

FCC Radio Test Report

FCC ID: 2AYGCVNE-N41

This report concerns: Original Grant

Project No. : 2204C233
Equipment : Smart Phone
Brand Name : HONOR
Test Model : VNE-N41
Series Model : N/A
Applicant : Honor Device Co., Ltd.
Address : Shum Yip Sky Park, No. 8089, Hongli West Road, Shenzhen, China
Manufacturer : Honor Device Co., Ltd.
Address : Shum Yip Sky Park, No. 8089, Hongli West Road, Shenzhen, China
Date of Receipt : Apr. 22, 2022
Date of Test : Apr. 25, 2022 ~ May 08, 2022
Issued Date : Jun. 15, 2022
Report Version : R01
Standard(s) : 47 CFR FCC Part 24 Subpart E
47 CFR FCC Part 2
ANSI/TIA/EIA-603-E-2016
FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Edward Li

Prepared by : Edward Li

Steven Lu

Approved by : Steven Lu

TESTING CERT #5123.02

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792
People's Republic of China.

Tel: +86-769-8318-3000

Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and is not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
1.3 TEST ENVIRONMENT CONDITIONS	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
3 . TEST RESULT	11
3.1 OUTPUT POWER MEASUREMENT	11
3.1.1 LIMIT	11
3.1.2 TEST PROCEDURE	11
3.1.3 TEST SETUP LAYOUT	11
3.1.4 TEST DEVIATION	11
3.1.5 TEST RESULTS	11
3.2 OCCUPIED BANDWIDTH MEASUREMENT	12
3.2.1 TEST PROCEDURE	12
3.2.2 TEST SETUP LAYOUT	12
3.2.3 TEST DEVIATION	12
3.2.4 TEST RESULTS	12
3.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	13
3.3.1 LIMIT	13
3.3.2 TEST PROCEDURES	13
3.3.3 TEST SETUP LAYOUT	13
3.3.4 TEST DEVIATION	13
3.3.5 TEST RESULTS	13
3.4 BAND EDGE MEASUREMENT	14
3.4.1 LIMIT	14
3.4.2 TEST PROCEDURES	14
3.4.3 TEST SETUP LAYOUT	14
3.4.4 TEST DEVIATION	14
3.4.5 TEST RESULTS	14
3.5 PEAK TO AVERAGE RATIO MEASUREMENT	15
3.5.1 LIMIT	15
3.5.2 TEST PROCEDURES	15
3.5.3 TEST SETUP LAYOUT	15
3.5.4 TEST DEVIATION	15
3.5.5 TEST RESULTS	15
3.6 FREQUENCY STABILITY MEASUREMENT	16

Table of Contents	Page
3.6.1 LIMIT	16
3.6.2 TEST PROCEDURES	16
3.6.3 TEST SETUP LAYOUT	16
3.6.4 TEST DEVIATION	16
3.6.5 TEST RESULTS	16
4. LIST OF MEASUREMENT EQUIPMENTS	17

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-7-2204C233	R00	Original Report.	May 27, 2022	Invalid
BTL-FCCP-7-2204C233	R01	Updated the factory of adapter.	Jun. 15, 2022	Valid

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 24 Subpart E & Part 2			
Standard(s) Section	Test Item	Judgment	Remark
2.1046 24.232(c)	Output Power & Equivalent Isotropic Radiated Power	PASS	-----
2.1049	Occupied Bandwidth	PASS	-----
2.1051 24.238(a)	Conducted Spurious Emissions	PASS	-----
2.1047	Modulation Characteristics	PASS	-----
24.238(a)	Band Edge Measurements	PASS	-----
24.232(d)	Peak To Average Ratio	PASS	-----
2.1055 24.235	Frequency Stability	PASS	-----

Note:

(1) "N/A" denotes test is not applicable in this test report.

1.1 TEST FACILITY

The test facilities used to collect the test data of conducted in this report is at the location of Room 108, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China.

BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

Parameter	Uncertainty
Transmit Output Power Output Data	U = 0.40 dB
RF Power Density, Conducted	U = 0.66 dB
Bandwidth	200kHz: U=9.06kHz 1.4MHz: U=9.48kHz 3MHz: U=10.86kHz 5MHz: U=13.84kHz 10MHz: U=22.32kHz 15MHz: U=31.9kHz 20MHz: U=41.78kHz
Band Edge Compliance	U = 0.9 dB
Spurious Emissions, Conducted	20MHz~3.6GHz: U=0.88dB 3.6GHz~8.4GHz: U=1.08dB 8.4GHz~13.6GHz: U=1.24dB 13.6GHz~22GHz: U=1.34dB 22GHz~26.5GHz: U=1.36dB
Frequency Stability	800MHz: U=24.08Hz 900MHz: U=24.54Hz 1900MHz: U=34.7Hz 2100MHz: U=36.96Hz 2300MHz: U=39.24Hz 2500MHz: U=41.58Hz 2600MHz: U=42.74Hz

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Output Power & EIRP	15 ~ 35°C	25 ~ 75%	DC 3.87V	Rick Liao
Occupied Bandwidth	15 ~ 35°C	25 ~ 75%	DC 3.87V	Rick Liao
Conducted Spurious Emissions	15 ~ 35°C	25 ~ 75%	DC 3.87V	Rick Liao
Band Edge	15 ~ 35°C	25 ~ 75%	DC 3.87V	Rick Liao
Peak to Average Ratio	15 ~ 35°C	25 ~ 75%	DC 3.87V	Rick Liao
Frequency Stability	Normal & Extreme	25 ~ 75%	Normal & Extreme	Rick Liao

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Phone		
Brand Name	HONOR		
Test Model	VNE-N41		
Series Model	N/A		
Model Difference(s)	N/A		
Hardware Version	HN2VNEM		
Software Version	4.2.0.55(C900E55R1P1)		
Power Source	1# DC voltage supplied from AC adapter. 2# Supplied from battery.		
Power Rating	1# I/P: 100-240V~ 50/60Hz 0.75A O/P: 5V ==== 2A or 9V ==== 2A or 10V ==== 2.25A 2# DC 3.87V, Rated Capacity: 4900mAh		
IMEI No.	864258060052858, 864258060052197, 864258060053328		
Modulation Type	GSM 1900/GPRS 1900/ EDGE 1900		GMSK, 8PSK
	WCDMA/HSDPA/HSUPA		UL: QPSK
Max. EIRP	GSM 1900	30.74	dBm
	WCDMA Band II	23.70	dBm

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

PCS 1900				
Test Frequency ID	UARFCN	Frequency of Uplink (MHz)	UARFCN	Frequency of Downlink (MHz)
Low Range	512	1850.2	528	1930.2
Mid Range	661	1880	677	1960
High Range	810	1909.8	826	1989.8

WCDMA Band II				
Test Frequency ID	UARFCN	Frequency of Uplink (MHz)	UARFCN	Frequency of Downlink (MHz)
Low Range	9262	1852.4	9662	1932.4
Mid Range	9400	1880.0	9800	1960.0
High Range	9538	1907.6	9938	1987.6

3. Table for Filed Antenna:

Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
N/A	N/A	Integral	N/A	0.1	PCS 1900
				0.1	WCDMA Band II

Note: The antenna gain is provided by the manufacturer.

4. The EUT contains following accessory devices:

Object / Part No.	Manufacturer / Trademark	Type / Model Name	Technical Data
Adapter	Honor Device Co., Ltd. (Factory: Salcomp)	HN-100225E00	I/P: 100-240V ~50/60Hz, 0.75A O/P: 5V --- 2A or 9V --- 2A or 10V --- 2.25A
		HN-100225U00	
	Honor Device Co., Ltd. (Factory: Huntkey)	HW-100225E00	
		HW-100225U00	
		HW-100225B00	
Battery	Honor Device Co., Ltd. (Manufacturer: SCUD)	HB496590EFW	Rated capacity: 4900 mAh Nominal Voltage: +3.87V Charging Voltage: +4.45V
		HB496590EFW-F	
	Honor Device Co., Ltd. (Manufacturer: SCUD)	HB496590EFW	
		HB496590EFW-F	

2.2 DESCRIPTION OF TEST MODES

Test Modes in the report are described below:

Test Mode	Test Modes Description
GSM/TM1	GSM system, GSM, GMSK modulation
GSM/TM2	GSM system, GPRS, GMSK modulation
GSM/TM3	GSM system, EDGE, 8PSK modulation
WCDMA/TM1	WCDMA system, QPSK modulation

Note: The test mode(s) are selected according to relevant radio technology specifications.

Following mode(s) is (were) found to be the worst case(s) and selected for the final test.

PCS 1900 MODE

Test Item	Available Channel	Tested Channel	Mode
Output Power & EIRP	512 to 810	512, 661, 810	GSM, GPRS, EDGE
Peak to Average Ratio	512 to 810	512, 661, 810	GSM, GPRS, EDGE
Modulation Characteristics	512 to 810	661	GSM, GPRS, EDGE
Occupied Bandwidth	512 to 810	512, 661, 810	GSM, GPRS, EDGE
Band Edge	512 to 810	512, 810	GSM, GPRS, EDGE
Conducted Spurious Emissions	512 to 810	512, 661, 810	GSM, GPRS, EDGE
Frequency Stability	512 to 810	512, 661, 810	GSM, GPRS, EDGE

WCDMA BAND II MODE

Test Item	Available Channel	Tested Channel	Mode
Output Power & EIRP	9262 to 9538	9262, 9400, 9538	WCDMA
Peak to Average Ratio	9262 to 9538	9262, 9400, 9538	WCDMA
Modulation Characteristics	9262 to 9538	9400	WCDMA
Occupied Bandwidth	9262 to 9538	9262, 9400, 9538	WCDMA
Band Edge	9262 to 9538	9262, 9538	WCDMA
Conducted Spurious Emissions	9262 to 9538	9262, 9400, 9538	WCDMA
Frequency Stability	9262 to 9538	9262, 9400, 9538	WCDMA

3. TEST RESULT

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMIT

Mobile / Portable station are limited to 2 watts e.i.r.p.

3.1.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.

EIRP:

EIRP = Output Power + Antenan gain

Output Power:

The EUT was set up for the maximum power with GSM, GPRS, EDGE, WCDMA and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP LAYOUT

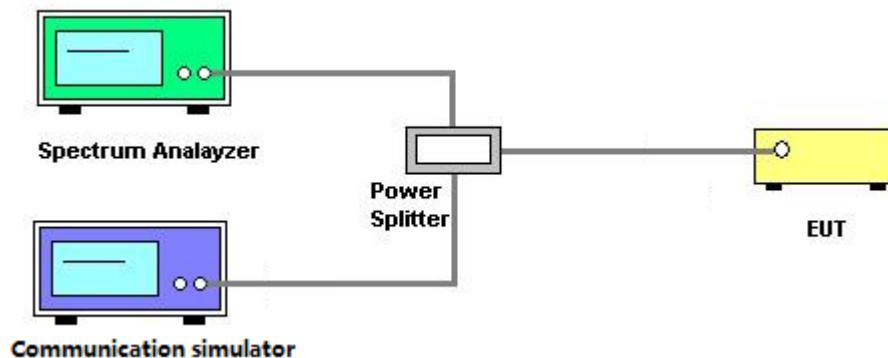
Output Power Measurement

3.1.4 TEST DEVIATION

No deviation.

3.1.5 TEST RESULTS

Please refer to the APPENDIX.


3.2 OCCUPIED BANDWIDTH MEASUREMENT

3.2.1 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 4.

1. The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth and 26dB bandwidth.
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. $RBW=(1\% \sim 5\%)*EBW$
 $VBW \geq 3 * RBW$
4. Set spectrum analyzer with Peak detector.

3.2.2 TEST SETUP LAYOUT

3.2.3 TEST DEVIATION

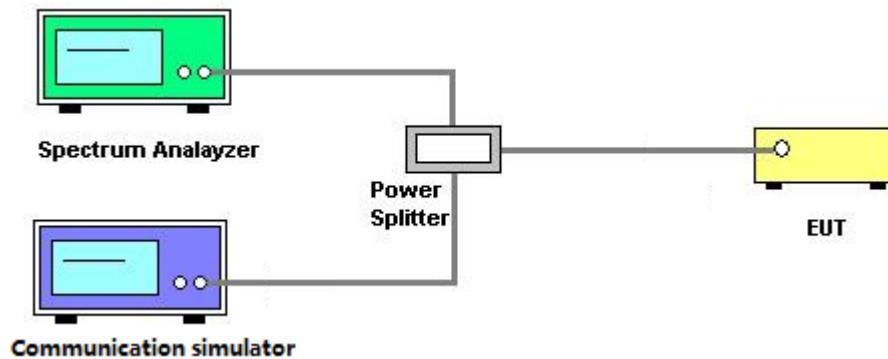
No deviation.

3.2.4 TEST RESULTS

Please refer to the APPENDIX.

3.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

3.3.1 LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

3.3.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.

1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
2. The band edges of low and high channels for the highest RF powers were measured. Set $RBW \geq 1\%$ EBW in the 1MHz band immediately outside and adjacent to the band edge.
3. Set spectrum analyzer with Peak detector.
4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.3.3 TEST SETUP LAYOUT

3.3.4 TEST DEVIATION

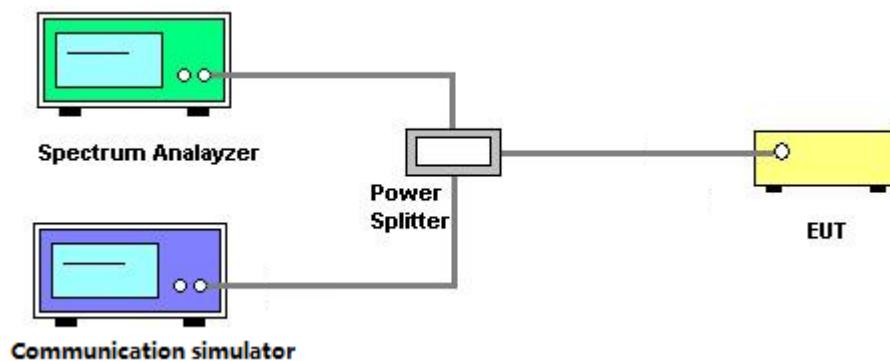
No deviation.

3.3.5 TEST RESULTS

Please refer to the APPENDIX.

3.4 BAND EDGE MEASUREMENT

3.4.1 LIMIT


A Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.4.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.

1. All measurements were done at low and high operational frequency range.
2. Record the max trace plot into the test report.

3.4.3 TEST SETUP LAYOUT

3.4.4 TEST DEVIATION

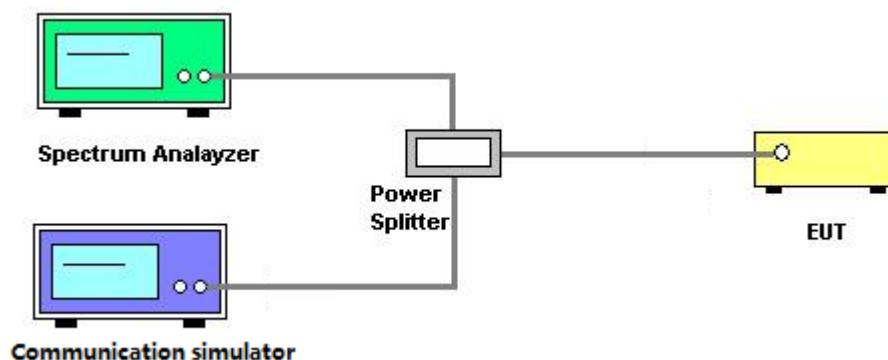
No deviation.

3.4.5 TEST RESULTS

Please refer to the APPENDIX.

3.5 PEAK TO AVERAGE RATIO MEASUREMENT

3.5.1 LIMIT


In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 5.7.

1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
2. Set the number of counts to a value that stabilizes the measured CCDF curve;
3. Record the maximum PAPR level associated with a probability of 0.1%.

3.5.3 TEST SETUP LAYOUT

3.5.4 TEST DEVIATION

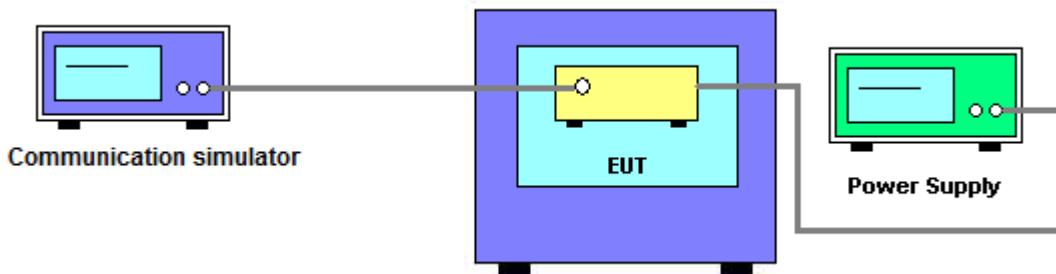
No deviation.

3.5.5 TEST RESULTS

Please refer to the APPENDIX.

3.6 FREQUENCY STABILITY MEASUREMENT

3.6.1 LIMIT


± 1.5 ppm is for base and fixed station. ± 2.5 ppm is for mobile station.

3.6.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 9.

1. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
2. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
3. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}\text{C}$ during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
4. The frequency error was recorded frequency error from the communication simulator.

3.6.3 TEST SETUP LAYOUT

3.6.4 TEST DEVIATION

No deviation.

3.6.5 TEST RESULTS

Please refer to the APPENDIX.

4. LIST OF MEASUREMENT EQUIPMENTS

Conducted Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Temperature Chamber	WEISS	WKL64/40	56246014990010	May 24, 2022
2	High Speed Power Supply	KEITHLEY	2303	000500E	Dec. 20, 2022
3	Universal Radio Communication Tester	R&S	CMW500	167224	Sep. 27, 2022
4	Universal Radio Communication Tester	R&S	CMW500	169872	Sep. 27, 2022
5	Universal Radio Communication Tester	R&S	CMW500	169873	May 13, 2022
6	Signal Analyzer	R&S	FSW26	102253	May 13, 2022
7	Signal Analyzer	R&S	FSW43	101998	Sep. 26, 2022
8	Vector Signal Generator	R&S	SMW200A	109896	Sep. 27, 2022
9	Vector Signal Generator	R&S	SMW200A	109897	Sep. 27, 2022

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.