

TEST REPORT

No. I22Z60667-EMC09

for

Honor Device Co., Ltd.

Smart Phone

Model Name: VNE-N41

With

FCC ID: 2AYGCVNE-N41

Hardware Version: HN2VNEM

Software Version: 4.2.0.55(C900E55R1P1)

Issued Date: 2022-06-15

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: ctl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I22Z60667-EMC09	Rev.0	1 st edition	2022-06-15

Note: the latest revision of the test report supersedes all previous versions.

CONTENTS

1. TEST LABORATORY	4
1.1. INTRODUCTION & ACCREDITATION	4
1.2. TESTING LOCATION	4
1.3. TESTING ENVIRONMENT	4
1.4. PROJECT DATA	4
1.5. SIGNATURE	4
2. CLIENT INFORMATION	5
2.1. APPLICANT INFORMATION	5
2.2. MANUFACTURER INFORMATION	5
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1. ABOUT EUT	6
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4. GENERAL DESCRIPTION	6
4. REFERENCE DOCUMENTS	7
5. LABORATORY ENVIRONMENT	8
6. SUMMARY OF TEST RESULT	9
7. TEST EQUIPMENTS UTILIZED	10
ANNEX A: MEASUREMENT RESULTS-EMISSION LIMIT	11
A.1 MEASUREMENT METHOD	11
A.2 MEASUREMENT LIMIT	12
A.3 SWEEP TABLE	13
A.4 MEASUREMENT RESULTS TABLE	15
ANNEX B: ACCREDITATION CERTIFICATE	19

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (ISED#: 24849). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

CTTL(BDA)

Address: No.18A, Kangding Street, Beijing Economic-Technology Development Area, Beijing, P. R. China 100176

1.3. Testing Environment

Normal Temperature: 15-35°C

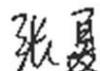
Relative Humidity: 20-75%

1.4. Project Data

Testing Start Date: 2022-04-27

Testing End Date: 2022-05-24

1.5. Signature


An Hui

(Prepared this test report)

Zhang Ying

(Reviewed this test report)

Zhang Xia

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Honor Device Co., Ltd.
Suite 3401,Unit A,Building 6,Shum Yip Sky Park,No.8089,Hongli
Address /Post: West Road,Xiangmihu Street,Futian District,Shenzhen,Guangdong
518040,People's Republic of China
Contact /
Email: /
Telephone: /

2.2. Manufacturer Information

Company Name: Honor Device Co., Ltd.
Suite 3401,Unit A,Building 6,Shum Yip Sky Park,No.8089,Hongli
Address /Post: West Road,Xiangmihu Street,Futian District,Shenzhen,Guangdong
518040,People's Republic of China
Contact /
Email: /
Telephone: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Smart Phone
 Model Name VNE-N41
 FCC ID 2AYGCVNE-N41

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	864258060052015/864258060066486	HN2VNEM	4.2.0.55(C900E55R1P1)
EUT2	864258060053864/864258060068334	HN2VNEM	4.2.0.55(C900E55R1P1)
EUT3	864258060054466/864258060068938	HN2VNEM	4.2.0.55(C900E55R1P1)
EUT4	864258060054391/864258060068862	HN2VNEM	4.2.0.55(C900E55R1P1)

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Note
AE1-1	Adapter	HN-100225U00 (Salcomp)
AE1-2	Adapter	HN-100225E00 (Salcomp)
AE1-3	Adapter	HW-100225U00 (Huntkey)
AE1-4	Adapter	HW-100225E00 (Huntkey)
AE1-5	Adapter	HW-100225B00 (Huntkey)
AE2-1	USB Cable	CUDU01B-HC451 -EH (FF)
AE2-2	USB Cable	AU2-CRO013 HF (LJ)
AE2-3	USB Cable	L125UC007-CS-H (LX)
AE2-4	USB Cable	2120-00001-0 (MG)
AE2-5	USB Cable	RY0002 (NB)
AE3-1	Headset	1293-3283-3.5mm-339
AE3-2	Headset	EPAB542-2WH05-DH
AE3-3	Headset	MEND1532B528A11
AE4-1	Battery	HB496590EFW (SCUD)
AE4-2	Battery	HB496590EFW-F (SCUD)
AE4-3	Battery	HB496590EFW (NVT)
AE4-4	Battery	HB496590EFW-F (NVT)

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

Test combination

EUT set-up No.	Combination of EUT and AE	Remarks
Set.1-1	EUT1 + AE1-2 + AE2-1+AE3-1	EUT1+CHANGING+Heaset1

4. Reference Documents

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-20 Edition
FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	10-1-20 Edition
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	2016
ANSI C63.26	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services	2015
KDB 971168 D01	MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS	v03r01

5. Laboratory Environment

Semi-anechoic chamber (22.6 meters X 13.6 meters X 11.0 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB; 1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 M
Ground system resistance	< 4 Ω
Site voltage standing-wave ratio (<i>S</i> _{SWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

6. Summary Of Test Result

LTE Band 5

Items	Test Name	Clause in FCC rules	Verdict
1	Emission Limit	2.1051/22.917	P

LTE Band 7

Items	Test Name	Clause in FCC rules	Verdict
1	Emission Limit	2.1051/27.53	P

LTE Band 38

Items	Test Name	Clause in FCC rules	Verdict
1	Emission Limit	2.1051/27.53	P

LTE Band 41

Items	Test Name	Clause in FCC rules	Verdict
1	Emission Limit	2.1051/27.53	P

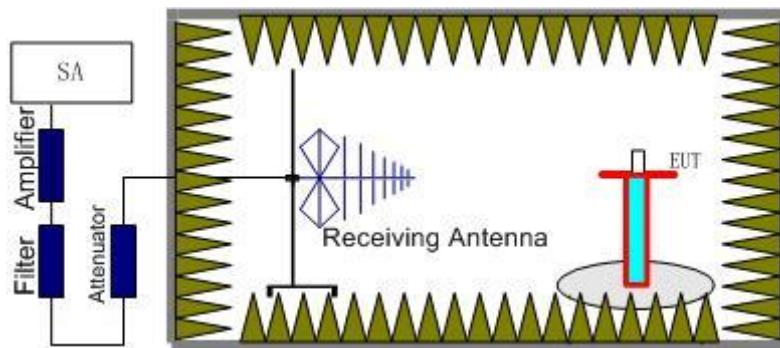
Terms used in Verdict column

P	Pass. The EUT complies with the essential requirements in the standard.
NP	Not Performed. The test was not performed by CTTL.
NA	Not Applicable. The test was not applicable.
BR	Re-use test data from basic model report.
F	Fail. The EUT does not comply with the essential requirements in the standard.

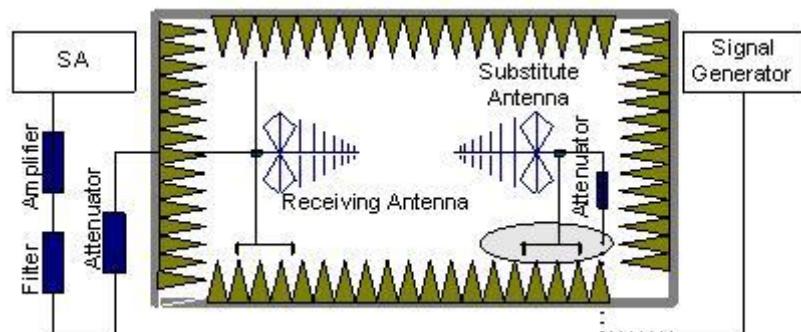
7. Test Equipments Utilized

Description	Type	Series Number	Manufacture	Cal Due Date	Calibration Interval
Universal Radio Communication Tester	CMW500	143008	R&S	2022-12-01	1 year
Spectrum Analyzer	E4440A	MY48250642	Agilent	2023-03-10	1 year
EMI Antenna	LB7180-NF	J203001300005	A-INFO	2023-02-23	1 year
Semi-anechoic chamber	FACT10-3.0	/	ETS	2024-03-25	3 years
EMI Antenna	VULB9163	9163-482	Schwarzbeck	2022-11-16	1 year
EMI Antenna	3117	00058889	ETS-Lindgren	2022-11-07	1 year
H-field Antenna	HFH2-Z2	829324/007	R&S	2022-12-23	1 year
Signal Generator	N5183A	MY49060052	Agilent	2022-07-11	1 year

Annex A: Measurement Results-Emission Limit


A.1 Measurement Method

The measurement procedures in TIA-603E-2016 are used.


The spectrum was scanned from 9 kHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of each LTE Band.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5-meter-high non-conductive stand at a 3-meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

substitution antenna and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

$$\text{Power (EIRP)} = P_{Mea} - P_{pl} + G_a$$

5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
6. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi}$.

A.2 Measurement Limit

FDD Band 2: Part 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

FDD Band 4/66: Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

FDD Band 5 (824MHz~849MHz): Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

FDD Band 7/TDD Band 38/41: Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log(P)$ dB on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log(P)$ dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log(P)$ dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less than $43 + 10 \log(P)$ dB on all frequencies between 2490.5 MHz and 2496 MHz and $55 + 10 \log(P)$ dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

FDD Band 12/17: Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log(P)$ dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LTE Band 25: Part 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at

least $43 + 10 \log(P)$ dB.

LTE Band 26(814MHz~824MHz): Part 90.691 states that out-of-band emission requirement shall apply only to the “outer” channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows: For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $116 \log_{10}(f/6.1)$ decibels or $50 + 10 \log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz. For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

LTE Band 26/Band 19(824MHz~849MHz): Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

A.3 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW
LTE Band 5, LTE Band 7, LTE Band 38, LTE Band 41	0.0000009-0.000015	0.2kHz	0.6kHz
	0.000015-0.03	9kHz	27kHz
	0.03~1	100kHz	300kHz
	1-40	1 MHz	3 MHz

A.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of each LTE Band. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of each LTE Band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

All mode of operation were investigated and the worst case configuration results are reported in this section.

The range of evaluated frequency is from 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz(chose the lower). Measurement value show only up to 6 maximum emissions noted.

Test combination

Band	ANT NO.	Result
5	ANT 0, ANT 2	Pass
7	ANT 1, ANT 2	Pass
38	ANT 5, ANT 3, ANT 1, ANT 2	Pass
41(HPUE)	ANT 5, ANT 3, ANT 1, ANT 2	Pass

*For the test results, the combination in the above table had been tested. But only the worst cases were shown in test report.

A.4 Measurement Results Table

Set.1-1, ANT0

LTE Band 5, 1.4MHz, QPSK, Channel 20407

Frequency (MHz)	SG (dBm)	CableLoss (dB)	AntennaGain (dBi)	Correction	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1649.01	-52.98	3.56	5.23	2.15	-53.46	-13.00	40.46	H
2462.00	-47.16	4.58	5.99	2.15	-47.90	-13.00	34.90	V
3297.02	-60.97	5.29	7.71	2.15	-60.70	-13.00	47.70	H
4122.02	-54.17	6.04	9.02	2.15	-53.34	-13.00	40.34	H
4961.01	-56.79	6.67	9.86	2.15	-55.75	-13.00	42.75	V
5782.01	-56.96	7.22	10.54	2.15	-55.79	-13.00	42.79	V

LTE Band 5, 5MHz, QPSK, Channel 20525

Frequency (MHz)	SG (dBm)	CableLoss (dB)	AntennaGain (dBi)	Correction	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1672.01	-54.23	3.58	5.19	2.15	-54.77	-13.00	41.77	H
2509.00	-46.24	4.63	6.12	2.15	-46.90	-13.00	33.90	H
3354.02	-60.72	5.32	7.85	2.15	-60.34	-13.00	47.34	V
4180.02	-54.17	6.16	9.08	2.15	-53.40	-13.00	40.40	H
5033.01	-57.28	6.58	9.95	2.15	-56.06	-13.00	43.06	H
5861.01	-56.69	7.27	10.53	2.15	-55.58	-13.00	42.58	V

LTE Band 5, 5MHz, QPSK, Channel 20643

Frequency (MHz)	SG (dBm)	CableLoss (dB)	AntennaGain (dBi)	Correction	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1672.01	-54.23	3.58	5.19	2.15	-54.77	-13.00	41.77	H
2509.00	-46.24	4.63	6.12	2.15	-46.90	-13.00	33.90	H
3354.02	-60.72	5.32	7.85	2.15	-60.34	-13.00	47.34	V
4180.02	-54.17	6.16	9.08	2.15	-53.40	-13.00	40.40	H
5033.01	-57.28	6.58	9.95	2.15	-56.06	-13.00	43.06	H
5861.01	-56.69	7.27	10.53	2.15	-55.58	-13.00	42.58	V

Note: The measurement results showed here are worst cases.

Set.1-1, ANT1
LTE Band 7, 5 MHz, QPSK, Channel 20775

Frequency (MHz)	SG (dBm)	CableLoss (dB)	AntennaGain (dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
4993.02	-59.16	6.62	9.89	-55.89	-25.00	30.89	H
7492.01	-53.01	8.37	12.19	-49.19	-25.00	24.19	V
10012.01	-52.61	9.21	12.90	-48.92	-25.00	23.92	V
12496.01	-48.59	10.18	13.20	-45.57	-25.00	20.57	H
15015.00	-43.75	11.24	13.99	-41.00	-25.00	16.00	H
17536.00	-39.16	12.86	14.95	-37.07	-25.00	12.07	H

LTE Band 7, 5 MHz, QPSK, Channel 21100

Frequency (MHz)	SG (dBm)	CableLoss (dB)	AntennaGain (dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5067.02	-57.89	6.68	9.99	-54.58	-25.00	29.58	V
7613.01	-54.04	8.03	12.29	-49.78	-25.00	24.78	V
10133.01	-52.36	9.41	12.95	-48.82	-25.00	23.82	H
12661.01	-46.89	10.36	13.30	-43.95	-25.00	18.95	V
15199.00	-44.12	11.40	13.88	-41.64	-25.00	16.64	H
17740.00	-40.42	12.40	15.24	-37.58	-25.00	12.58	H

LTE Band 7, 5 MHz, QPSK, Channel 21425

Frequency (MHz)	SG (dBm)	CableLoss (dB)	AntennaGain (dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5130.02	-58.68	6.85	10.08	-55.45	-25.00	30.45	V
7705.01	-54.67	8.42	12.36	-50.73	-25.00	25.73	V
10265.01	-51.44	9.52	13.01	-47.95	-25.00	22.95	V
12820.01	-47.60	10.71	13.39	-44.92	-25.00	19.92	V
15407.00	-43.18	11.40	13.76	-40.82	-25.00	15.82	V
17957.00	-40.57	12.89	15.54	-37.92	-25.00	12.92	H

Note: The measurement results showed here are worst cases.

Set.1-1, ANT5
LTE Band 38, 20MHz, QPSK, Channel 38750

Frequency (MHz)	P _{Mea} (dBm)	Path Loss(dB)	Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5143.02	-53.36	6.87	10.10	-50.13	-25.00	25.13	V
7714.01	-54.73	8.41	12.37	-50.77	-25.00	25.77	V
10311.01	-50.93	9.66	13.02	-47.57	-25.00	22.57	V
12864.01	-47.64	10.60	13.42	-44.82	-25.00	19.82	H
15408.00	-43.99	11.40	13.76	-41.63	-25.00	16.63	H
17974.00	-41.02	12.89	15.56	-38.35	-25.00	13.35	H

LTE Band 38, 20MHz, QPSK, Channel 38000

Frequency (MHz)	P _{Mea} (dBm)	Path Loss(dB)	Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5174.02	-49.44	6.92	10.14	-46.22	-25.00	21.22	V
7758.01	-52.63	8.35	12.41	-48.57	-25.00	23.57	H
10373.01	-50.41	9.76	13.05	-47.12	-25.00	22.12	V
13008.01	-46.22	10.50	13.51	-43.21	-25.00	18.21	H
15587.00	-43.83	11.49	13.70	-41.62	-25.00	16.62	H
16861.00	-39.96	12.04	13.74	-38.26	-25.00	13.26	H

LTE Band 38, 20MHz, QPSK, Channel 38150

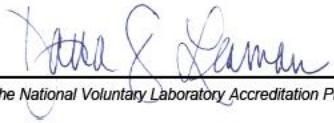
Frequency (MHz)	P _{Mea} (dBm)	Path Loss(dB)	Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5205.02	-48.20	6.97	10.19	-44.98	-25.00	19.98	V
7869.01	-55.01	8.38	12.50	-50.89	-25.00	25.89	V
10498.01	-49.72	9.65	13.10	-46.27	-25.00	21.27	V
13096.01	-44.01	10.92	13.63	-41.30	-25.00	16.30	V
15738.00	-43.90	11.63	13.70	-41.83	-25.00	16.83	H
17020.00	-39.83	12.43	13.84	-38.42	-25.00	13.42	H

Note: The measurement results showed here are worst cases.

Set.1-1, ANT3
LTE Band 41, 5MHz, QPSK, Channel 39675

Frequency (MHz)	P _{Mea} (dBm)	Path Loss(dB)	Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
4994.02	-52.46	6.61	9.89	-49.18	-25.00	24.18	V
7498.01	-54.02	8.39	12.20	-50.21	-25.00	25.21	V
9989.01	-53.82	9.17	12.91	-50.08	-25.00	25.08	H
12491.01	-49.84	10.20	13.20	-46.84	-25.00	21.84	H
14991.00	-44.75	11.21	14.01	-41.95	-25.00	16.95	V
17486.00	-39.84	12.69	14.87	-37.66	-25.00	12.66	H

LTE Band 41, 5MHz, QPSK, Channel 40620


Frequency (MHz)	P _{Mea} (dBm)	Path Loss(dB)	Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5184.02	-47.49	6.94	10.16	-44.27	-25.00	19.27	V
7766.01	-55.29	8.33	12.41	-51.21	-25.00	26.21	V
10355.01	-50.95	9.73	13.04	-47.64	-25.00	22.64	V
12977.01	-48.01	10.48	13.49	-45.00	-25.00	20.00	H
15585.00	-43.86	11.49	13.70	-41.65	-25.00	16.65	H
16831.00	-40.48	12.08	13.73	-38.83	-25.00	13.83	H

LTE Band 41, 5MHz, QPSK, Channel 41565

Frequency (MHz)	P _{Mea} (dBm)	Path Loss(dB)	Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5370.02	-45.52	6.89	10.42	-41.99	-25.00	16.99	V
8040.01	-54.58	8.32	12.63	-50.27	-25.00	25.27	V
10774.01	-49.80	9.49	13.15	-46.14	-25.00	21.14	V
13462.01	-44.60	10.62	14.15	-41.07	-25.00	16.07	H
16115.00	-42.11	11.84	13.68	-40.27	-25.00	15.27	H
17475.00	-39.19	12.67	14.85	-37.01	-25.00	12.01	H

Note: The measurement results showed here are worst cases.

Annex B: Accreditation Certificate

<p>United States Department of Commerce National Institute of Standards and Technology</p> <p>NVLAP® </p>	
<p>Certificate of Accreditation to ISO/IEC 17025:2017</p>	
<p>NVLAP LAB CODE: 600118-0</p>	
<p>Telecommunication Technology Labs, CAICT Beijing China</p>	
<p><i>is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:</i></p>	
<p>Electromagnetic Compatibility & Telecommunications</p>	
<p><i>This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).</i></p>	
<p>2020-09-29 through 2021-09-30</p> <hr/> <p>Effective Dates</p>	<p></p> <hr/> <p><i>For the National Voluntary Laboratory Accreditation Program</i></p> <p></p>

END OF REPORT