




## vBlu



# Hardware spec

## Revision 1

Vayyar Imaging Ltd.

Web: <https://vayyar.com>

Add:Suzhou Industrial Park, Suzhou City, Jiangsu Province Building 24, Block A, Times Square

## Notice

Copyright 2020 Vayyar Imaging Ltd. All rights reserved.

This document is the property of Vayyar and all materials and information contained herein are the confidential and proprietary information of Vayyar and are protected by international copyright laws. The copyrights are owned by Vayyar or the original creator of the material. The materials and information contained herein are provided to you for internal information purposes only, and no portion of the materials and information herein may be copied, reproduced, distributed, transmitted, displayed, published, broadcasted or used in any way whatsoever directly or indirectly without the prior written consent of Vayyar or in any case of third party materials, without that third party's consent. This document shall be returned to Vayyar promptly upon request.

The materials and information contained herein are provided "AS IS" and Vayyar does not provide any warranties of any kind, whether express or implied, including but not limited to implied warranties of merchantability, fitness for a particular purpose, and non-infringement

## Revision History

| Revision | Date          | Author        | Description                                        |
|----------|---------------|---------------|----------------------------------------------------|
| 1        | December 2019 | Yuval Mekamel |                                                    |
| 1.3      | July 2020     | Yuval Mekamel | Updated mechanical and TX power and frequency data |
| 1.4      | February 2022 | Noam Reuveni  | Updated frequency data                             |

## Table of Contents

|                  |                                      |          |
|------------------|--------------------------------------|----------|
| <b>CHAPTER 1</b> | <b>INTRODUCTION.....</b>             | <b>6</b> |
| 1.1              | Audience.....                        | 6        |
| 1.2              | Release Information.....             | 6        |
| 1.3              | Glossary .....                       | 6        |
| <b>CHAPTER 2</b> | <b>SYSTEM OVERVIEW.....</b>          | <b>7</b> |
| 2.1              | System Architecture .....            | 7        |
| 2.2              | Hardware.....                        | 8        |
| 2.2.1            | Sensor Unit Specification .....      | 9        |
| 2.2.2            | Digital Interface.....               | 9        |
| 2.2.3            | RF Interface - Antennas .....        | 11       |
| 2.2.4            | Electrical Specifications .....      | 12       |
| 2.2.5            | Antenna and RF Characteristics ..... | 12       |
| 2.2.6            | Mechanical Guidelines.....           | 13       |
| 2.3              | Software .....                       | 14       |

## List of Figures

|                                                 |    |
|-------------------------------------------------|----|
| Figure 1: vBlu System Architecture .....        | 7  |
| Figure 2: High-Level Block Diagram.....         | 8  |
| Figure 3: 30-pin Connector .....                | 9  |
| Figure 5: Antenna Positions and Numbering ..... | 11 |
| Figure 6: vBlu Antenna Pattern.....             | 13 |
| Figure 7: Mechanical Guidelines .....           | 13 |
| Figure 8: Processing Flow .....                 | 14 |

## List of Tables

|                                                     |    |
|-----------------------------------------------------|----|
| Table 1: Glossary .....                             | 6  |
| Table 2: Sensor Unit Specification .....            | 9  |
| Table 3: 30-pin Connector's Pins Description .....  | 10 |
| Table 4: Sensor Unit Electrical Specification ..... | 12 |
| Table 5: Antenna and RF Characteristics .....       | 12 |

# Chapter 1

## Introduction

This guide provides basic technical information on the Vayyar vBlu board. vBlu board allows to build a three-dimensional, RF-based sensor.

### 1.1 Audience

This document is targeted at the following audiences:

- Engineering and technical marketing personnel who are interested in evaluating Vayyar 3D imaging capabilities and are considering integrating Vayyar solutions into their products.

### 1.2 Release Information

This is a first Hardware version for demonstration of system capabilities. Both algorithmic capabilities and features are under continuous development and improvement.

### 1.3 Glossary

**Table 1: Glossary**

| Term | Definition                                                                                                                                                                                                                    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC   | Alternating Current                                                                                                                                                                                                           |
| API  | Application Programming Interface                                                                                                                                                                                             |
| DC   | Direct Current                                                                                                                                                                                                                |
| DLL  | Dynamic Link Library                                                                                                                                                                                                          |
| GUI  | Graphical User Interface                                                                                                                                                                                                      |
| IP   | Internet Protocol. An IP address is a numerical identifier assigned to a computing device or node in a TCP/IP network. The address is used to locate and identify the node in communications with other nodes on the network. |
| MCU  | Micro-Controller Unit                                                                                                                                                                                                         |
| PCB  | Printed Circuit Board                                                                                                                                                                                                         |
| RF   | Radio Frequency                                                                                                                                                                                                               |
| SoC  | System-on-chip                                                                                                                                                                                                                |

# Chapter 2

## System Overview

The vBlu system is designed to be operated as a 3D imaging non-contact RF sensor, which enables to identify multiple objects (“targets”) in a defined space (“arena”).

### 2.1 System Architecture

The vBlu system architecture and connectivity scheme is illustrated in the figure below.



Figure 1: vBlu System Architecture

The vBlu system is comprised of the following components:

- The vBlu RF Sensor Unit (DSP included inside the VYYR7201 chip)
  - The interface between boards is SPI
  - Local power supply devices (2.5V, 1.27V, 1.2V)
- MCU and wireless connectivity module
  - Local power supply devices (3.3V ...)
  - Flash memory

## 2.2 Hardware

The figure below presents a high-level block diagram of a vBlu based system:

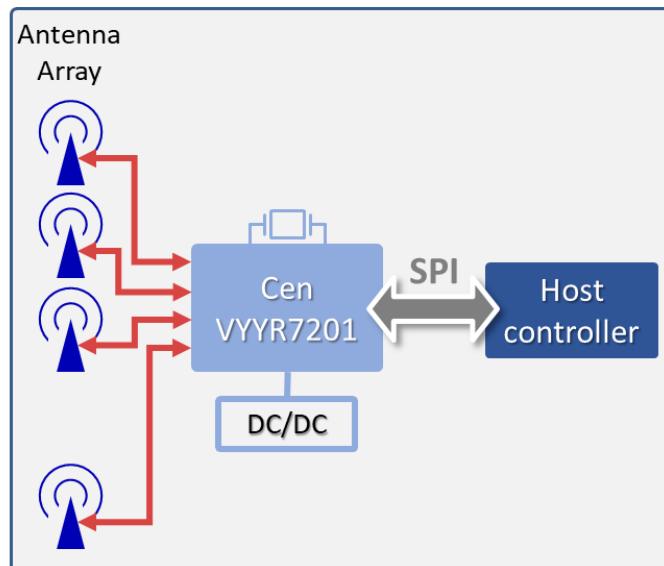



Figure 2: High-Level Block Diagram

The following components are embedded in the sensor unit PCB:

- Vayyar VYYR7201-B2 system-on-chip (SoC).
- 46 embedded Tx/Rx linear polarized PCB embedded, wide-band antennas.
- DC modules
- 40 MHz Crystal is used as a clocking source for the VYYR7201 SoC.
- Digital interface for SPI protocol via 30-pin connector (2BBDVM-53-615G718A01). Refer to section 2.2.2.

## 2.2.1 Sensor Unit Specification

Table 2: Sensor Unit Specification

| Parameter                      | Specification                                                                                                               | Notes                                                                 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Transceivers                   | 24TX/22RX                                                                                                                   |                                                                       |
| Frequency Band (Japan)         | 60.01-60.49 GHz                                                                                                             |                                                                       |
| Frequency Band (Rest of World) | 61.01-61.49 GHz                                                                                                             |                                                                       |
| Field of View (FoV)            | Refer to section 2.2.5 Antenna and RF Characteristics                                                                       |                                                                       |
| Range Resolution               | $\frac{C}{2BW} = \frac{3e^8}{2 \cdot 1.1e^9} = 13.6\text{cm}$                                                               | Depends on the configured BW                                          |
| Range Accuracy                 | << Range Resolution                                                                                                         | Depends on the target strength and shape                              |
| Angular Resolution             | $\Delta\theta \approx \frac{\lambda}{D} \approx \frac{3e^8}{64e^9 \cdot 0.046} \approx 0.102\text{rad} \approx 6\text{deg}$ | $\lambda$ – Wavelength [@62.5GHz]<br>D – Length of the array [0.046m] |
| Angular Accuracy               | << Angular Resolution                                                                                                       | Depends on the target strength and shape                              |
| Dimensions                     | Without case: 45 mm x 45 mm                                                                                                 | Dimensions refer to vBlu board                                        |

## 2.2.2 Digital Interface

The on-board connector requires the following inputs – both for input and DC:

- 5V DC supply
- SPI interface
- DC enable signals
- Reset signal
- GPIO signals

30-pin connector –2BBDVM-53-615G718A01 (Most Well):

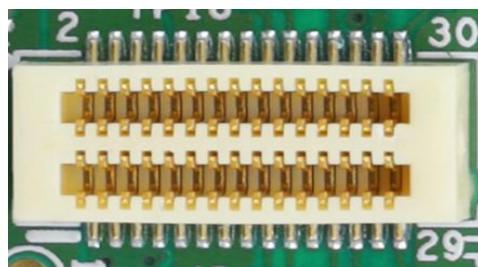
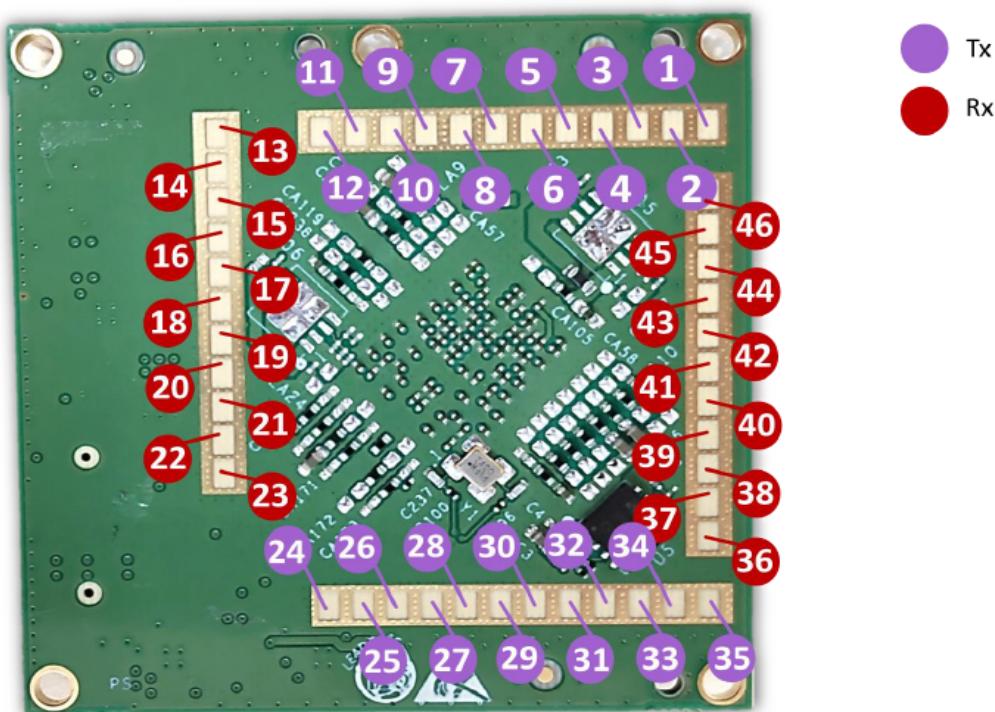



Figure 3: 30-pin Connector


The following table describes the connectivity of the 30-pin connector:

**Table 3: 30-pin Connector's Pins Description**

| Pin # | Signal Name | Direction | Description                          |
|-------|-------------|-----------|--------------------------------------|
| 1     | 5Vin        | Supply    | 5V Supply Input                      |
| 2     | 5Vin        |           |                                      |
| 3     | 5Vin        |           |                                      |
| 4     | 5Vin        |           |                                      |
| 5     | 5Vin        |           |                                      |
| 6     | 5Vin        |           |                                      |
| 7     | 5Vin        |           |                                      |
| 8     | 5Vin        |           |                                      |
| 9     | GND         | GND       | GND                                  |
| 10    | GND         |           |                                      |
| 11    | GND         |           |                                      |
| 12    | GND         |           |                                      |
| 13    | GND         |           |                                      |
| 14    | GND         |           |                                      |
| 15    | GND         |           |                                      |
| 16    | GND         |           |                                      |
| 17    | SPI-SS      | In        | SPI Chip Select                      |
| 18    | SPI-SCLK    | In        | SPI Clock                            |
| 19    | SPI-SI      | In        | SPI Data In                          |
| 20    | SPI-SO      | Out       | SPI Data Out                         |
| 21    | GND         | GND       | GND                                  |
| 22    | GND         |           |                                      |
| 23    | GP1         | In/Out    | Optional GPIO for future use         |
| 24    | En-DIG      | In        | Enable for 3.3V and 1.2V regulators  |
| 25    | GP0         | In/Out    | Optional GPIO for future use         |
| 26    | En-RF       | In        | Enable for 2.5V and 1.27V regulators |
| 27    | GND         | GND       | GND                                  |
| 28    | GND         |           |                                      |
| 29    | 3v3 (VIO)   | Supply    | 3.3V Supply Input                    |
| 30    | reset_n     | In        | Reset to VYYR7202 chip               |

### 2.2.3 RF Interface - Antennas

The array of 46 antennas serves to connect the sensor unit with the environment. The antennas are embedded in the PCB, as depicted in the figure below.



**Figure 4: Antenna Positions and Numbering**

For each transmitting (TX) antenna, there are multiple receiving (RX) antennas for collecting and recording the received RF signals. Each RX antenna and its associated TX antenna serve as an antenna pair.

## 2.2.4 Electrical Specifications

The following electrical specifications are for the sensor unit. The host DC board should provide the main 5V and the I/O of 3.3V/1.8V. The current consumption specifications are based on lab measurements performed by Vayyar boards, and a preliminary estimation of expected performance for the module.

Table 4: Sensor Unit Electrical Specification

| Supply voltage | Min Voltage | Max Voltage | Max current consumption (profile dependent) | Average current consumption (Duty cycle dependent) |
|----------------|-------------|-------------|---------------------------------------------|----------------------------------------------------|
| 5V             | 4.5V        | 5.5V        | 1.5A                                        | 0.7A                                               |
| 3.3V           | 3V          | 3.5V        | 0.1A                                        | 0.05A                                              |

## 2.2.5 Antenna and RF Characteristics

The following are antenna and RF characteristics, based on the simulation of a single antenna over an infinite ground plane:

Table 5: Antenna and RF Characteristics

| Parameter               | Value                                                   | Comment                         |
|-------------------------|---------------------------------------------------------|---------------------------------|
| Gain                    | 5 dBi @61 GHz                                           | At 0° Elevation, 0° Azimuth     |
| Antenna -3 db Beamwidth | 150 deg. @61 GHz (E-plane)<br>85 deg. @61 GHz (H-plane) |                                 |
| Polarization            | Linear                                                  |                                 |
| Max Tx Power            | Up to -20 dBm                                           | Aggregated peak conducted power |

The figure below depicts an antenna and its E and H planes:

- E-plane – plane XZ (green)
- H-plane – plane YZ (red)

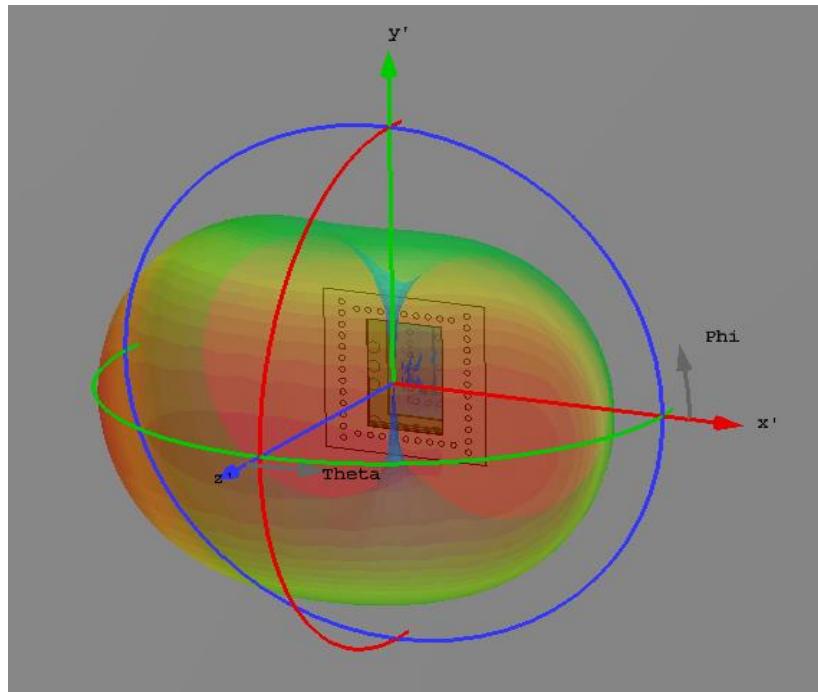



Figure 5: vBlu Antenna Pattern

## 2.2.6 Mechanical Guidelines

- Material: standard ABS/PC-ABS or other polymers (assuming  $\epsilon_r = 2.9$ @62GHz)
- Thickness:  $1.4mm \pm 0.05mm$  (~ half wavelength in the material)
- Distance from PCB:  $2.4mm \pm 0.1mm$
- Painting: non-conductive paints (Zero DC-conductivity is required)
- Metal nuts: try to keep out of the sensor's field of view
- Product level EM simulation is recommended

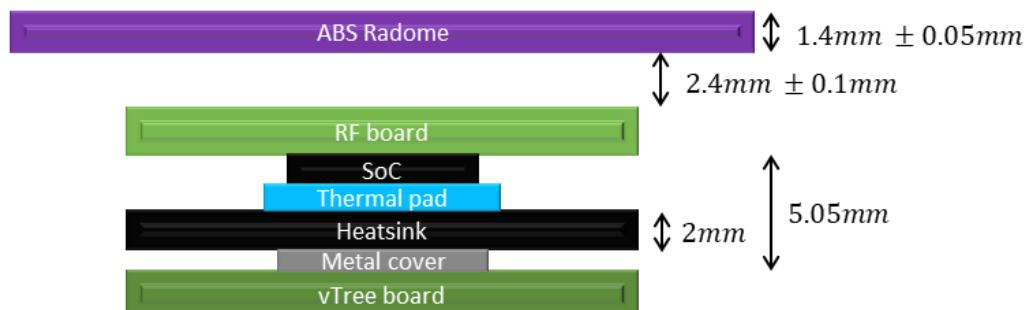
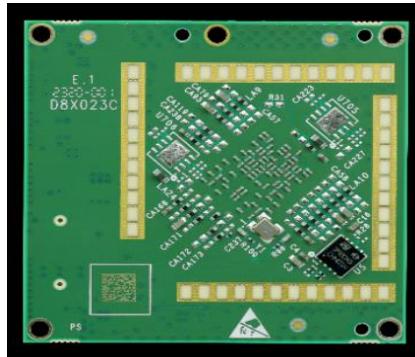




Figure 6: Mechanical Guidelines

**NOTE**

For wall installation, verify the board is installed rotated by 45°.

Figure 7: vBlu - wall installation



## 2.3 Software

The vBLU system DSP performs signal processing and generation of the arena image. The SPI I\F will be used for both boot-loading the VYYR7201 FW, and for retrieving either points-list or targets-list (position, state and SNR).

The exact API shall be discussed and concluded with the partner, and provided in the API spec.

The following diagram describes the processing flow of the software.

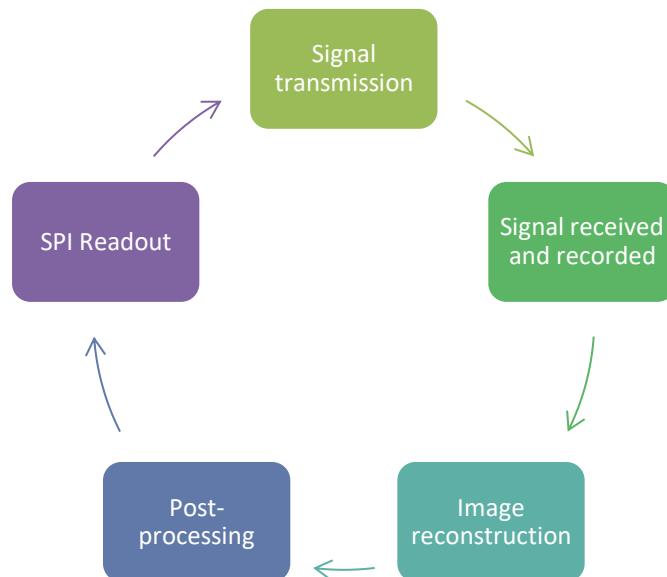



Figure 8: Processing Flow

END OF DOCUMENT