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	5785.000000
r requericy (Wiriz)	3703.00000
Relative permittivity (real part)	35.105877
Relative permittivity (imaginary part)	16.296432
Conductivity (S/m)	5.237492
Variation (%)	1.090000

VOLUME SAR

Maximum location: X=-1.00, Y=-3.00 SAR Peak: 0.98 W/kg

SAR 10g (W/Kg) 0.118449 SAR 1g (W/Kg) 0.272342