

RF TEST REPORT

Product Name: Smart LTE Terminal

Model Name: M6G, M6, M6A, M6E, M6H, M6L, M6P, M6Pro, M6Plus

FCC ID: 2AYEZ-M6G

Issued For : Telo Communication (Shenzhen) Co., Ltd

13th Floor, Building B, Union RSD Center, No.287 Guangshen Rd.,
Bao'an District, Shenzhen, China

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177,
Renmin West Road, Jinsha, Kengzi Street, Pingshan District,
Shenzhen, Guangdong, China

Report Number: LGT24L192RF03

Sample Received Date: Dec. 26, 2024

Date of Test: Dec. 26, 2024 ~ Feb. 26, 2025

Date of Issue: Feb. 26, 2025

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant: Telo Communication (Shenzhen) Co., Ltd
Address: 13th Floor, Building B, Union RSD Center, No.287 Guangshen Rd., Bao'an District, Shenzhen, China

Manufacturer: Telo Communication (Shenzhen) Co., Ltd
Address: 13th Floor, Building B, Union RSD Center, No.287 Guangshen Rd., Bao'an District, Shenzhen, China

Product Name: Smart LTE Terminal

Trademark: Telox

Model Name: M6G

Series Model: M6, M6A, M6E, M6H, M6L, M6P, M6Pro, M6Plus

Sample Status: Normal

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC Part 15.247, Subpart C ANSI C63.10-2013	PASS

Prepared by:

Zane Shan

Zane Shan
Engineer

Approved by:

Vita Li

Vita Li
Technical Director

Table of Contents

	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION MEASUREMENT	15
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	25
4.1 LIMIT	25
4.2 TEST PROCEDURE	25
4.3 DEVIATION FROM STANDARD	25
4.4 TEST SETUP	25
4.5 EUT OPERATION CONDITIONS	25
4.6 TEST RESULTS	25
5. POWER SPECTRAL DENSITY TEST	26
5.1 LIMIT	26
5.2 TEST PROCEDURE	26
5.3 DEVIATION FROM STANDARD	26
5.4 TEST SETUP	26
5.5 EUT OPERATION CONDITIONS	26
5.6 TEST RESULTS	26
6. BANDWIDTH TEST	27
6.1 LIMIT	27
6.2 TEST PROCEDURE	27
6.3 DEVIATION FROM STANDARD	27
6.4 TEST SETUP	27
6.5 EUT OPERATION CONDITIONS	27
6.6 TEST RESULTS	27

7. PEAK OUTPUT POWER TEST	28
7.1 LIMIT	28
7.2 TEST PROCEDURE	28
7.3 DEVIATION FROM STANDARD	28
7.4 TEST SETUP	28
7.5 EUT OPERATION CONDITIONS	28
7.6 TEST RESULTS	28
8. ANTENNA REQUIREMENT	29
8.1 STANDARD REQUIREMENT	29
8.2 EUT ANTENNA	29
APPENDIX I - TEST RESULTS	30
DUTY CYCLE	30
MAXIMUM PEAK CONDUCTED OUTPUT POWER	35
-6DB BANDWIDTH	36
OCCUPIED CHANNEL BANDWIDTH	41
MAXIMUM POWER SPECTRAL DENSITY LEVEL	46
BAND EDGE	51
CONDUCTED RF SPURIOUS EMISSION	58
APPENDIX II - MEASUREMENT PHOTOS	67
APPENDIX III - PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	68

Revision History

Rev.	Issue Date	Revisions
00	Feb. 26, 2025	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:
KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247, Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	N/A	--
15.247 (a)(2)	6dB Bandwidth	PASS	--
15.247 (b)(3)	Output Power	PASS	--
15.209	Radiated Spurious Emission	PASS	--
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	--
15.247 (e)	Power Spectral Density	PASS	--
15.205	Restricted Band Edge Emission	PASS	--
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS	--
15.203	Antenna Requirement	PASS	--

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China
Accreditation Certificate:	A2LA Certificate No.: 6727.01
	FCC Registration No.: 746540
	CAB ID: CN0136

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95 %**.

No.	Item	Uncertainty
1	RF Output Power, Conducted	$\pm 0.71\text{dB}$
2	Power Spectral Density, Conducted	$\pm 1.57 \text{ dB}$
3	Unwanted Emission, Conducted	$\pm 0.63\text{dB}$
4	Conducted emission	$\pm 2.80\text{dB}$
5	All Emissions, Radiated (0.009-30MHz)	$\pm 2.16\text{dB}$
6	All Emissions, Radiated (30MHz-1GHz)	$\pm 4.40\text{dB}$
7	All Emissions, Radiated (1GHz-18GHz)	$\pm 5.49\text{dB}$

Note: The measurement uncertainty is not included in the test result.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name:	Smart LTE Terminal
Trademark:	Telox
Model Name:	M6G
Series Model:	M6, M6A, M6E, M6H, M6L, M6P, M6Pro, M6Plus
Model Difference:	Customers are not the same, the model name is not the same.
Product Description:	Operation Frequency: 802.11b/g/n(20MHz): 2412~2462MHz 802.11n(40MHz): 2422~2452MHz
	Modulation Type: 802.11b(DSSS): CCK, DQPSK, DBPSK 802.11g(OFDM): BPSK, QPSK, 16-QAM, 64-QAM 802.11n(OFDM): BPSK, QPSK, 16-QAM, 64-QAM
	Number of Channel: 802.11b/g/n: 11CH 802.11n: 7CH
	Antenna Designation: External
	Antenna Gain(dBi): 1.05
Channel List:	Please refer to the Note 3.
Rating:	Input: DC 12-24V 1A
Hardware Version:	N/A
Software Version:	M6G_US_V1P_20241224
Connecting I/O Port(s):	Please refer to the Note 1.

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
2. The antenna information refers to the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Operation Frequency of channel			
802.11b/g/n(20MHz)		Channel List for 802.11n(40MHz)	
Channel	Frequency	Channel	Frequency
01	2412	03	2422
02	2417	04	2427
03	2422	05	2432
04	2427	06	2437
05	2432	07	2442
06	2437	08	2447
07	2442	09	2452
08	2447		
09	2452		
10	2457		
11	2462		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Carrier Frequency Channel

2.4GHz Test Frequency:

For 802.11b/g/n(HT20)		For 802.11n(HT40)	
Channel	Freq.(MHz)	Channel	Freq.(MHz)
01	2412	03	2422
06	2437	06	2437
11	2462	09	2452

2.2 DESCRIPTION OF THE TEST MODES

Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Description	Data Rate
Mode 1	TX IEEE 802.11b CH1	1 Mbps
Mode 2	TX IEEE 802.11b CH6	1 Mbps
Mode 3	TX IEEE 802.11 b CH11	1 Mbps
Mode 4	TX IEEE 802.11g CH1	6 Mbps
Mode 5	TX IEEE 802.11g CH6	6 Mbps
Mode 6	TX IEEE 802.11g CH11	6 Mbps
Mode 7	TX IEEE 802.11n HT20 CH1	MCS 0
Mode 8	TX IEEE 802.11n HT20 CH6	MCS 0
Mode 9	TX IEEE 802.11n HT20 CH11	MCS 0
Mode 10	TX IEEE 802.11n HT40 CH3	MCS 0
Mode 11	TX IEEE 802.11n HT40 CH6	MCS 0
Mode 12	TX IEEE 802.11n HT40 CH9	MCS 0

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

AC Conducted Emission

Test Case	
AC Conducted Emission	Mode 13: Keeping TX + WLAN Link

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version	Test program: 2.4G WIFI	
	Mode Or Modulation type	Power setting
SP_META_exe_V1.1824.00	b	18
	g	14
	h20	13
	n40	13

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating
MIC	N/A	N/A	N/A	N/A
ANT	N/A	N/A	N/A	N/A
DC cable	N/A	N/A	N/A	3.5m

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Laptop	Lenovo	HKF-16	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiated Test equipment						
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until	
EMI Test Receiver	R&S	ESU8	100372	2024.03.09	2025.03.08	
Active loop Antenna	ETS	6502	00049544	2023.10.13	2025.10.12	
Spectrum Analyzer	Keysight	N9010B	MY60242508	2024.08.05	2025.08.04	
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	2705	2022.12.12	2025.12.11	
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01	
Horn Antenna(18-40G)	A-INFO	LB-180400-KF	J211060273	2022.06.08	2025.06.07	
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2024.03.09	2025.03.08	
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2024.03.09	2025.03.08	
Pre-amplifier(18-40G)	com-mw	LNPA_18-40-01	18050003	2024.03.09	2025.03.08	
Wireless Communications Test Set	R&S	CMW 500	137737	2024.03.09	2025.03.08	
Antenna Tower	SAEMC	BK-4AT-BS-D	SK2021093008	N.A	N.A	
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2024.03.11	2025.03.10	
Testing Software	EMC-I_V1.4.0.3_SKET					

RF Conducted Test equipment						
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until	
Signal Analyzer	Keysight	N9010B	MY60242508	2024.08.05	2025.08.04	
Signal Analyzer	Keysight	N9020A	MY50530994	2024.03.09	2025.03.08	
RF Automatic Test system	MW	MW100-RFCB	MW220322LG-033	2024.03.09	2025.03.08	
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2024.03.09	2025.03.08	
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2024.03.09	2025.03.08	
Attenuator	eastsheep	90db	N.A	2024.03.09	2025.03.08	
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2024.03.11	2025.03.10	
Digital multimeter	MASTECH	MS8261	MBGBC83053	2024.03.09	2025.03.08	
Testing Software	MTS8310_V2.0.0.0_MW					

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

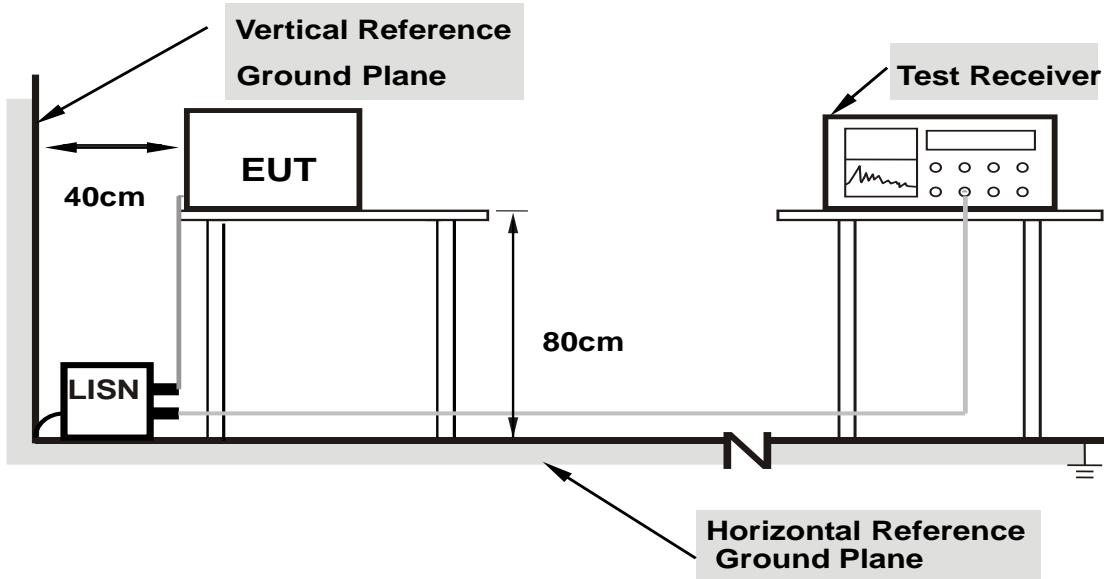
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Conducted Emissionlimit (dBuV)	
	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of “ * ” marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

Note: N/A.

DC product power supply.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
RB / VB (emission in restricted band)	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz); 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted band)	120 KHz / 300 KHz

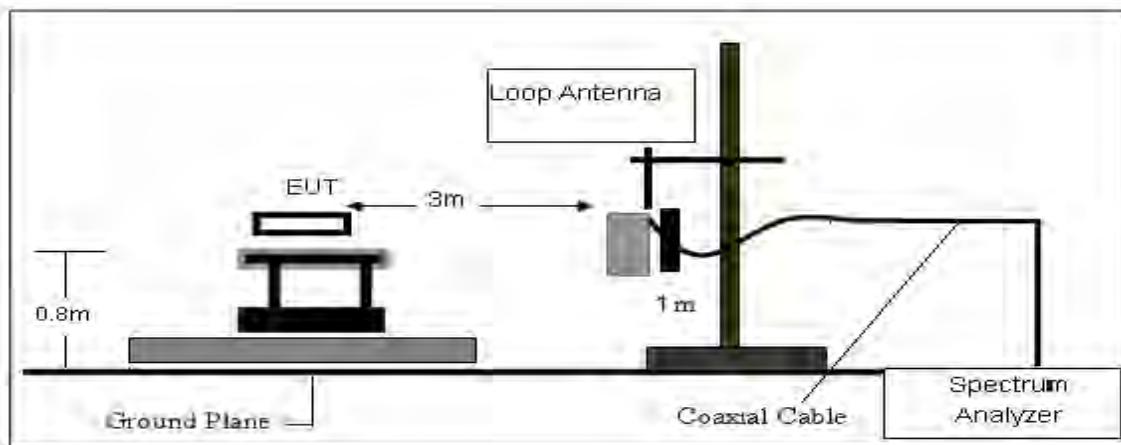
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier harmonic(Peak/AV)
RB / VB (emission in restricted band)	1 MHz / 3 MHz(Peak) 1 MHz/1/T MHz(AVG)

For Restricted band

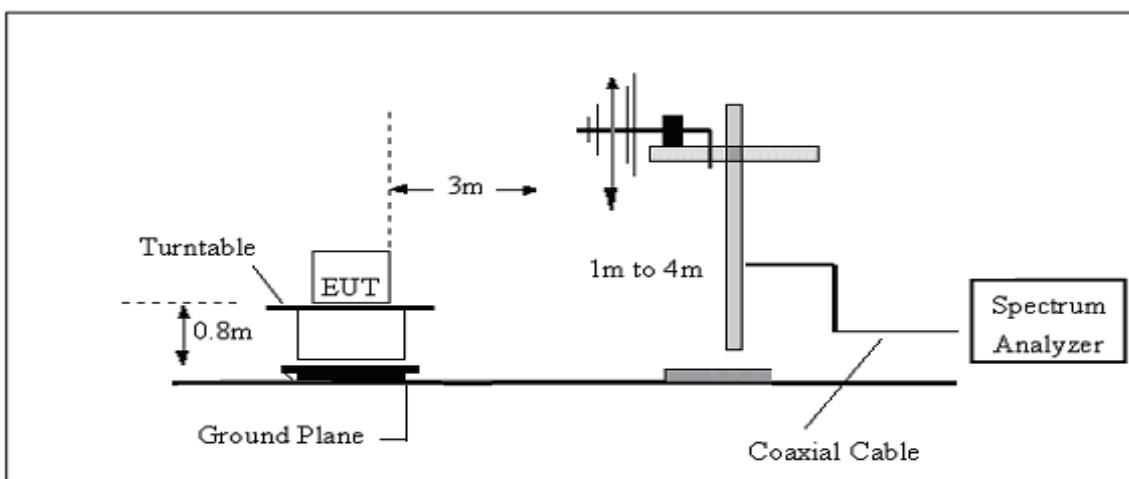
Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	Lower Band Edge: 2310 to 2430 MHz Upper Band Edge: 2445 to 2500 MHz
RB / VB	1 MHz / 3 MHz(Peak) 1 MHz/1/T MHz(AVG)

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

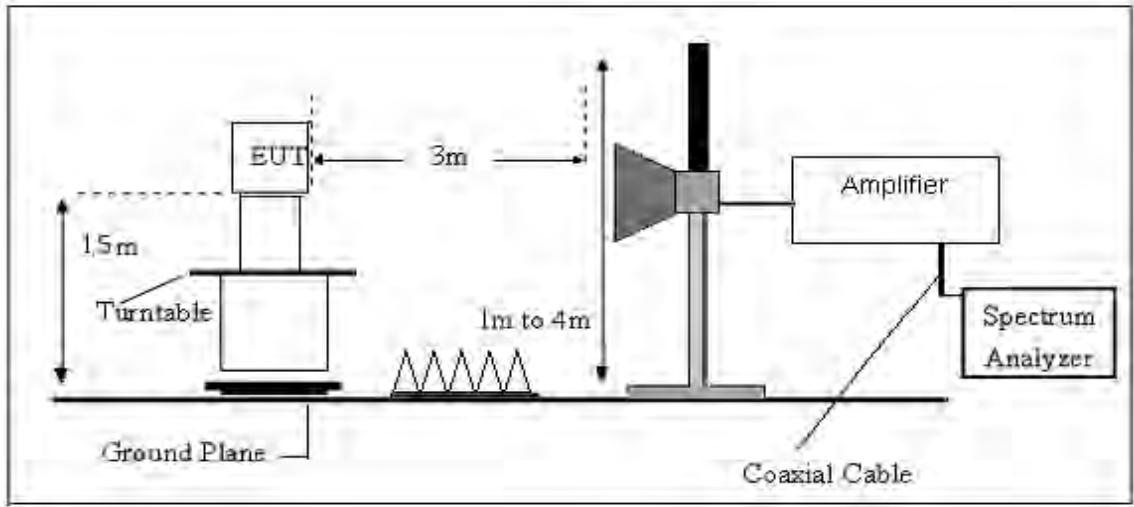
3.2.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency (MHz)	FS (dB μ V/m)	RA (dB μ V/m)	AF (dB)	CL (dB)	AG (dB)	Factor (dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

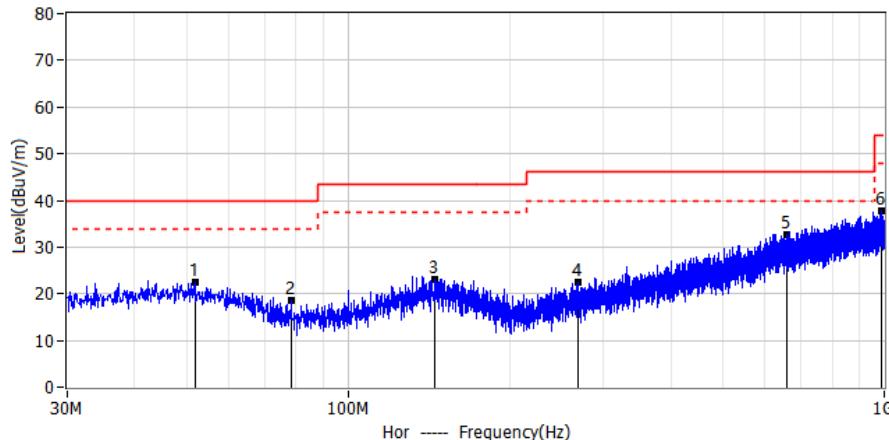
3.2.6 TEST RESULT

Results of Radiated Emissions (9 KHz~30MHz)

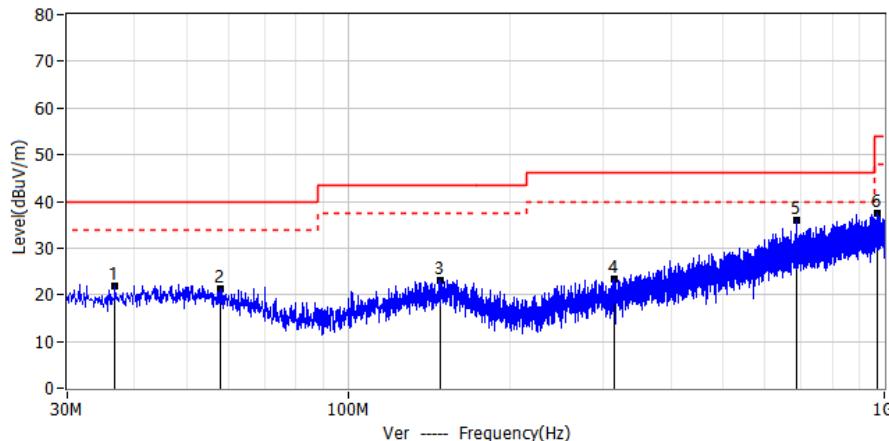
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Remark
1*	-	-	-	-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.



Results of Radiated Emissions (30MHz~1000MHz)

Project: LGT24L192	Test Engineer: LiuH
EUT: Smart LTE Terminal	Temperature: 23.8°C
M/N: M6G	Humidity: 42.1%RH
Test Voltage: DC 12V	Test Data: 2025-01-09
Test Mode: TX 802.11b 2412	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	51.825	2.12	20.43	22.55	40.00	-17.45	QP	Hor
2*	78.379	2.08	16.55	18.63	40.00	-21.37	QP	Hor
3*	145.066	1.90	21.16	23.06	43.50	-20.44	QP	Hor
4*	268.499	2.53	19.97	22.50	46.00	-23.50	QP	Hor
5*	659.045	2.98	29.79	32.77	46.00	-13.23	QP	Hor
6*	985.693	3.57	34.19	37.76	54.00	-16.24	QP	Hor

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	36.790	1.93	19.88	21.81	40.00	-18.19	QP	Ver
2*	57.888	1.54	19.67	21.21	40.00	-18.79	QP	Ver
3*	148.461	1.64	21.48	23.12	43.50	-20.38	QP	Ver
4*	313.725	1.33	22.01	23.34	46.00	-22.66	QP	Ver
5*	687.539	5.96	30.09	36.05	46.00	-9.95	QP	Ver
6*	972.719	3.77	33.64	37.41	54.00	-16.59	QP	Ver

Results of Radiated Emissions (Above 1000MHz)

Frequency (MHz)	Reading (dB μ V)	Corrected Factor (dB)	Result (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector	Polarity
Low Channel (2412 MHz)							
3264.65	55.19	-8.45	46.74	74.00	-27.26	PK	Vertical
3264.65	45.09	-8.45	36.64	54.00	-17.36	AV	Vertical
3264.64	56.18	-8.45	47.73	74.00	-26.27	PK	Horizontal
3264.64	45.57	-8.45	37.12	54.00	-16.88	AV	Horizontal
4824.45	54.79	-6.09	48.70	74.00	-25.30	PK	Vertical
4824.45	44.28	-6.09	38.19	54.00	-15.81	AV	Vertical
4824.58	55.22	-6.09	49.13	74.00	-24.87	PK	Horizontal
4824.58	44.49	-6.09	38.40	54.00	-15.60	AV	Horizontal
5359.64	57.52	-6.68	50.84	74.00	-23.16	PK	Vertical
5359.64	47.13	-6.68	40.45	54.00	-13.55	AV	Vertical
5359.60	57.70	-6.68	51.02	74.00	-22.98	PK	Horizontal
5359.60	48.01	-6.68	41.33	54.00	-12.67	AV	Horizontal
7235.90	60.64	-8.13	52.51	74.00	-21.49	PK	Vertical
7235.90	49.81	-8.13	41.68	54.00	-12.32	AV	Vertical
7235.80	60.82	-8.13	52.69	74.00	-21.31	PK	Horizontal
7235.79	50.49	-8.13	42.36	54.00	-11.64	AV	Vertical
Middle Channel (2437 MHz)							
3264.90	55.98	-8.45	47.53	74.00	-26.47	PK	Vertical
3264.90	46.81	-8.45	38.36	54.00	-15.64	AV	Vertical
3264.69	56.29	-8.45	47.84	74.00	-26.16	PK	Horizontal
3264.69	46.46	-8.45	38.01	54.00	-15.99	AV	Horizontal
4874.51	55.45	-6.09	49.36	74.00	-24.64	PK	Vertical
4874.51	44.98	-6.09	38.89	54.00	-15.11	AV	Vertical
4874.56	55.38	-6.09	49.29	74.00	-24.71	PK	Horizontal
4874.56	44.97	-6.09	38.88	54.00	-15.12	AV	Horizontal
5359.64	57.23	-6.68	50.55	74.00	-23.45	PK	Vertical
5359.64	48.25	-6.68	41.57	54.00	-12.43	AV	Vertical
5359.83	57.91	-6.68	51.23	74.00	-22.77	PK	Horizontal
5359.83	47.12	-6.68	40.44	54.00	-13.56	AV	Horizontal
7310.68	60.01	-8.13	51.88	74.00	-22.12	PK	Vertical
7310.68	50.14	-8.13	42.01	54.00	-11.99	AV	Vertical
7310.70	60.57	-8.13	52.44	74.00	-21.56	PK	Horizontal
7310.70	50.39	-8.13	42.26	54.00	-11.74	AV	Horizontal
High Channel (2462 MHz)							
3264.81	55.74	-8.45	47.29	74.00	-26.71	PK	Vertical

3264.81	45.54	-8.45	37.09	54.00	-16.91	AV	Vertical
3264.67	56.46	-8.45	48.01	74.00	-25.99	PK	Horizontal
3264.67	45.60	-8.45	37.15	54.00	-16.85	AV	Horizontal
4924.30	54.03	-6.09	47.94	74.00	-26.06	PK	Vertical
4924.30	45.25	-6.09	39.16	54.00	-14.84	AV	Vertical
4924.33	55.41	-6.09	49.32	74.00	-24.68	PK	Horizontal
4924.33	45.60	-6.09	39.51	54.00	-14.49	AV	Horizontal
5359.63	57.90	-6.68	51.22	74.00	-22.78	PK	Vertical
5359.63	47.69	-6.68	41.01	54.00	-12.99	AV	Vertical
5359.60	56.94	-6.68	50.26	74.00	-23.74	PK	Horizontal
5359.60	47.15	-6.68	40.47	54.00	-13.53	AV	Horizontal
7385.95	60.14	-8.13	52.01	74.00	-21.99	PK	Vertical
7385.95	50.37	-8.13	42.24	54.00	-11.76	AV	Vertical
7385.95	60.86	-8.13	52.73	74.00	-21.27	PK	Horizontal
7385.95	50.65	-8.13	42.52	54.00	-11.48	AV	Horizontal

Remark:

In frequency ranges 18~25GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.

3.2.7 TEST RESULTS(Band edge Requirements)

Band edge							
Frequency (MHz)	Reading (dB μ V)	Corrected Factor (dB)	Result (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector	Polarity
802.11b							
2390.00	12.87	34.10	46.97	74.00	-27.03	PK	Vertical
2390.00	2.32	34.10	36.42	54.00	-17.58	AV	Vertical
2390.00	13.14	34.10	47.24	74.00	-26.76	PK	Horizontal
2390.00	0.94	34.10	35.04	54.00	-18.96	AV	Horizontal
2483.50	15.13	34.44	49.57	74.00	-24.43	PK	Vertical
2483.50	2.70	34.44	37.14	54.00	-16.86	AV	Vertical
2483.50	15.08	34.44	49.52	74.00	-24.48	PK	Horizontal
2483.50	2.14	34.44	36.58	54.00	-17.42	AV	Horizontal
802.11g							
2390.00	12.68	34.10	46.78	74.00	-27.22	PK	Vertical
2390.00	1.34	34.10	35.44	54.00	-18.56	AV	Vertical
2390.00	12.13	34.10	46.23	74.00	-27.77	PK	Horizontal
2390.00	1.63	34.10	35.73	54.00	-18.27	AV	Horizontal
2483.50	14.07	34.44	48.51	74.00	-25.49	PK	Vertical
2483.50	1.93	34.44	36.37	54.00	-17.63	AV	Vertical
2483.50	15.62	34.44	50.06	74.00	-23.94	PK	Horizontal
2483.50	2.32	34.44	36.76	54.00	-17.24	AV	Horizontal
802.11n20							
2390.00	13.40	34.10	47.50	74.00	-26.50	PK	Vertical
2390.00	1.89	34.10	35.99	54.00	-18.01	AV	Vertical
2390.00	13.14	34.10	47.24	74.00	-26.76	PK	Horizontal
2390.00	1.25	34.10	35.35	54.00	-18.65	AV	Horizontal
2483.50	14.46	34.44	48.90	74.00	-25.10	PK	Vertical
2483.50	2.18	34.44	36.62	54.00	-17.38	AV	Vertical
2483.50	14.56	34.44	49.00	74.00	-25.00	PK	Horizontal
2483.50	2.93	34.44	37.37	54.00	-16.63	AV	Horizontal
802.11n40							
2390.00	12.34	34.10	46.44	74.00	-27.56	PK	Vertical
2390.00	2.09	34.10	36.19	54.00	-17.81	AV	Vertical
2390.00	13.37	34.10	47.47	74.00	-26.53	PK	Horizontal
2390.00	1.11	34.10	35.21	54.00	-18.79	AV	Horizontal
2483.50	14.54	34.44	48.98	74.00	-25.02	PK	Vertical

2483.50	2.46	34.44	36.90	54.00	-17.10	AV	Vertical
2483.50	15.42	34.44	49.86	74.00	-24.14	PK	Horizontal
2483.50	3.01	34.44	37.45	54.00	-16.55	AV	Horizontal

Low measurement frequencies is range from 2310 to 2422 MHz, high measurement frequencies is range from 2452 to 2500 MHz.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	Lower Band Edge: 2300 to 2432 MHz Upper Band Edge: 2442 to 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

4.6 TEST RESULTS

For the measurement records, refer to the appendix I.

Note: Not recorded emission from 9 KHz to 30 MHz as emission level at least 20dBc lower than emission limit.

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT

FCC Part15.247 , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	$\leq 8 \text{ dBm}$ (RBW $\geq 3\text{KHz}$)	2400-2483.5	PASS

5.2 TEST PROCEDURE

1. Set analyzer center frequency to DTS channel center frequency.
2. Set the span to 1.5 times the DTS channel bandwidth.
3. Set the $100 \text{ kHz} \geq \text{RBW} \geq 3 \text{ kHz}$.
4. Set the $\text{VBW} \geq 3 \times \text{RBW}$.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum amplitude level.
10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.6 TEST RESULTS

For the measurement records, refer to the appendix I.

6. BANDWIDTH TEST

6.1 LIMIT

FCC Part15.247, Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	$\geq 500\text{KHz}$ (6dB bandwidth)	2400-2483.5	PASS

6.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, $\text{VBW} \geq 3\text{RBW}$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

6.6 TEST RESULTS

For the measurement records, refer to the appendix I.

7. PEAK OUTPUT POWER TEST

7.1 LIMIT

FCC Part15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

7.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW \geq DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq [3 \times RBW].
- c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

7.6 TEST RESULTS

For the measurement records, refer to the appendix I.

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2 EUT ANTENNA

The EUT antenna is External Antenna. It comply with the standard requirement.

APPENDIX I - TEST RESULTS

Duty Cycle

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	100	0	0.01
NVNT	b	2437	100	0	0.01
NVNT	b	2462	100	0	0.01
NVNT	g	2412	100	0	0.01
NVNT	g	2437	100	0	0.01
NVNT	g	2462	100	0	0.01
NVNT	n20	2412	100	0	0.01
NVNT	n20	2437	100	0	0.01
NVNT	n20	2462	100	0	0.01
NVNT	n40	2422	100	0	0.01
NVNT	n40	2437	100	0	0.01
NVNT	n40	2452	100	0	0.01

Test Graphs

Duty Cycle NVNT b 2412MHz

Duty Cycle NVNT b 2437MHz

Duty Cycle NVNT b 2462MHz

Duty Cycle NVNT g 2412MHz

Duty Cycle NVNT g 2437MHz

Duty Cycle NVNT g 2462MHz

Duty Cycle NVNT n20 2412MHz

Duty Cycle NVNT n20 2437MHz

Duty Cycle NVNT n20 2462MHz

Duty Cycle NVNT n40 2422MHz

Duty Cycle NVNT n40 2437MHz

Duty Cycle NVNT n40 2452MHz

Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	16.65	30	Pass
NVNT	b	2437	17.65	30	Pass
NVNT	b	2462	17	30	Pass
NVNT	g	2412	15.43	30	Pass
NVNT	g	2437	15.83	30	Pass
NVNT	g	2462	15.44	30	Pass
NVNT	n20	2412	14.21	30	Pass
NVNT	n20	2437	14.89	30	Pass
NVNT	n20	2462	14.55	30	Pass
NVNT	n40	2422	14.98	30	Pass
NVNT	n40	2437	15.15	30	Pass
NVNT	n40	2452	14.93	30	Pass

-6dB Bandwidth

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	8.071	0.5	Pass
NVNT	b	2437	7.59	0.5	Pass
NVNT	b	2462	8.06	0.5	Pass
NVNT	g	2412	16.335	0.5	Pass
NVNT	g	2437	16.381	0.5	Pass
NVNT	g	2462	16.312	0.5	Pass
NVNT	n20	2412	17.574	0.5	Pass
NVNT	n20	2437	17.586	0.5	Pass
NVNT	n20	2462	17.631	0.5	Pass
NVNT	n40	2422	36.046	0.5	Pass
NVNT	n40	2437	36.316	0.5	Pass
NVNT	n40	2452	36.38	0.5	Pass

Test Graphs

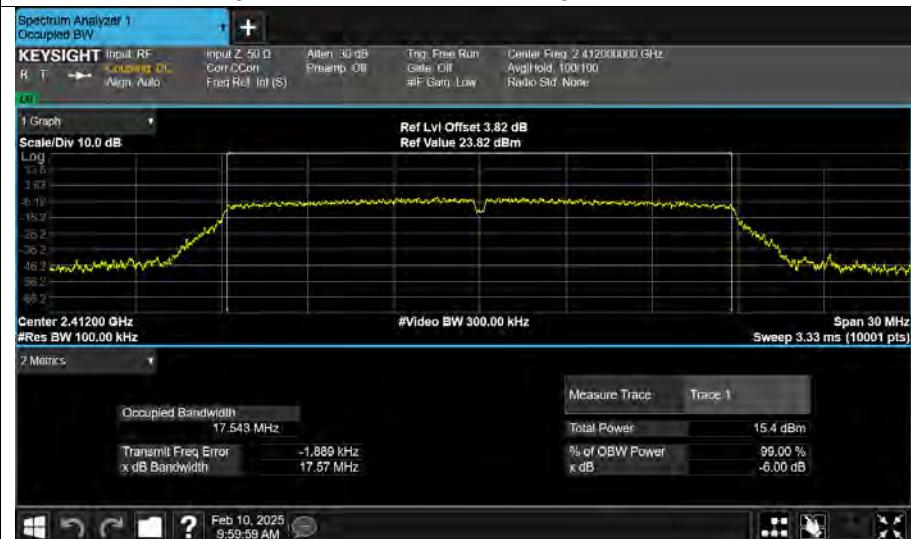
-6dB Bandwidth NVNT b 2412MHz

-6dB Bandwidth NVNT b 2437MHz

-6dB Bandwidth NVNT b 2462MHz

-6dB Bandwidth NVNT g 2412MHz

-6dB Bandwidth NVNT g 2437MHz



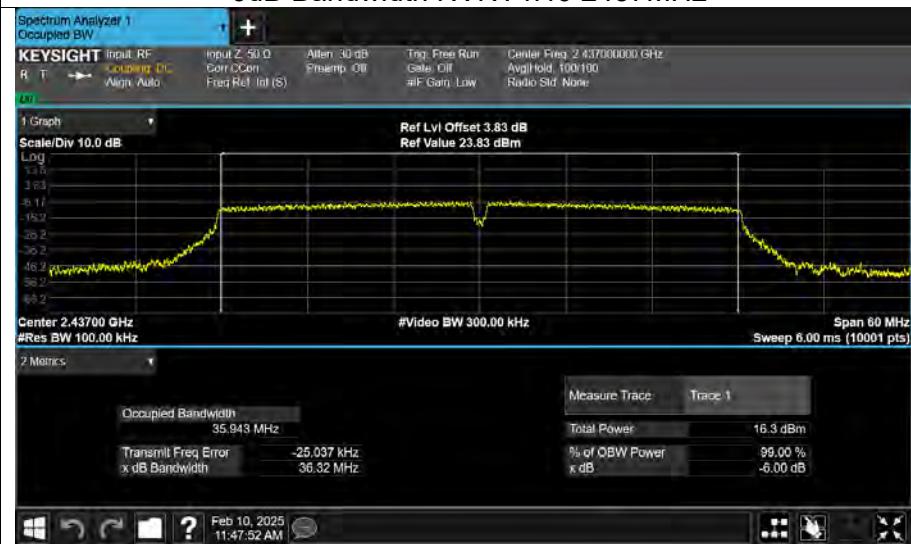
-6dB Bandwidth NVNT g 2462MHz



-6dB Bandwidth NVNT n20 2412MHz

-6dB Bandwidth NVNT n20 2437MHz

-6dB Bandwidth NVNT n20 2462MHz



-6dB Bandwidth NVNT n40 2422MHz

-6dB Bandwidth NVNT n40 2437MHz

-6dB Bandwidth NVNT n40 2452MHz

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	99% OBW (MHz)
NVNT	b	2412	12.871
NVNT	b	2437	12.958
NVNT	b	2462	12.88
NVNT	g	2412	16.387
NVNT	g	2437	16.458
NVNT	g	2462	16.445
NVNT	n20	2412	17.577
NVNT	n20	2437	17.584
NVNT	n20	2462	17.607
NVNT	n40	2422	35.985
NVNT	n40	2437	36.044
NVNT	n40	2452	36.098

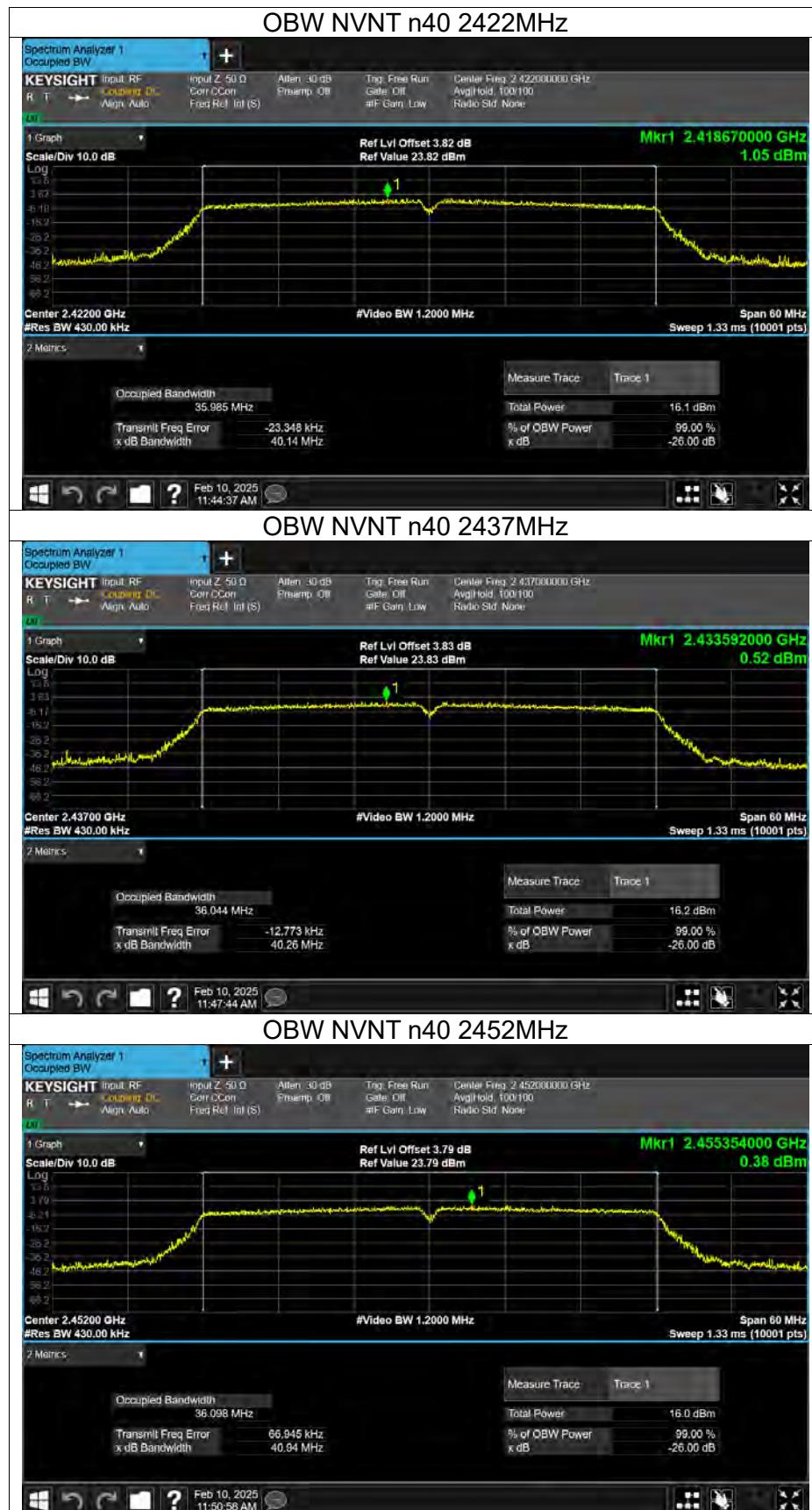
Test Graphs

OBW NVNT b 2412MHz

OBW NVNT b 2437MHz

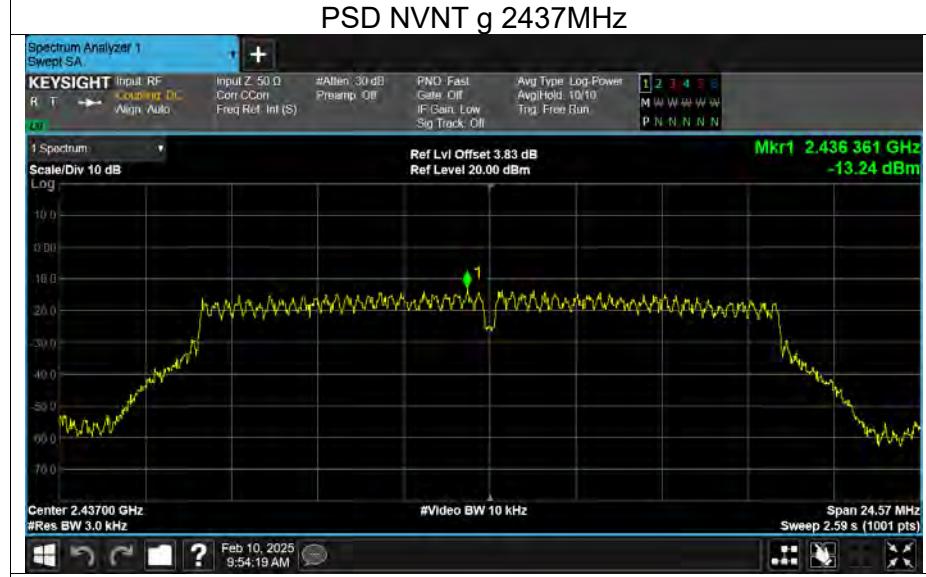
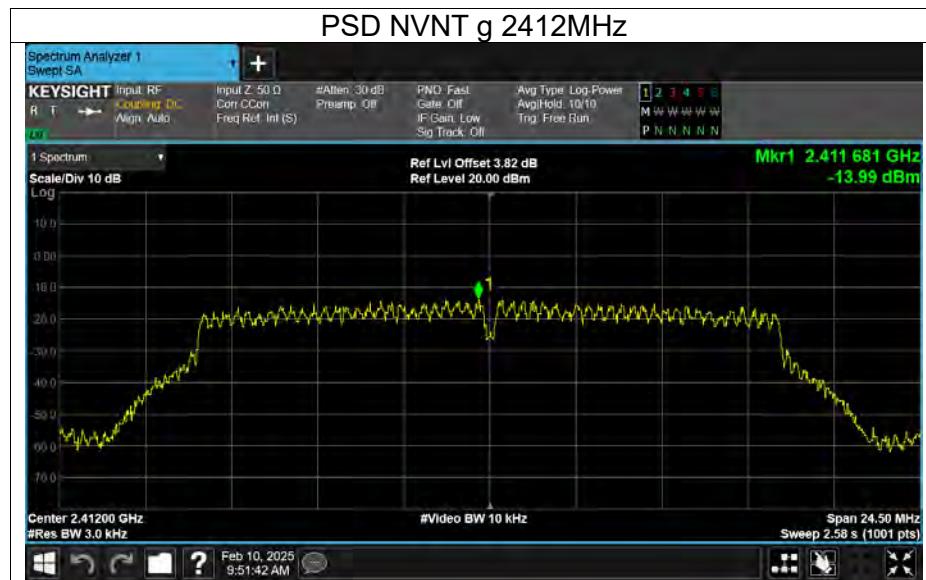
OBW NVNT b 2462MHz

OBW NVNT n20 2412MHz

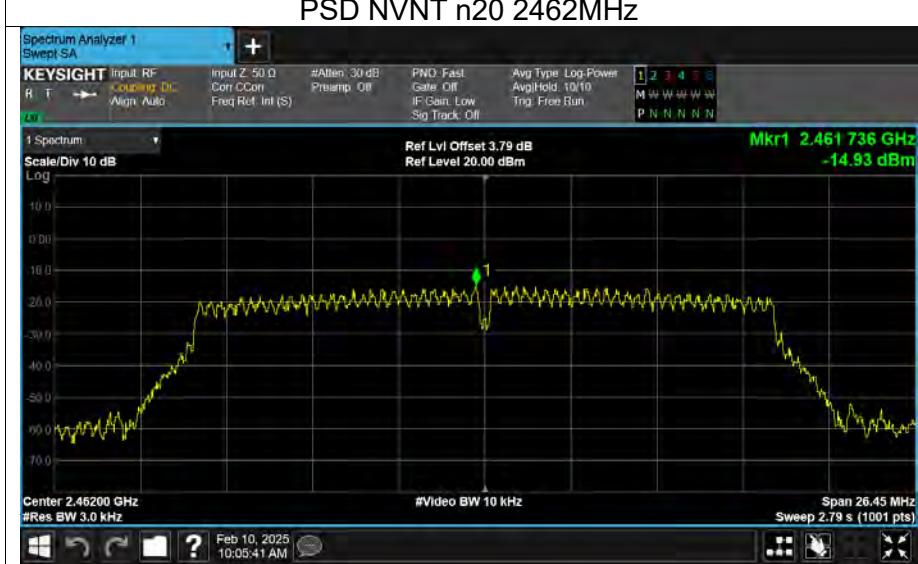


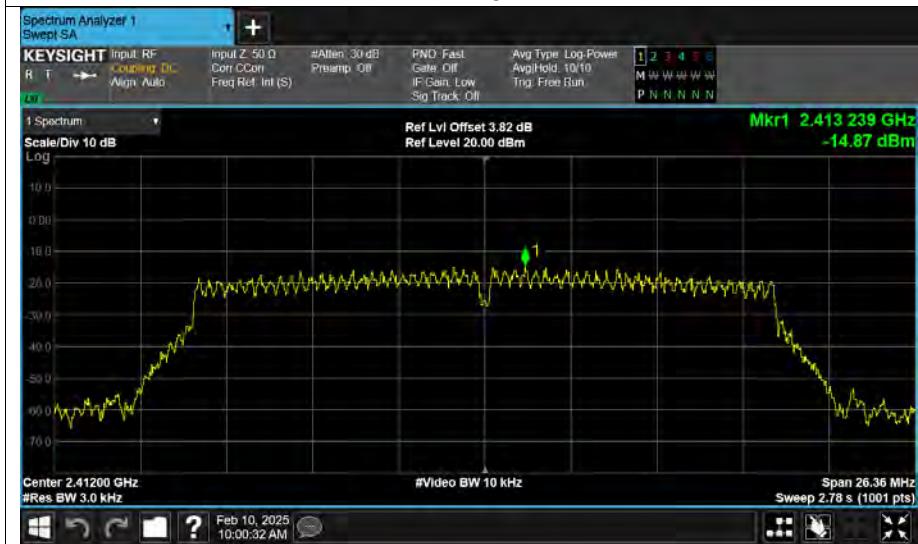
OBW NVNT n20 2437MHz

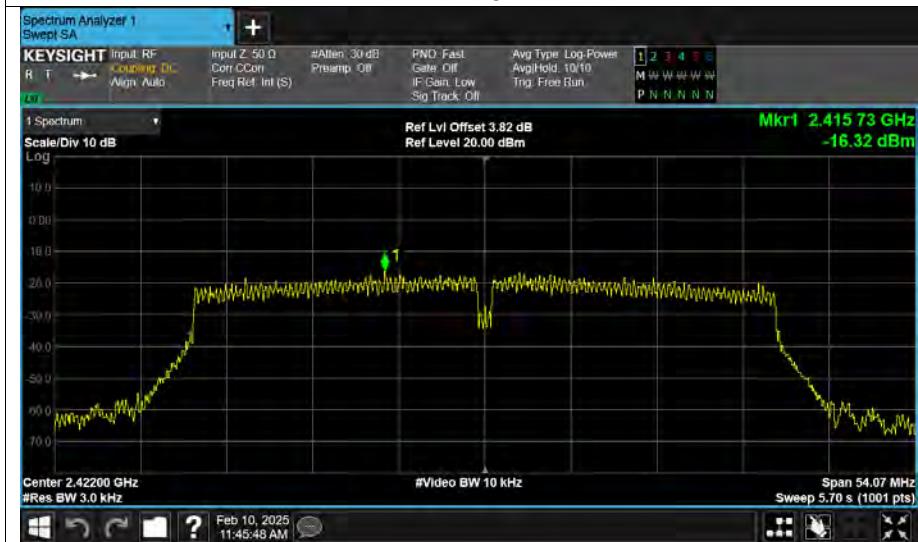
OBW NVNT n20 2462MHz

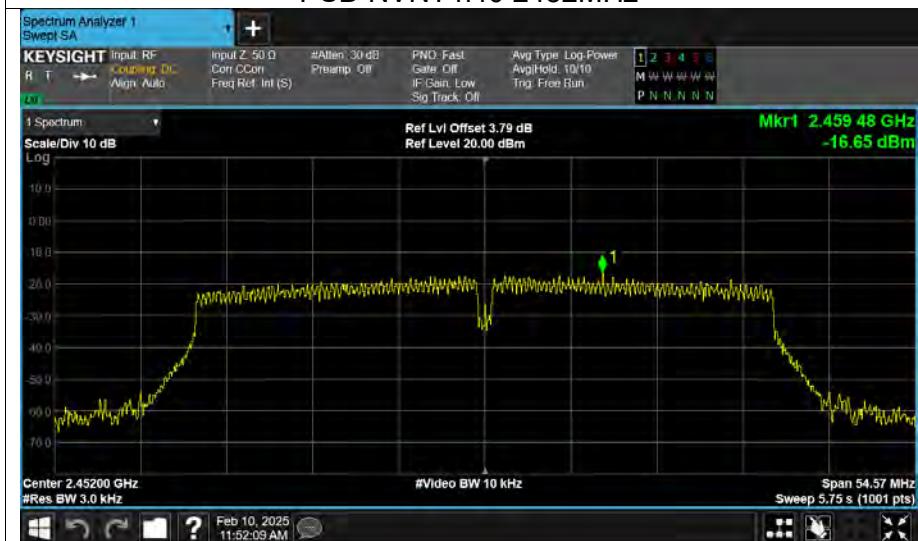
Maximum Power Spectral Density Level




Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-7.04	8	Pass
NVNT	b	2437	-6.02	8	Pass
NVNT	b	2462	-6.76	8	Pass
NVNT	g	2412	-13.99	8	Pass
NVNT	g	2437	-13.24	8	Pass
NVNT	g	2462	-14.17	8	Pass
NVNT	n20	2412	-14.87	8	Pass
NVNT	n20	2437	-14.37	8	Pass
NVNT	n20	2462	-14.93	8	Pass
NVNT	n40	2422	-16.32	8	Pass
NVNT	n40	2437	-16.63	8	Pass
NVNT	n40	2452	-16.65	8	Pass

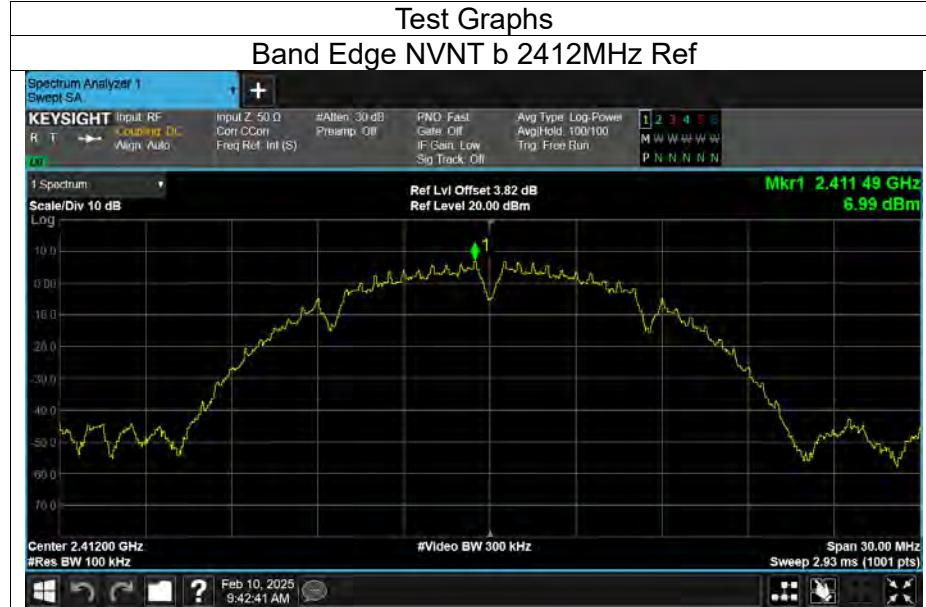


PSD NVNT n20 2412MHz


PSD NVNT n40 2422MHz

PSD NVNT n40 2437MHz

PSD NVNT n40 2452MHz


Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-51.52	-20	Pass
NVNT	b	2462	-60.23	-20	Pass
NVNT	g	2412	-36.78	-20	Pass
NVNT	g	2462	-48.68	-20	Pass
NVNT	n20	2412	-39.42	-20	Pass
NVNT	n20	2462	-48.25	-20	Pass
NVNT	n40	2422	-36.6	-20	Pass
NVNT	n40	2452	-42.79	-20	Pass

Test Graphs

Band Edge NVNT b 2412MHz Ref

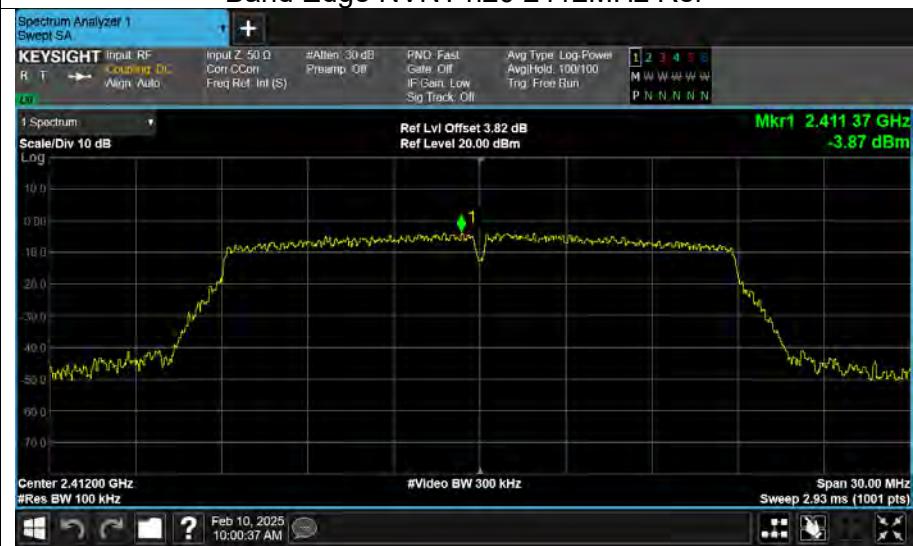
Band Edge NVNT b 2412MHz Emission

Band Edge NVNT b 2462MHz Ref

Band Edge NVNT b 2462MHz Emission

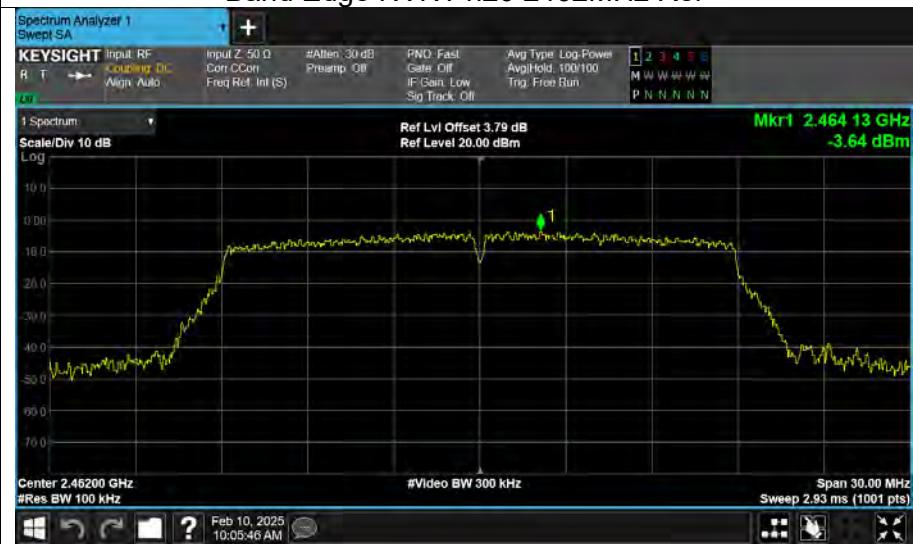
Band Edge NVNT g 2412MHz Ref

Band Edge NVNT g 2412MHz Emission


Band Edge NVNT g 2462MHz Ref

Band Edge NVNT g 2462MHz Emission

Band Edge NVNT n20 2412MHz Ref

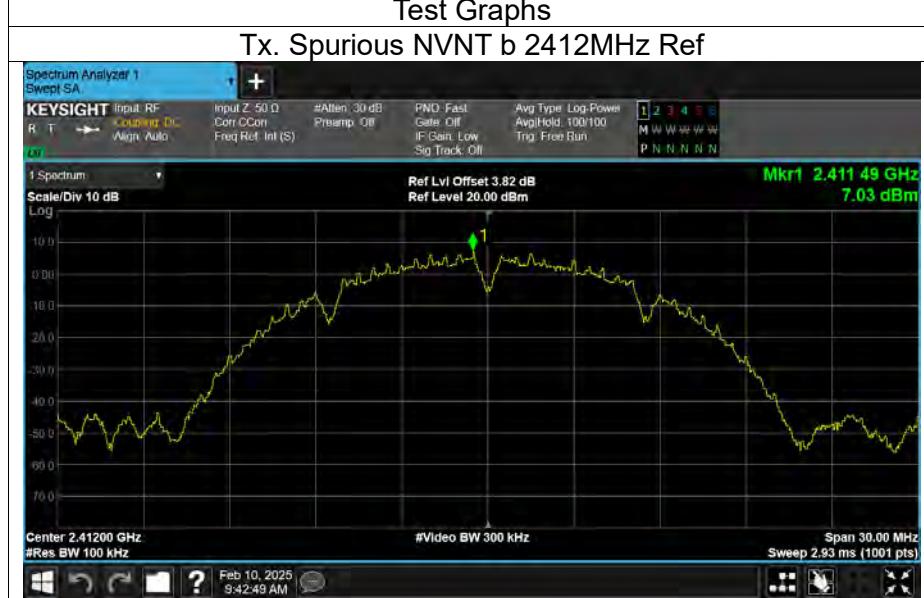


Band Edge NVNT n20 2412MHz Emission

Band Edge NVNT n20 2462MHz Ref

Band Edge NVNT n20 2462MHz Emission

Band Edge NVNT n40 2452MHz Emission


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-55.34	-20	Pass
NVNT	b	2437	-56.13	-20	Pass
NVNT	b	2462	-55.79	-20	Pass
NVNT	g	2412	-45.37	-20	Pass
NVNT	g	2437	-45.12	-20	Pass
NVNT	g	2462	-45.39	-20	Pass
NVNT	n20	2412	-44.28	-20	Pass
NVNT	n20	2437	-45.15	-20	Pass
NVNT	n20	2462	-45.22	-20	Pass
NVNT	n40	2422	-42.74	-20	Pass
NVNT	n40	2437	-42.5	-20	Pass
NVNT	n40	2452	-42.21	-20	Pass

Test Graphs

Tx. Spurious NVNT b 2412MHz Ref

Tx. Spurious NVNT b 2412MHz Emission

Tx. Spurious NVNT b 2437MHz Ref

Tx. Spurious NVNT b 2437MHz Emission

Tx. Spurious NVNT b 2462MHz Ref



Tx. Spurious NVNT b 2462MHz Emission

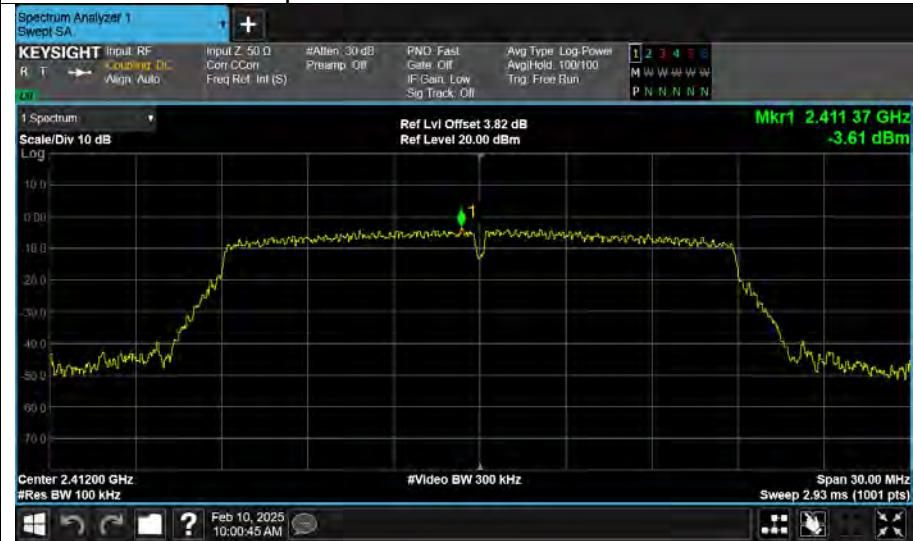

Tx. Spurious NVNT g 2412MHz Ref

Tx. Spurious NVNT g 2412MHz Emission

Tx. Spurious NVNT g 2437MHz Ref

Tx. Spurious NVNT g 2437MHz Emission

Tx. Spurious NVNT g 2462MHz Ref

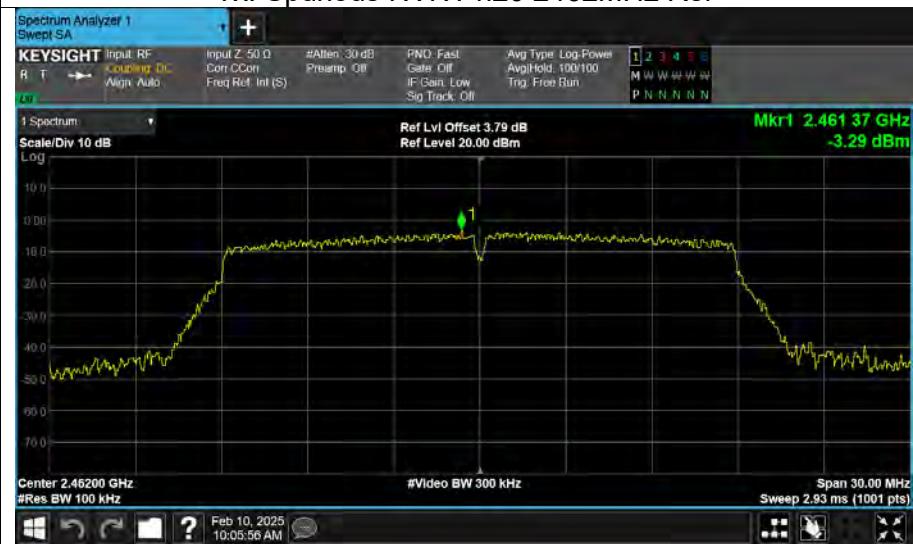


Tx. Spurious NVNT g 2462MHz Emission

Tx. Spurious NVNT n20 2412MHz Ref

Tx. Spurious NVNT n20 2412MHz Emission

Tx. Spurious NVNT n20 2437MHz Ref



Tx. Spurious NVNT n20 2437MHz Emission

Tx. Spurious NVNT n20 2462MHz Ref

Tx. Spurious NVNT n20 2462MHz Emission

Tx. Spurious NVNT n40 2422MHz Ref

Tx. Spurious NVNT n40 2422MHz Emission

Tx. Spurious NVNT n40 2437MHz Ref

Tx. Spurious NVNT n40 2437MHz Emission

Tx. Spurious NVNT n40 2452MHz Ref

Tx. Spurious NVNT n40 2452MHz Emission

APPENDIX II - MEASUREMENT PHOTOS

Note: Please see the attached RF_Test Setup photos for FCC ID & IC.

APPENDIX III - PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Note: Please see LGT24L192EM01_APPENDIX II.

※※※※END OF THE REPORT※※※※