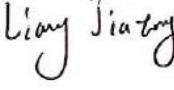
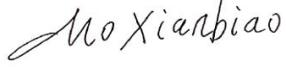


No.:
FCCSZ2025-0038-RF1

TEST REPORT

FCC ID : 2AYHY-VS321



NAME OF SAMPLE : Wireless AI Occupancy Sensor

APPLICANT : Xiamen Milesight IoT Co., Ltd.

CLASSIFICATION OF TEST : N/A

CVC Testing Technology (Shenzhen) Co., Ltd.

Applicant		Name: Xiamen Milesight IoT Co., Ltd. Address: Building C09, Software Park Phase III, Xiamen 361024, Fujian, China	
Manufacturer		Name: Xiamen Milesight IoT Co., Ltd. Address: Building C09, Software Park Phase III, Xiamen 361024, Fujian, China	
Equipment Under Test		Name: Wireless AI Occupancy Sensor Model/Type: VS321-915M Additional Model/Type: See Section 2.2 Brand: Milesight Serial No.: N/A Sample No.: 202504288769-1	
Date of Receipt.	Apr. 29, 2025	Date of Testing	Apr. 29, 2025~Jul. 16, 2025
Test Specification		Test Result	
FCC Part 15, Subpart C, Section 15.247		PASS	
Evaluation of Test Result		The equipment under test was found to comply with the requirements of the standards applied. Seal of CVC Issue Date: Jul.16, 2025	
Compiled by: Liang Jiatong Name Signature	Reviewed by: Mo Xianbiao Name Signature	Approved by: Dong Sanbi Name Signature	
Other Aspects: NONE.			
Abbreviations: OK, Pass= passed Fail = failed N/A= not applicable EUT= equipment, sample(s) under tested			

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.

TABLE OF CONTENTS

RELEASE CONTROL RECORD	4
1 SUMMARY OF TEST RESULTS	5
1.1 TEST LOCATION	5
1.2 LIST OF TEST AND MEASUREMENT INSTRUMENTS	6
1.3 MEASUREMENT UNCERTAINTY	8
2 GENERAL INFORMATION	9
2.1 GENERAL PRODUCT INFORMATION	9
2.2 ADDITIONAL MODEL/TYPE	9
2.3 DESCRIPTION OF ACCESSORIES	10
2.4 CHANNEL FREQUENCY	11
2.5 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	12
2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS	14
2.7 DESCRIPTION OF SUPPORT UNITS	14
3 TEST TYPES AND RESULTS	15
3.1 RADIATED EMISSION AND BANDEdge MEASUREMENT	15
3.2 NUMBER OF HOPPING FREQUENCY USED	23
3.3 DWELL TIME ON EACH CHANNEL	25
3.4 20dB EMISSION BANDWIDTH	27
3.5 HOPPING CHANNEL SEPARATION	29
3.6 CONDUCTED OUTPUT POWER	31
3.7 POWER SPECTRAL DENSITY MEASUREMENT	33
3.8 OUT OF BAND EMISSION MEASUREMENT	35
3.9 ANTENNA REQUIREMENT	38
4 PHOTOGRAPHS OF TEST SETUP	39
5 PHOTOGRAPHS OF THE EUT	40

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
FCCSZ2025-0038-RF1	Original release	Jul.16, 2025

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15 Subpart C			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.207	AC Power Conducted Emission	N/A	See section 3.1
15.247(a)(1)	Number of Hopping Frequency Used	PASS	See section 3.6
15.247(a)(1)	Hopping Channel Separation	PASS	See section 3.4
15.247(a)(1)	Dwell Time of Each Channel	PASS	See section 3.4
15.247(a)(1)	20dB Emissions Bandwidth	PASS	See section 3.5
15.247(b)	Conducted Output Power	PASS	See section 3.7
15.247(d), 15.209, 15.205	Radiated Emissions and Band Edge Measurement	PASS	See section 3.2
15.247(d)	Out of band Emission Measurement	PASS	See section 3.9
FCC 15.247(e)	Power Spectral Density	PASS	See section 3.8
15.203 15.247(b)	Antenna Requirement	PASS	See section 3.10

1.1 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab of CVC Testing Technology (Shenzhen) Co., Ltd.

Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong, China

Post Code: 518110 Tel: 0755-23763060-8805

Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn

FCC(Test firm designation number: CN1363)

IC(Test firm CAB identifier number: CN0137)

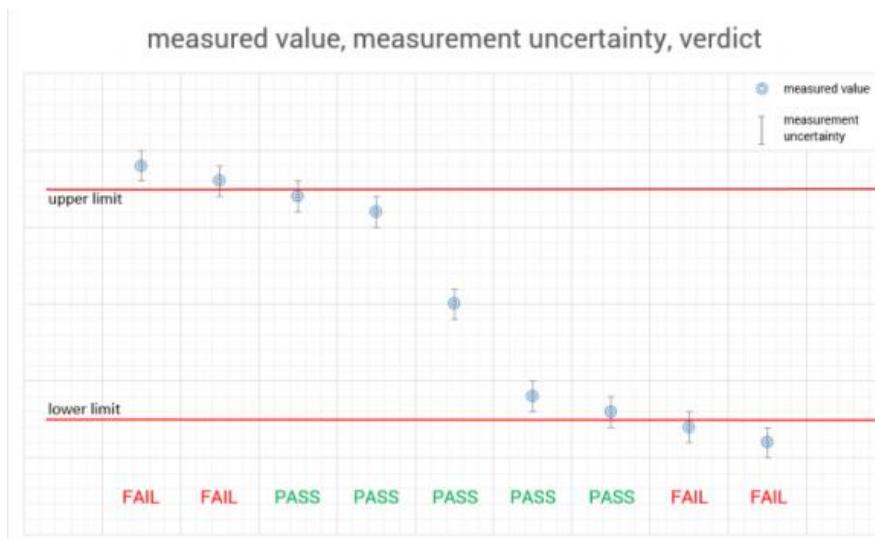
CNAS(Test firm designation number: L16091)

1.2 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Antenna Port Conducted Test(BT/WIFI)						
Equipment	Manufacturer	Model No.	Serial Number	Cal. interval	Cal.Day	Cal. Due
Spectrum Analyzer	R&S	FSV 30	CS03000 56	1 year	2025/04/23	2026/04/22
Spectrum Analyzer	R&S	FSV 40	101009	1 year	2025/05/22	2026/05/21
Spectrum Analyzer	Keysight	N9020B	MY6227-132	1 year	2025/05/22	2026/05/21
Spectrum Analyzer	PROSUND	SP926B	CS03000 2	1 year	2025/06/06	2026/06/05
Analog signal Generator	R&S	SMB 100A	CS03000 15	1 year	2025/04/23	2026/04/22
Vector signal Generator	R&S	SGT 100A	CS03000 17	1 year	2025/04/23	2026/04/22
RF control unit(BT/WIFI)	Tonscend	JS0806-2-8CH	CS03000 23	1 year	2025/04/23	2026/04/22
RF control unit(DTV)	Tonscend	JS0806-1	CS03000 24	1 year	2025/04/23	2026/04/22
DC power supply	R&S	HMC8041-G	CS03000 26	1 year	2025/04/23	2026/04/22
#3Shielding room	MORI	443	CS03000 09	3 year	2023/05/17	2026/05/16
Digital multimeter	FLUKE	18B+	CS02000 56	1 year	2025/05/22	2026/05/21
10db attenuator	JUNKE	SMA-10-18-N	2503127 43	1 year	2025/06/06	2026/06/05
Power splitter	Anritsu	K240CPOWERDIVIDER	012334	1 year	2025/06/06	2026/06/05
Temperature and humidity meter	UNI-T	A10T	C193561 457	1 year	2025/04/29	2026/04/28
Conducted emission						
EMI Test Receiver	R&S	ESR3	CS03000 01	1 year	2024/05/25	2025/05/24
Voltage probe	SCHWARZBEC K	CVP9222C	CS02000 02-2	1 year	2025/04/29	2026/04/28
Voltage probe	R&S	EZ-17	CS02000 02-3	1 year	2025/04/23	2026/04/22
ISN network	R&S	ENY81	CS02000 15	1 year	2025/04/23	2026/04/22
ISN network	R&S	ENY81Cat6	CS02000 16	1 year	2025/04/23	2026/04/22
Artificial Power Network (three-phase)	SCHWARZBEC K	NNLK&8129RC	CS02000 37	1 year	2025/04/23	2026/04/22
Temperature and humidity meter	UNI-T	A10T	C193561 430	1 year	2025/04/29	2026/04/28
limiter (10 dB)	Rohde&Schwarz	ESH3-Z2	102824	1 year	2024/05/16	2025/05/15
RE Test - 3M Chamber(Below 1GHz)						
EMI Test Receiver	Rohde&Schwarz	ESR 26	101718	1 year	2025/05/22	2026/05/21
Loop antenna (8.3k~30MHz)	Rohde&Schwarz	HFH2-Z2E	100951	1 year	2024/06/04	2025/06/03

Antenna(30MHz~1000 MHz)	SCHWARZBEC K	VULB 9168	1132	1 year	2025/02/28	2026/02/27
3m anechoic chamber	MORI	966	N/A	1 year	2025/05/19	2026/05/18
Preamplifier(10kHz-1GHz)	Rohde&Schwarz	SCU-01F	100298	1 year	2025/04/23	2026/04/22
Preamplifier(1GHz-18GHz)	Rohde&Schwarz	SCU-18F	100799	1 year	2025/04/23	2026/04/22
#1 control room	MORI	433	/	3 year	2023/05/17	2026/05/16
Temperature and humidity meter	/	C193561473	C193561 473	1 year	2025/04/29	2026/04/28
Radiation Spurious						
Spectrum Analyzer	R&S	FSV 40	CS03000 1	1 year	2025/04/23	2026/04/22
Spectrum Analyzer	R&S	FSVA 3044	CS03000 4	1 year	2025/05/23	2026/05/22
EMI Test Receiver	R&S	ESR3	CS03000 05	1 year	2025/05/22	2026/05/21
Horn antenna(1GHz-18GHz)	ETS-Lindgren	3117	CS03000 07	1 year	2025/03/29	2026/03/28
Horn antenna(18GHz-40GHz)	STEATITE	QMS-00880	CS03000 08	1 year	2025/03/22	2026/03/21
Automatic control unit(RSE)	R&S	OSP220	CS03000 19	1 year	2024/07/03	2025/07/02
Filter group(RSE-BT/WiFi)	R&S	WiFi/BT Variant 1	CS03000 20	1 year	2025/04/23	2026/04/22
Filter group(RSE-Cellular)	R&S	Cellular Variant 1	CS03000 21	1 year	2025/04/23	2026/04/22
Preamplifier(1GHz-18GHz)	R&S	SCU18F	CS03000 31-1	1 year	2025/04/23	2026/04/22
Preamplifier(1GHz-18GHz)	R&S	SCU-18F	CS03000 31	1 year	2025/04/23	2026/04/22
Comprehensive Test Instrument	R&S	CMW 500	CS03000 33	1 year	2025/05/25	2026/05/24
Antenna(30MHz~1001 MHz)	SCHWARZBEC K	VULB9168	CS02000 06	1 year	2025/01/23	2026/01/22
Preamplifier(1GHz-18GHz)	R&S	SCU-01F	CS02000 42	1 year	2025/04/23	2026/04/22
Preamplifier(18GHz-40GHz)	R&S	SCU40A	CS02000 45	1 year	2025/04/23	2026/04/22
Attenuator	boyang	BY--N-2W-5dB	/	1 year	2025/01/23	2026/01/22
Temperature and humidity meter	yuhuaze	/	WK0001	1 year	2025/04/29	2026/04/28
#2 control room	MORI	433	CS03000 28	3 year	2023/05/17	2026/05/16
3m anechoic chamber	MORI	966	CS03000 11	3 year	2023/05/17	2026/05/16

1.3 MEASUREMENT UNCERTAINTY


Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

No.	Item	Measurement Uncertainty
1	Conducted emission test	+/-2.7 dB
2	Radiated emission 9kHz-30MHz	+/-5.6 dB
3	Radiated emission 30MHz-1GHz	+/-4.6 dB
4	Radiated emission 1GHz-18GHz	+/-4.4 dB
5	Radiated emission 18GHz-40GHz	+/-5.1 dB
6	RF power	+/-0.9 dB
7	Power Spectral Density	+/-0.8 dB
8	Conducted spurious emissions	+/-2.7 dB
9	Transmission Time	+/-0.27%
10	Occupied Bandwidth	+/-1.86%

Remark: 95% Confidence Levels, k=2.

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed.

The measurement uncertainty is mentioned in this test report, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

2 GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	Wireless AI Occupancy Sensor
BRAND	Milesight
MODEL	VS321-915M
ADDITIONAL MODEL	See Section 2.2
POWER SUPPLY (Remark 6)	DC 3.6V(4*3.6V ER14505 LITHIUM BATTERY AA SIZE)
MODULATION TYPE	DTS, FHSS
OPERATING FREQUENCY	Hybrid 125kHz, 902.3MHz ~ 927.8MHz
NUMBER OF CHANNEL	128
PEAK OUTPUT POWER	12.61dBm (Max. Measured)
ANTENNA TYPE (Remark 4/5)	PCB Antenna, with -3.45 dBi Gain
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	N/A
FIXED-FREQUENCY SOFTWARE	certificationTools.exe(V20230112),power level: default

Remark:

1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
3. Please refer to the EUT photo document for detailed product photo. (Report NO.: FCCSZ2025-0038-EUT)
4. Please refer to the antenna report.
5. Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, CVC is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
6. The product supplies power to parallel circuits.

2.2 ADDITIONAL MODEL/TYPE

Main Model No.	Serial Model No.	Difference
VS321-915M	NF321-915M,VS321-868M,NF321-868M,VS321,NF321	1.only differences are the model no and appearance silkprint

2.3 DESCRIPTION OF ACCESSORIES

BATTERY	
Brand	RAMWAY
Model No.:	ER14505 LITHIUM BATTERY
Size	AA
Output:	3.6V
Number	4

2.4 CHANNEL FREQUENCY

Operation Frequency Each of Channel							
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	902.3	32	908.7	64	915.2	96	921.6
1	902.5	33	908.9	65	915.4	97	921.8
2	902.7	34	909.1	66	915.6	98	922
3	902.9	35	909.3	67	915.8	99	922.2
4	903.1	36	909.5	68	916	100	922.4
5	903.3	37	909.7	69	916.2	101	922.6
6	903.5	38	909.9	70	916.4	102	922.8
7	903.7	39	910.1	71	916.6	103	923
8	903.9	40	910.3	72	916.8	104	923.2
9	904.1	41	910.5	73	917	105	923.4
10	904.3	42	910.7	74	917.2	106	923.6
11	904.5	43	910.9	75	917.4	107	923.8
12	904.7	44	911.1	76	917.6	108	924
13	904.9	45	911.3	77	917.8	109	924.2
14	905.1	46	911.5	78	918	110	924.4
15	905.3	47	911.7	79	918.2	111	924.6
16	905.5	48	911.9	80	918.4	112	924.8
17	905.7	49	912.1	81	918.6	113	925
18	905.9	50	912.3	82	918.8	114	925.2
19	906.1	51	912.5	83	919	115	925.4
20	906.3	52	912.7	84	919.2	116	925.6
21	906.5	53	912.9	85	919.4	117	925.8
22	906.7	54	913.1	86	919.6	118	926
23	906.9	55	913.3	87	919.8	119	926.2
24	907.1	56	913.5	88	920	120	926.4
25	907.3	57	913.7	89	920.2	121	926.6
26	907.5	58	913.9	90	920.4	122	926.8
27	907.7	59	914.1	91	920.6	123	927
28	907.9	60	914.3	92	920.8	124	927.2
29	908.1	61	914.5	93	921	125	927.4
30	908.3	62	914.7	94	921.2	126	927.6
31	908.5	63	914.9	95	921.4	127	927.8

Note: The channels which were indicated in bold type of the above channel list were selected as representative test channel. Therefor only the data of the test channels were recorded in this report.

2.5 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, xyz axis and antenna ports

The worst case was found when positioned on xaxis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	APPLICABLE TEST ITEMS				DESCRIPTION
	RSE<1G	RSE≥1G	PLC	APCM	
A	√	√	√	--	Lora Link

Where **RSE<1G**: Radiated Emission below 1GHz.

PLC: Power Line Conducted Emission.

RSE≥1G: Radiated Emission above 1GHz.

APCM: Antenna Port Conducted Measurement.

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
A	0 to 127	0	FHSS	DR0

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
A	0 to 127	0,63,127	FHSS	DR0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
A	0 to 127	0,63,127	FHSS	DR0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RSE<1G	25.2deg. C, 55%RH	DC 3.6V	Wang Zhiming
RSE≥1G	25.2deg. C, 55%RH	DC 3.6V	Wang Zhiming
PLC	25.2deg. C, 55%RH	DC 3.6V	Wang Zhiming
APCM	--	--	--

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

FCC PART 15, Subpart C. Section 15.247

KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

All test items have been performed and recorded as per the above standards

2.7 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support Equipment					
NO	Description	Brand	Model No.	Serial Number	Supplied by
1	Laptop	DELL	Notebook14	N/A	Lab
Support Cable					
NO	Description	Quantity (Number)	Length (m)	Detachable (Yes/ No)	Shielded (Yes/ No)
1	N/A	N/A	N/A	N/A	N/A

3 TEST TYPES AND RESULTS

3.1 RADIATED EMISSION AND BANEDGE MEASUREMENT

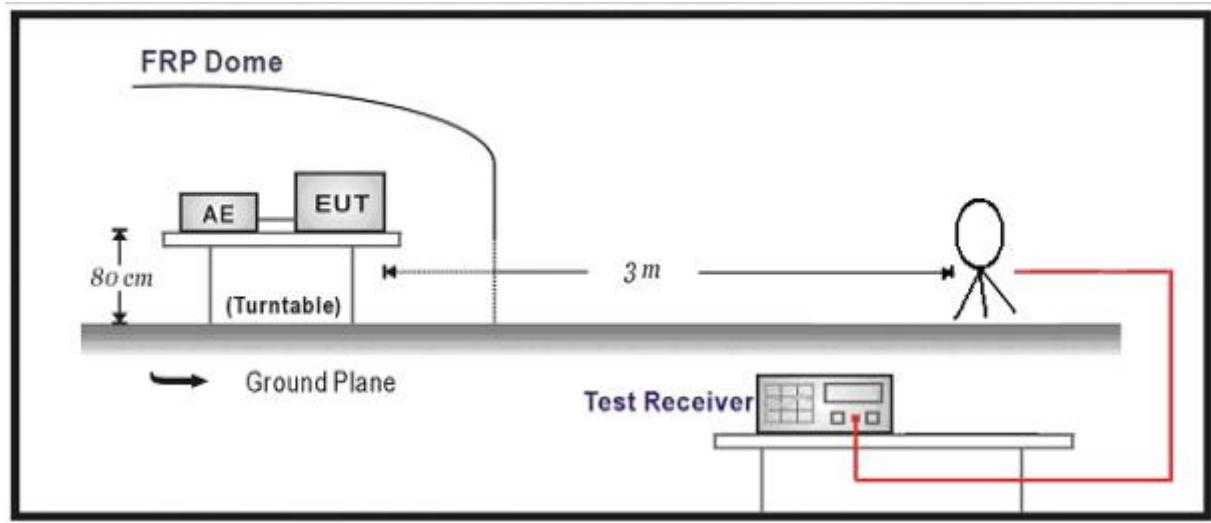
3.1.1 Limits

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

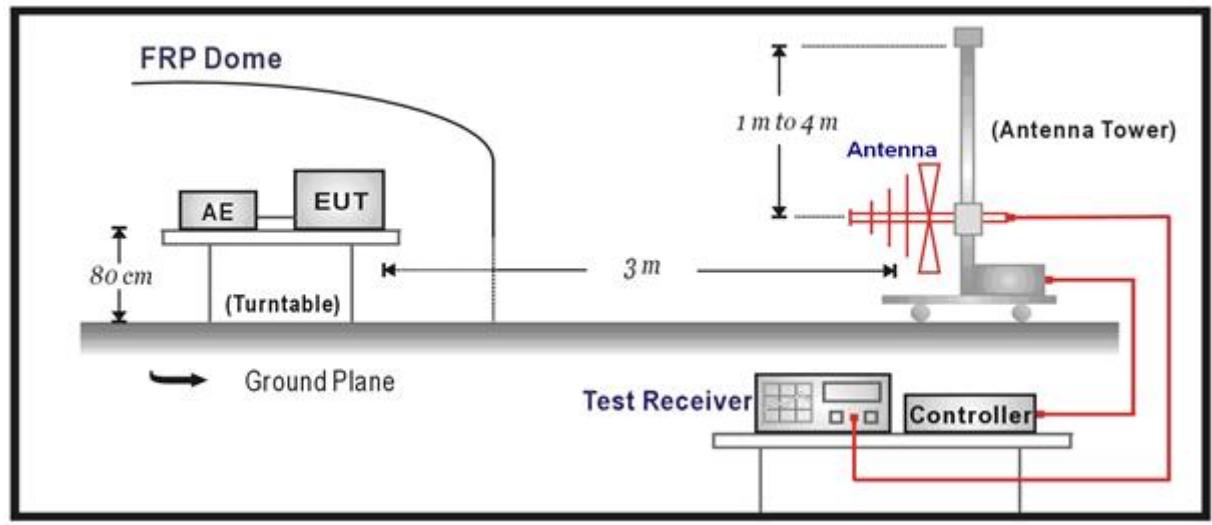
FREQUENCIES (MHz)	FIELD STRENGTH (Microvolts/Meter)	MEASUREMENT DISTANCE (Meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE: 1. The lower limit shall apply at the transition frequencies.
NOTE: 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
NOTE: 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

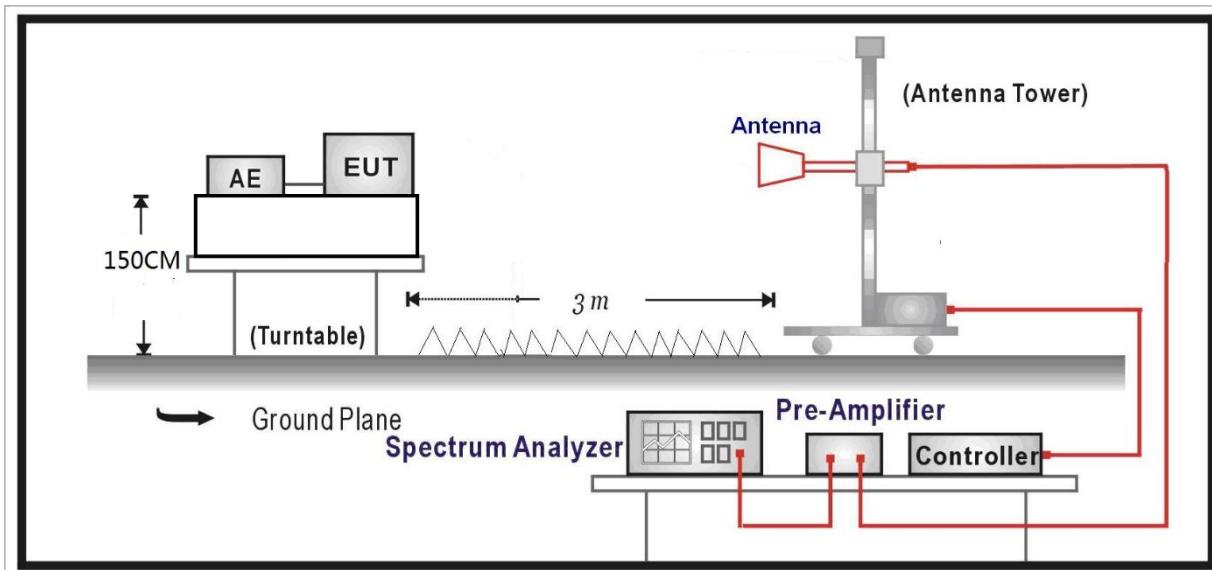
3.1.2 Measurement procedure


- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

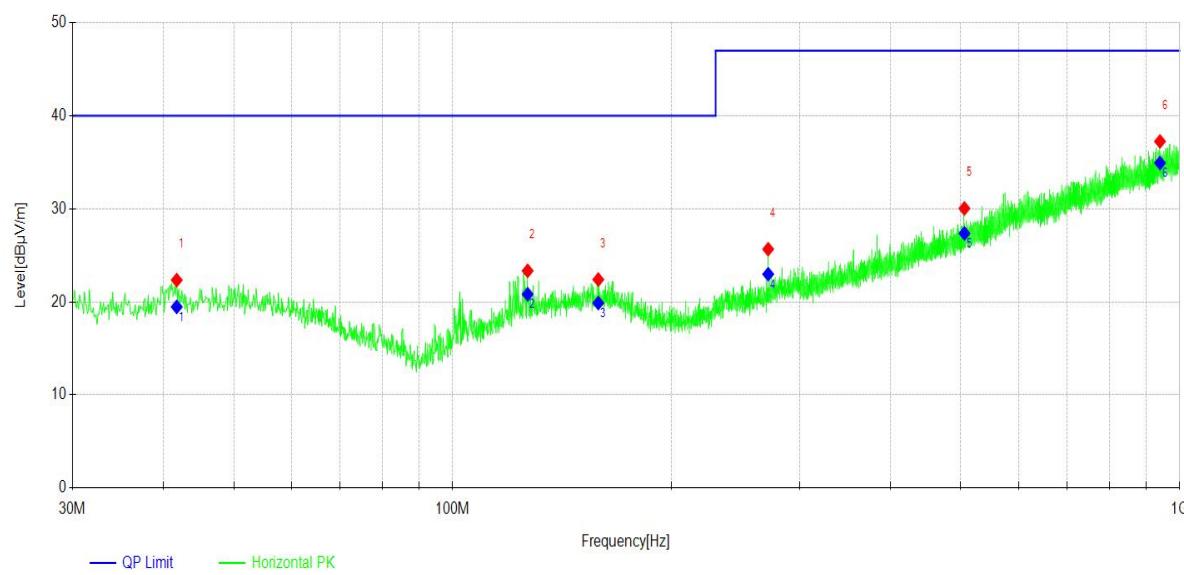

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.
5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

3.1.3 Test setup


Below 30MHz Test Setup:

Below 1GHz Test Setup:

Above 1GHz Test Setup:



3.1.4 Test results

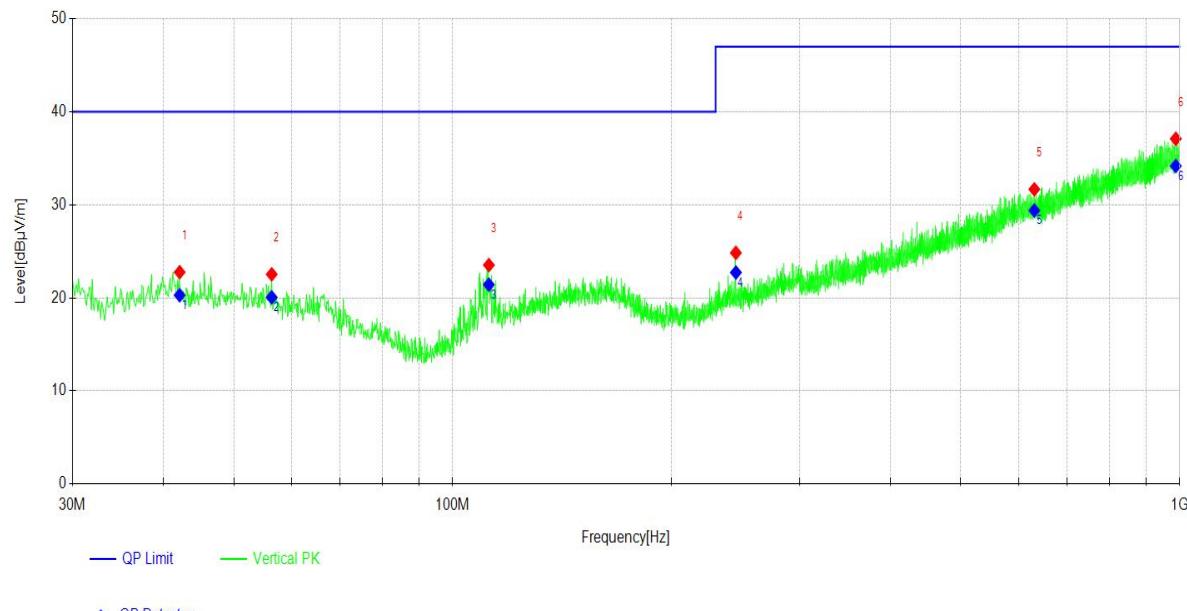
BELOW 1GHz WORST-CASE DATA

Worst Test Mode	Lora Link	Channel	CH 0
Frequency Range	9KHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Horizontal

NO.	Freq. [MHz]	Factor [dB]	QP Value [dB μ V/m]	QP Limit [dB μ V/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
1	41.835	19.71	20.00	40.00	20.00	100	2	Horizontal
2	49.984	20.30	19.79	40.00	20.21	100	2	Horizontal
3	127.204	18.83	21.28	43.50	22.22	100	2	Horizontal
4	280.382	20.38	20.57	46.00	25.43	100	2	Horizontal
5	583.731	26.93	28.18	46.00	17.82	100	170	Horizontal
6	933.548	31.96	34.82	46.00	11.18	100	161	Horizontal

Remark: 1. 9KHz~30MHz have been test and test data more than 20dB margin.


2. The emission levels of other frequencies were greater than 20dB margin.

3. Level (dB μ V/m) = Reading (dB μ V/m) + Factor (dB).

4. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

5. Margin(dB) = Limit[dB μ V/m] - Level [dB μ V/m]

Worst Test Mode	Lora Link	Channel	CH 0
Frequency Range	9KHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Vertical

NO.	Freq. [MHz]	Factor [dB]	QP Value [dB μ V/m]	QP Limit [dB μ V/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
1	41.835	19.71	20.14	40.00	19.86	100	249	Vertical
2	112.749	17.31	21.37	43.50	22.13	200	232	Vertical
3	160.090	20.15	20.09	43.50	23.41	100	313	Vertical
4	346.058	21.86	22.11	46.00	23.89	200	216	Vertical
5	569.471	26.75	28.29	46.00	17.71	200	211	Vertical
6	970.994	32.49	34.65	54.00	19.35	200	156	Vertical

Remark: 1. 9KHz~30MHz have been test and test data more than 20dB margin.

2. The emission levels of other frequencies were greater than 20dB margin.

3. Level (dB μ V/m) = Reading (dB μ V/m) + Factor (dB).

4. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

5. Margin(dB) = Limit[dB μ V/m] - Level [dB μ V/m]

ABOVE 1GHz DATA

Channel	CH 0	Frequency	902.3MHz				
Frequency Range	1GHz~9.3G	Detector Function	PK/AV				
Horizontal							
NO.	Freq. [MHz]	Reading [dB μ V/m]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Detector
1	1804.60	49.16	5.46	54.62	74.00	19.38	PK
2	1804.60	44.84	5.46	50.30	54.00	3.70	AV
3	2706.90	35.63	9.93	45.56	54.00	8.44	PK
4	2706.90	43.11	9.93	53.04	74.00	20.96	AV
Vertical							
NO.	Freq. [MHz]	Reading [dB μ V/m]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Detector
1	1804.60	47.26	5.46	52.72	74.00	21.28	AV
2	1804.60	42.13	5.46	47.59	54.00	6.41	PK
3	2706.90	43.07	9.93	53.00	74.00	21.00	AV
4	2706.90	35.39	9.93	45.32	54.00	8.68	PK

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.

2. Level (dB μ V/m) = Reading (dB μ V/m) + Factor (dB).

3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

4. Margin(dB) = Limit[dB μ V/m] - Level [dB μ V/m]

Channel	CH 63	Frequency	914.9MHz				
Frequency Range	1GHz~9.3G	Detector Function	PK/AV				
Horizontal							
NO.	Freq. [MHz]	Reading [dB μ V/m]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Detector
1	1829.80	47.91	5.74	53.65	74.00	19.85	PK
2	1829.80	44.10	5.74	49.84	54.00	3.66	AV
3	2744.70	34.80	10.93	45.73	54.00	7.77	AV
4	2744.70	42.14	10.93	53.07	74.00	19.76	PK
Vertical							
NO.	Freq. [MHz]	Reading [dB μ V/m]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Detector
1	1829.80	43.32	5.74	49.06	54.00	4.44	AV
2	1829.80	47.34	5.74	53.08	74.00	20.42	PK
3	2744.70	42.14	10.93	53.07	74.00	19.93	AV
4	2744.70	34.60	10.93	45.53	54.00	7.47	PK

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.
2. Level (dB μ V/m) = Reading (dB μ V/m) + Factor (dB).
3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
4. Margin(dB) = Limit[dB μ V/m] - Level [dB μ V/m]

Channel	CH 127	Frequency	927.8MHz				
Frequency Range	1GHz~9.3G	Detector Function	PK/AV				
Horizontal							
NO.	Freq. [MHz]	Reading [dB μ V/m]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Detector
1	1855.60	42.25	6.02	48.27	54.00	4.23	AV
2	1855.60	47.48	6.03	53.51	74.00	19.49	PK
3	2783.40	45.19	10.20	55.39	74.00	19.61	PK
4	2783.40	36.32	10.20	46.52	54.00	7.98	AV
Vertical							
NO.	Freq. [MHz]	Reading [dB μ V/m]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Detector
1	1855.60	45.09	6.02	51.11	74.00	21.39	PK
2	1855.60	39.82	6.02	45.84	54.00	6.16	AV
3	2783.40	42.62	10.20	52.82	74.00	21.18	PK
4	2783.40	34.84	10.20	45.04	54.00	8.96	AV

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.
2. Level (dB μ V/m) = Reading (dB μ V/m) + Factor (dB).
3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
4. Margin(dB) = Limit[dB μ V/m] - Level [dB μ V/m]

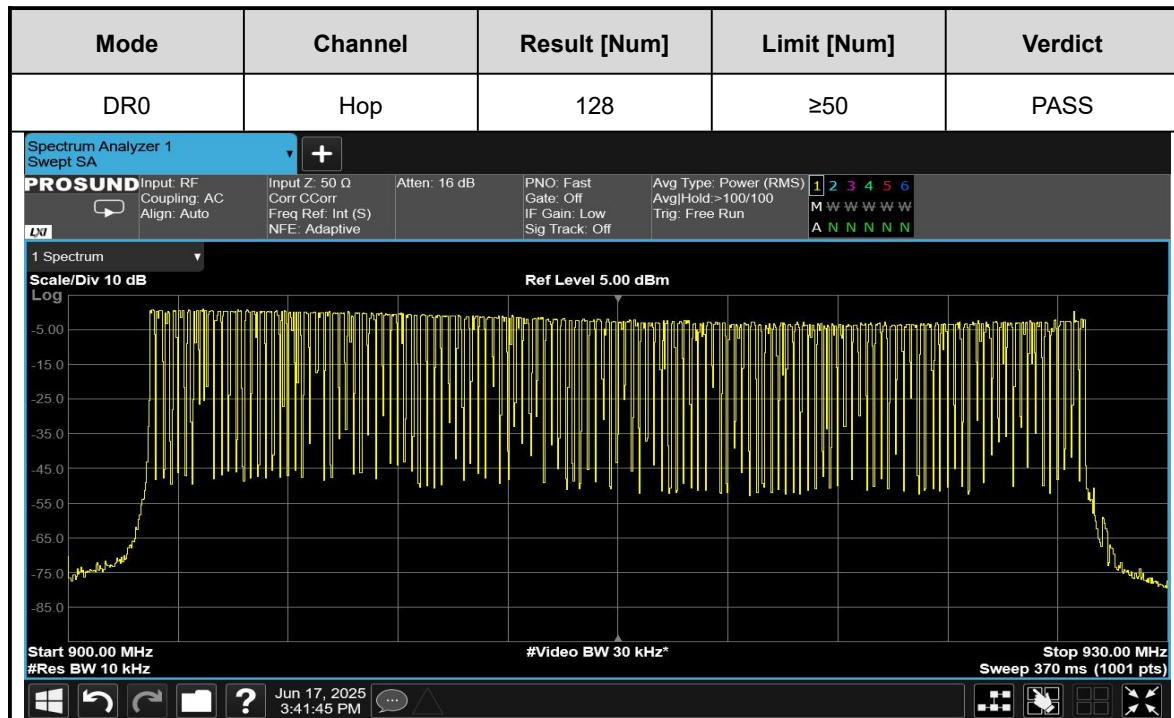
3.2 NUMBER OF HOPPING FREQUENCY USED

3.2.1 Limits

At least 50 channels frequencies and should be equally spaced.

3.2.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.


3.2.3 Test setup

3.2.4 Test result

There are 64 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

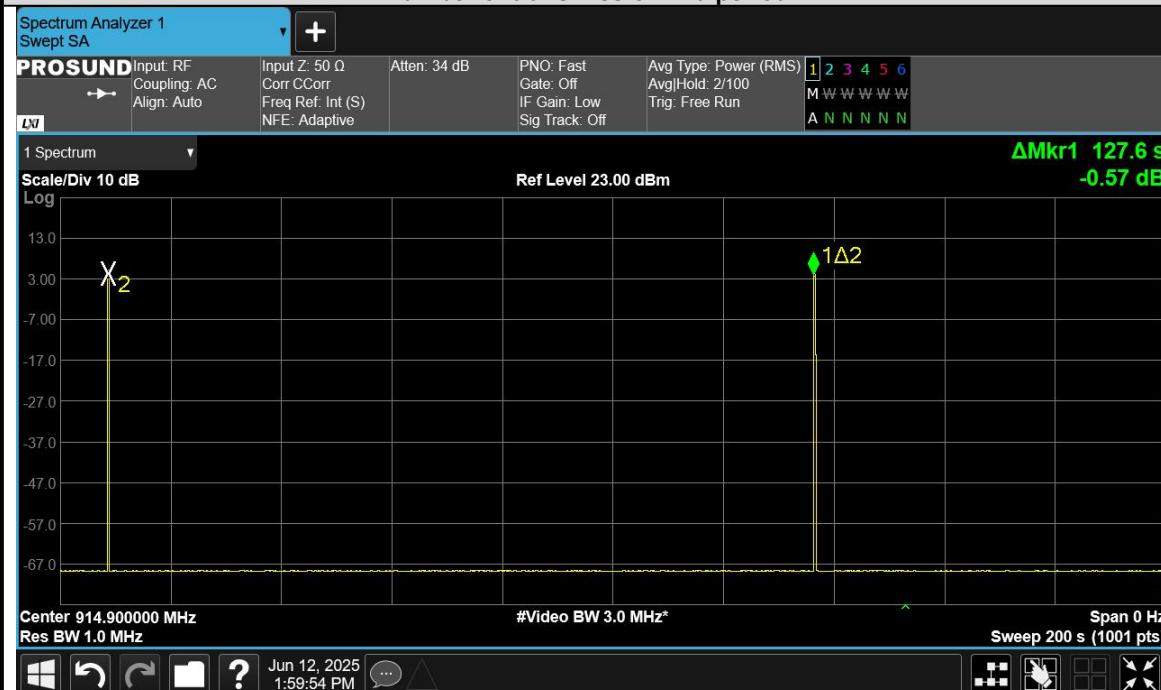
3.3 DWELL TIME ON EACH CHANNEL

3.3.1 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency to be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.


3.3.3 Test setup

3.3.4 Test result

Mode	Number of Hopping Channel	Number of transmission in a period(channel number*0.4 sec)	Length of transmission time (sec)	Result (sec)	Limit (sec)	Verdict
DR0	128	127.6	0.328	0.328	≤0.4	PASS

Number of transmission in a period

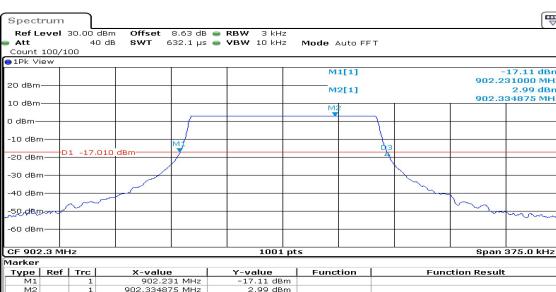
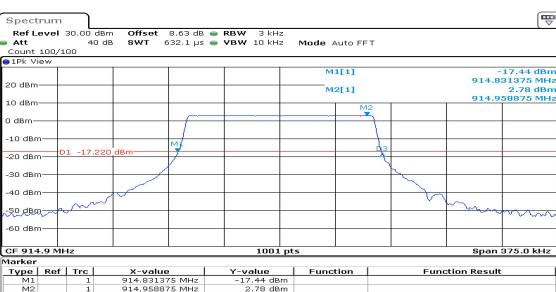
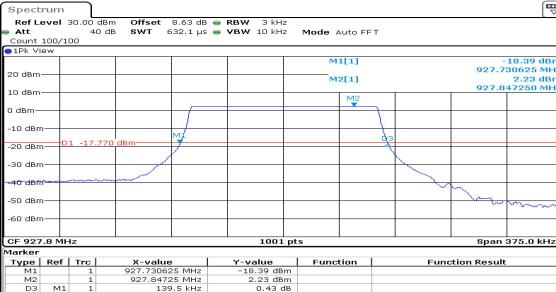
Length of transmission time

3.4 20dB EMISSION BANDWIDTH

3.4.1 Limits

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

3.4.2 Measurement procedure




- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

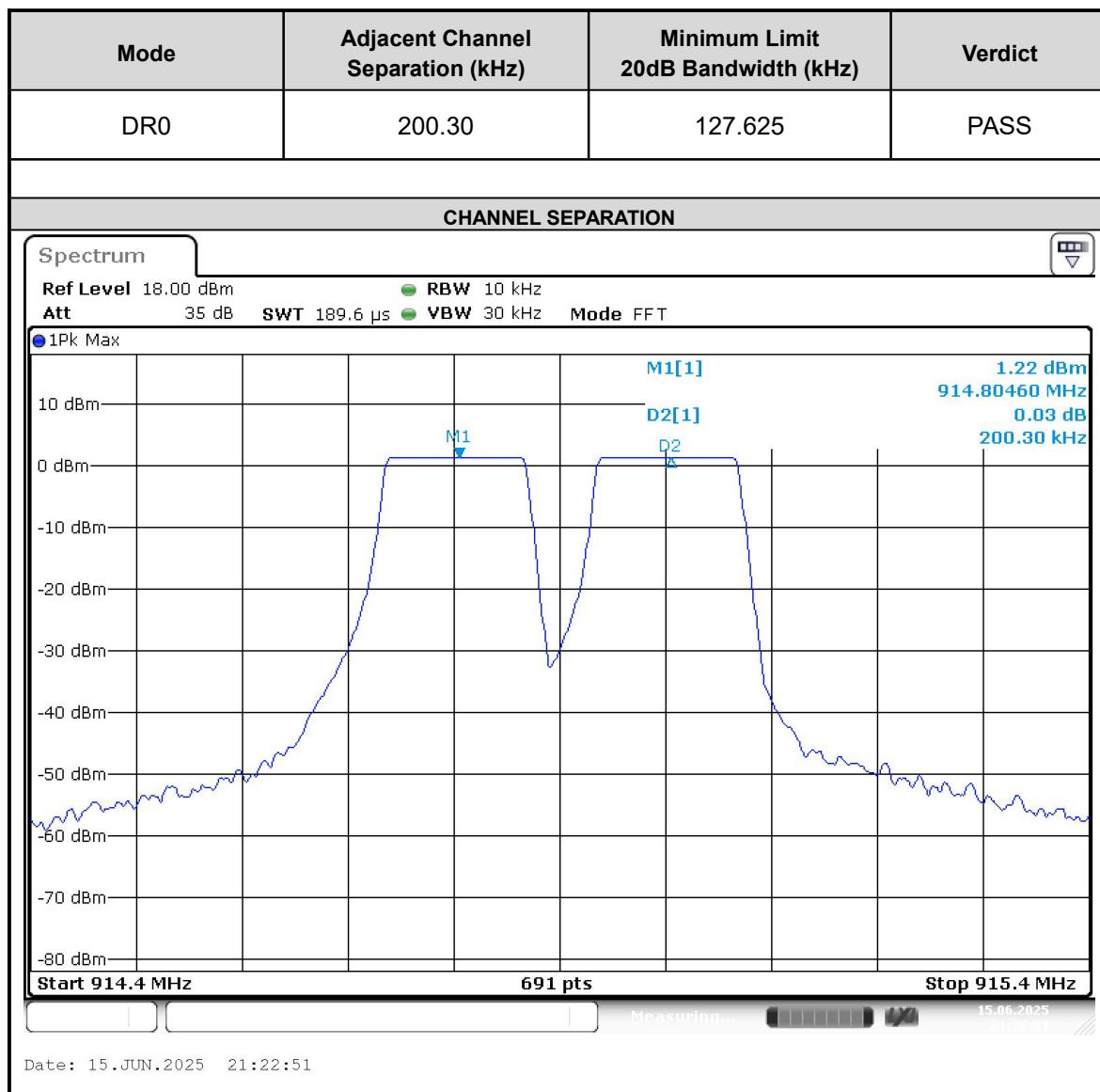
3.4.3 Test setup

3.4.4 Test result

Mode	Channel	Channel Frequency (MHz)	20dB Emission Bandwidth(kHz)	Limit (kHz)																												
DH0	0	902.3	139.125	≤250																												
	63	914.9	127.625	≤250																												
	127	927.8	139.500	≤250																												
CH0																																
<table border="1"><caption>Marker Data for CH0</caption><thead><tr><th>Type</th><th>Ref</th><th>Trc</th><th>X-value</th><th>Y-value</th><th>Function</th><th>Function Result</th></tr></thead><tbody><tr><td>M1</td><td></td><td>1</td><td>902.291 MHz</td><td>-17.11 dBm</td><td></td><td></td></tr><tr><td>M2</td><td></td><td>1</td><td>902.334875 MHz</td><td>2.99 dBm</td><td></td><td></td></tr><tr><td>D3</td><td>M1</td><td>1</td><td>139.125 kHz</td><td>0.09 dB</td><td></td><td></td></tr></tbody></table>					Type	Ref	Trc	X-value	Y-value	Function	Function Result	M1		1	902.291 MHz	-17.11 dBm			M2		1	902.334875 MHz	2.99 dBm			D3	M1	1	139.125 kHz	0.09 dB		
Type	Ref	Trc	X-value	Y-value	Function	Function Result																										
M1		1	902.291 MHz	-17.11 dBm																												
M2		1	902.334875 MHz	2.99 dBm																												
D3	M1	1	139.125 kHz	0.09 dB																												
Date: 28-JUN-2024 15:40:12																																
CH63																																
<table border="1"><caption>Marker Data for CH63</caption><thead><tr><th>Type</th><th>Ref</th><th>Trc</th><th>X-value</th><th>Y-value</th><th>Function</th><th>Function Result</th></tr></thead><tbody><tr><td>M1</td><td></td><td>1</td><td>914.831375 MHz</td><td>-17.44 dBm</td><td></td><td></td></tr><tr><td>M2</td><td></td><td>1</td><td>914.950875 MHz</td><td>2.78 dBm</td><td></td><td></td></tr><tr><td>D3</td><td>M1</td><td>1</td><td>137.625 kHz</td><td>-0.61 dB</td><td></td><td></td></tr></tbody></table>					Type	Ref	Trc	X-value	Y-value	Function	Function Result	M1		1	914.831375 MHz	-17.44 dBm			M2		1	914.950875 MHz	2.78 dBm			D3	M1	1	137.625 kHz	-0.61 dB		
Type	Ref	Trc	X-value	Y-value	Function	Function Result																										
M1		1	914.831375 MHz	-17.44 dBm																												
M2		1	914.950875 MHz	2.78 dBm																												
D3	M1	1	137.625 kHz	-0.61 dB																												
Date: 28-JUN-2024 15:42:40																																
CH127																																
<table border="1"><caption>Marker Data for CH127</caption><thead><tr><th>Type</th><th>Ref</th><th>Trc</th><th>X-value</th><th>Y-value</th><th>Function</th><th>Function Result</th></tr></thead><tbody><tr><td>M1</td><td></td><td>1</td><td>927.730625 MHz</td><td>-18.99 dBm</td><td></td><td></td></tr><tr><td>M2</td><td></td><td>1</td><td>927.84725 MHz</td><td>2.23 dBm</td><td></td><td></td></tr><tr><td>D3</td><td>M1</td><td>1</td><td>139.5 kHz</td><td>0.43 dB</td><td></td><td></td></tr></tbody></table>					Type	Ref	Trc	X-value	Y-value	Function	Function Result	M1		1	927.730625 MHz	-18.99 dBm			M2		1	927.84725 MHz	2.23 dBm			D3	M1	1	139.5 kHz	0.43 dB		
Type	Ref	Trc	X-value	Y-value	Function	Function Result																										
M1		1	927.730625 MHz	-18.99 dBm																												
M2		1	927.84725 MHz	2.23 dBm																												
D3	M1	1	139.5 kHz	0.43 dB																												
Date: 28-JUN-2024 15:44:50																																

3.5 HOPPING CHANNEL SEPARATION


3.5.1 Limits


At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.5.2 Measurement procedure

- a. Span: Wide enough to capture the peaks of two adjacent channels.
- b. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c. Video (or average) bandwidth (VBW) \geq RBW.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f. Trace: Max hold.
- g. Allow the trace to stabilize.

3.5.3 Test setup

3.5.4 Test result

3.6 CONDUCTED OUTPUT POWER

3.6.1 Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

3.6.2 Measurement procedure

- a. A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor and set the detector to PEAK. Record the power level.
- b. An average power sensor was used on the output port of the EUT. A power meter was used to read the response of the average power sensor and set the detector to AVERAGE. Record the power level.

3.6.3 Test setup

3.6.4 Test result

PEAK OUTPUT POWER

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)	Peak Power Limit (mW)	Verdict
0	902.3	12.61	18.24	1000	PASS
63	914.9	10.04	10.96	1000	PASS
127	927.8	10.84	12.13	1000	PASS

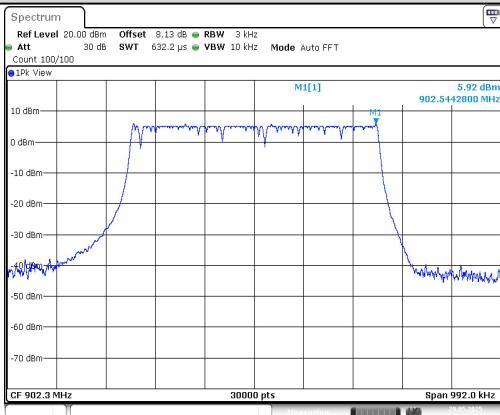
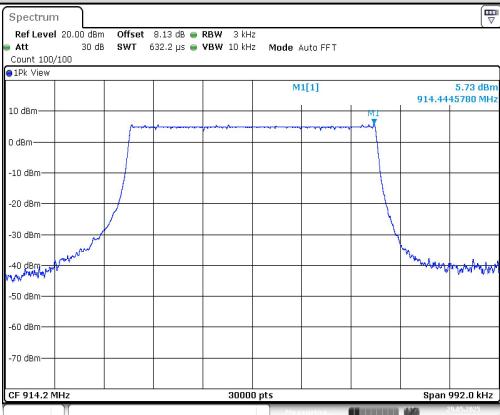
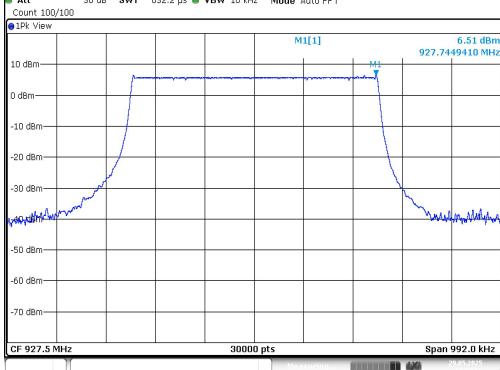
AVERAGE OUTPUT POWER

Mode	Channel Frequency (MHz)	Average Power (dBm)	Average Power (mW)	Average Power Limit (mW)	Verdict
0	902.3	3.44	2.20	1000	PASS
63	914.9	3.76	2.38	1000	PASS
127	927.8	3.30	2.14	1000	PASS

3.7 POWER SPECTRAL DENSITY MEASUREMENT


3.7.1 Limits

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.




3.7.2 Measurement procedure

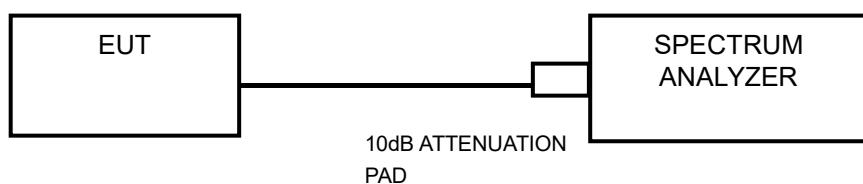
1. Set instrument center frequency to DTS channel center frequency.
2. Set the span to 1.5 times the DTS bandwidth.
3. Set RBW to: 3KHz
4. Set VBW $\geq 3 \times$ RBW.
5. Detector = peak
6. Ensure that the number of measurement points in the sweep $\geq 2 \times$ span/RBW.
7. Sweep time = auto couple.
8. Use the peak marker function to determine the maximum amplitude level.

3.7.3 Test setup

3.7.4 Test result

Channel	Channel Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
0	902.3	5.92	8	PASS
63	914.9	5.73	8	PASS
127	927.8	6.51	8	PASS
CH0			CH63	
 Ref Level: 20.00 dBm, Offset: 8.13 dB, RBW: 3 kHz, Att: 30 dB, SWT: 632.2 μs, VBW: 10 kHz, Mode: Auto FFT, Count: 100/100			 Ref Level: 20.00 dBm, Offset: 8.13 dB, RBW: 3 kHz, Att: 30 dB, SWT: 632.2 μs, VBW: 10 kHz, Mode: Auto FFT, Count: 100/100	
<small>Date: 29.MAY.2025 12:47:00</small>			<small>Date: 29.MAY.2025 14:49:31</small>	
CH127			--	
 Ref Level: 20.00 dBm, Offset: 8.13 dB, RBW: 3 kHz, Att: 30 dB, SWT: 632.2 μs, VBW: 10 kHz, Mode: Auto FFT, Count: 100/100			--	
<small>Date: 29.MAY.2025 14:52:53</small>				

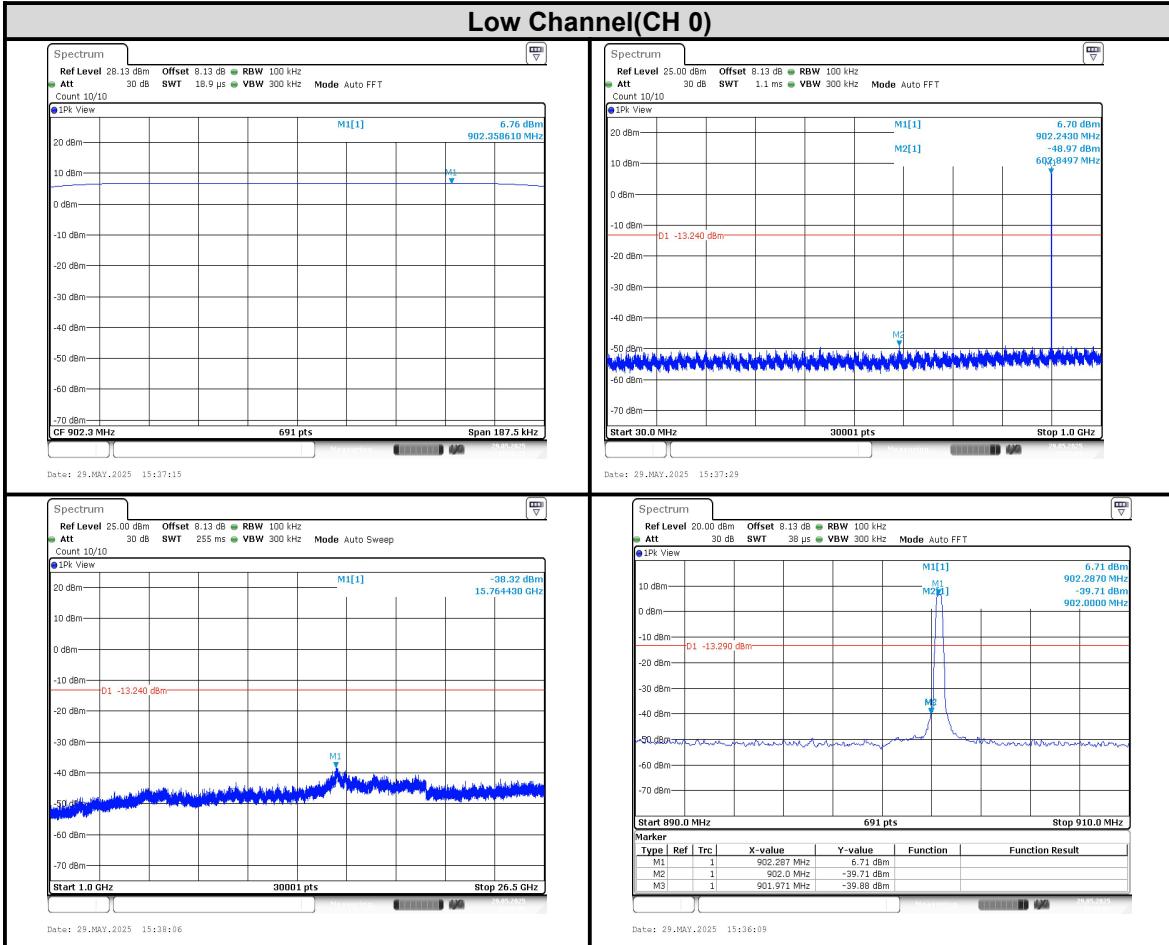
3.8 OUT OF BAND EMISSION MEASUREMENT


3.8.1 Limits

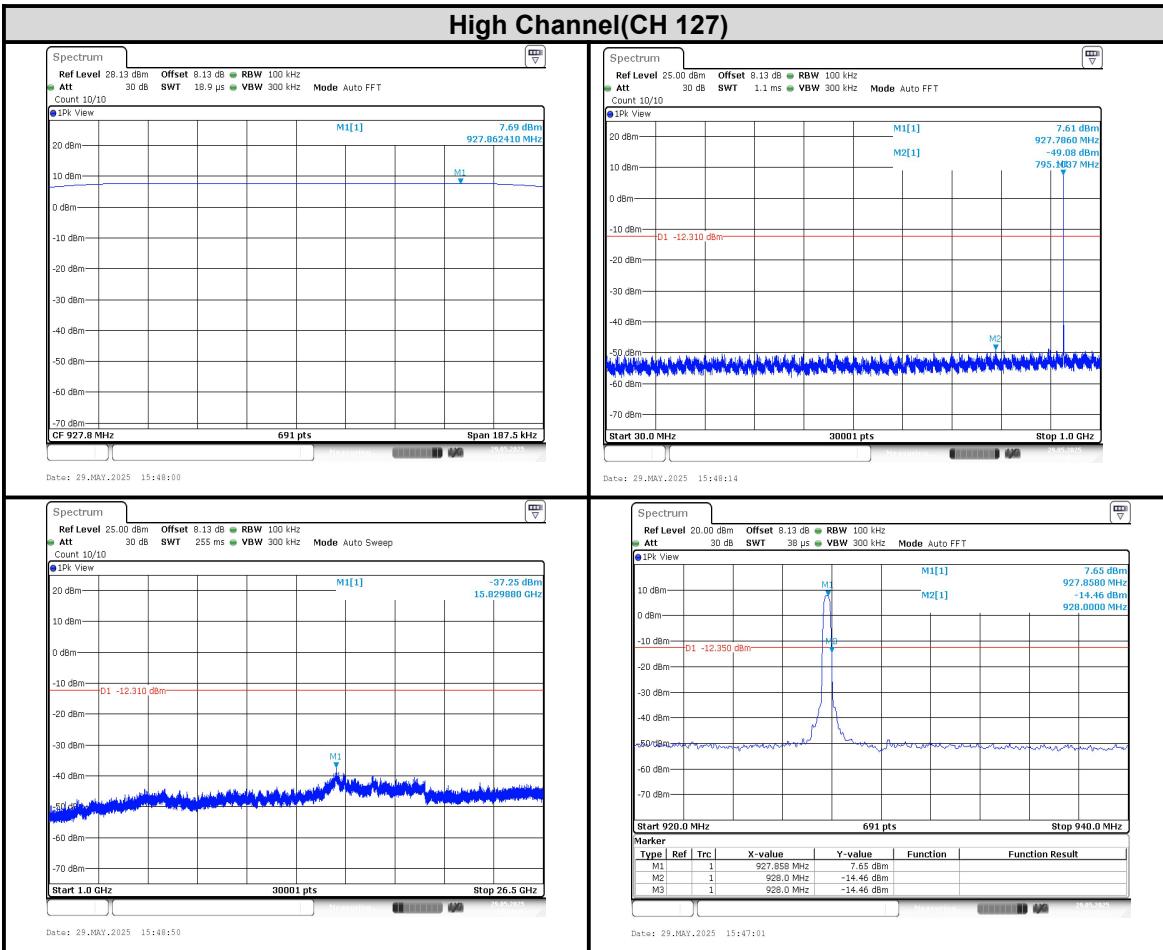
Below –20dB of the highest emission level of operating band (in 100KHz RBW).

3.8.2 Measurement procedure

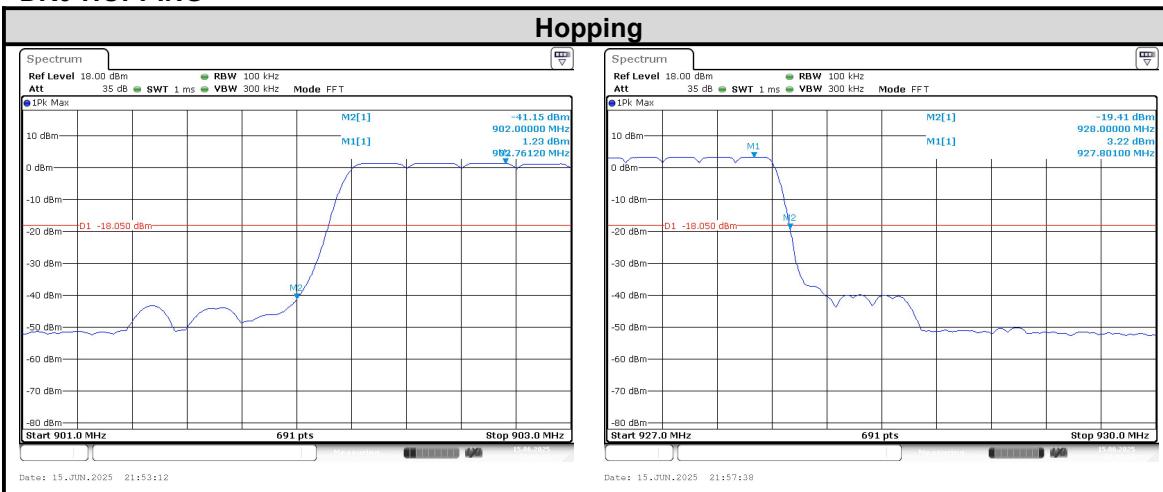
The transmitter output was connected to the spectrum analyzer via a low loss cable. of Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.


3.8.3 Test setup

3.8.4 Test result


The spectrum plots are attached on the following images.

DR0



DR0

DR0-HOPPING

3.9 ANTENNA REQUIREMENT

3.9.1 Limits Of Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b) , if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.9.2 Antenna Anti-Replacement Construction

The antenna used for this product is PCB antenna and that no antenna other than that furnished by the responsible party shall be used with the device

3.9.3 Antenna Gain

The maximum peak gain of the transmit antenna is -3.45 dBi.

4 PHOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Photos).

5 PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos and Internal Photos report).

----- End of the Report -----

Important

- (1) The test report is invalid without the official stamp of CVC;
- (2) Any part photocopies of the test report are forbidden without the written permission from CVC;
- (3) The test report is invalid without the signatures of Approval and Reviewer;
- (4) The test report is invalid if altered;
- (5) Objections to the test report must be submitted to CVC within 15 days.
- (6) Generally, commission test is responsible for the tested samples only.
- (7) As for the test result “-” or “N” means “not applicable”, “/” means “not test”, “P” means “pass” and “F” means “fail”

Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong, China

Post Code: 518110 Tel: 0755-23763060-8805

Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn

<http://www.cvc.org.cn>