FCC PART 15 SUBPART C TEST REPORT

FCC PART 15 C (15.225)

Report Reference No. GTS20250219002-1-08

FCC ID.: 2AYD5-I24D06

Compiled by

(position+printed name+signature) .: File administrators Peter Xiao

Supervised by

(position+printed name+signature) .: Test Engineer Evan Ouyarg

Approved by

(position+printed name+signature) .: Manager Jason Hu

Date of issue Mar.28, 2025

Representative Laboratory Name.: Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name...... Imin Technology Pte Ltd

Test specification:

Standard FCC Part 15 C (15.225)

TRF Originator.....: Shenzhen Global Test Service Co.,Ltd.

Master TRF Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description POS Device

Trade Mark.....

Manufacturer: Imin Technology Pte Ltd

Model/Type reference: 124D06

List Model N/A

Modulation Type.....: ASK

Operation Frequency: 13.56 MHz

Hardware Version: N/A

Software Version: N/A

Rating DC 24V/1.5A by Adapter

Result PASS

Report No.: GTS20250219002-1-08 Page 2 of 37

TEST REPORT

Test Report No.:	GTS20250219002-1-08	Mar.28, 2025
	G1320230219002-1-00	Date of issue

Equipment under Test : POS Device

Model /Type : I24D06

List Model : N/A

Applicant : Imin Technology Pte Ltd

Address : 11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

Manufacturer : Imin Technology Pte Ltd

Address : 11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	<u>5</u>
2. SUMMARY	6
2.1. General Remarks	6
2.2. Product Description	6
2.3. Equipment Under Test	7
2.4. Short description of the Equipment under Test (EUT)	
2.5. Block Diagram of Test Setup	
2.6. Related Submittal(s) / Grant (s)	
2.7. EUT Exercise Software	
2.8. Special Accessories	
2.9. External I/O Cable	8
2.10. Modifications	8
3. TEST ENVIRONMENT	9
3.1. Address of the test laboratory	
3.2. Test Facility	
3.3. Environmental conditions	
3.4. Statement of the measurement uncertainty	
3.5. Summary of measurement results	
3.6. Equipments Used during the Test	
4. RADIATED MEASUREMENT	
4.1. Standard Applicable	
4.2. Measuring Instruments and Setting	
4.3. Test Procedures	
4.4. Test Setup Layout	
4.5. Test Results	16
5. FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT	24
5.1. Block Diagram of Test Setup	24
5.2. Field strength of fundamental emissions limit and Mask limit	24
5.3. Test Results	25
6. BANDWIDTH OF THE OPERATING FREQUENCY	26
6.1. Standard Applicable	26
6.2. Test Result	
7. FREQUENCY STABILITY MEASUREMENT	27
7.1. Standard Applicable	
7.2. Test Result	
8. LINE CONDUCTED EMISSIONS	
8.1. Standard Applicable	
8.2. Block Diagram of Test Setup	
8.3. Test Results	
9. ANTENNA REQUIREMENTS	
9.1. Standard Applicable	
9.2. Antenna Connected Construction	35
9.2.1. Standard Applicable	
9.2.2. Antenna Connector Construction	
9.2.3. Results: Compliance.	35

10. TEST SETUP PHOTOS OF THE EUT	36
44 EVTERNAL AND INTERNAL BUOTOC OF THE FUT	07
11. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	<u>37</u>

Page 4 of 37

Report No.: GTS20250219002-1-08

Report No.: GTS20250219002-1-08 Page 5 of 37

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.225</u>: RADIO FREQUENCY DEVICES. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices Report No.: GTS20250219002-1-08 Page 6 of 37

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample		Feb.28, 2025
Testing commenced on	:	Feb.28, 2025
Testing concluded on	:	Mar.25, 2025

2.2. Product Description

Product Name:	POS Device
Trade Mark:	iMin
Model/Type reference:	I24D06
List Model:	N/A
Model Declaration	N/A
Power supply:	DC 24V/1.5A by Adapter
Hardware Version	N/A
Software Version	N/A
Sample ID	GTS20241108022-2-S0001-1# GTS20241108022-2-S0001-2#(Version A) GTS20241108022-2-S0001-3#(Version B) GTS20241108022-2-S0001-4#(Version C)
Bluetooth	
Frequency Range	2402MHz ~ 2480MHz
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)
2.4GWLAN	, ,
WLAN Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz IEEE 802.11n HT40:2422-2452MHz IEEE 802.11ax HE20:2412-2462MHz IEEE 802.11ax HE40:2422-2452MHz
WLAN Modulation Type	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax HE20: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax HE40: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Channel number:	11 Channel for IEEE 802.11b/g/n/ax (HT20) 7 Channel for IEEE 802.11n/ax (HT40)
Channel separation:	5MHz
WIFI(5.2G/5.3G/5.7G/5.8G Ban	
WLAN Operation frequency	5180-5240MHz/ 5260MHz to 5320MHz/ 5500MHz to 5700MHz/ 5745MHz

	to 5825MHz
	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ac VHT20: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ax HE20: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)
WI AN Madulation Type	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
WLAN Modulation Type	IEEE 802.11ac VHT40: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ax HE40: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ac VHT80: OFDM (256QAM,64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11ax HE80: OFDMA (1024QAM,256QAM,64QAM, 16QAM, QPSK,BPSK)
	4 Channels for 20MHz bandwidth(5180-5240MHz)
	4 Channels for 20MHz bandwidth(5260-5320MHz)
	11 Channels for 20MHz bandwidth(5500-5700MHz)
	5 channels for 20MHz bandwidth(5745-5825MHz)
	2 channels for 40MHz bandwidth(5190~5230MHz)
Channel number:	2 channels for 40MHz bandwidth(5270~5310MHz)
Charmer number.	5 Channels for 40MHz bandwidth(5510-5670MHz)
	2 channels for 40MHz bandwidth(5755~5795MHz)
	1 channels for 80MHz bandwidth(5210MHz)
	1 channels for 80MHz bandwidth(5290MHz)
	2 Channels for 80MHz bandwidth(5530-5610MHz)
	1 channels for 80MHz bandwidth(5775MHz)
Antenna Description	Internal Antenna, 3.36dBi(Max.) for 2.4G Band and 5.11dBi(Max.) for 5G Band
RFID(13.56MHz) (Optional)	
Frequency Range	13.56MHz
Channel Number	1
Modulation Type	ASK
Antenna Description	Internal Antenna, 0dBi (Max.), NFC has three optional antennas, antenna 1(Model:DS2-52), antenna 2 (Model:DS2-51) and antenna 3 (Model:DS2-55).
Remark:The I24D06 model ha Version A: One large display a Version B: Only one large disp Version C: Only one large disp	nd one small display ; lay;

Version C: Only one large display(wall-mounted);

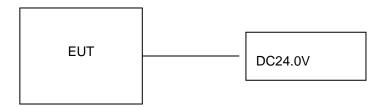
The I24D06 sub screen comes in two types, with and without touch, the worst mode tested in the report.

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	•	24 V DC
		0	Other (specified in blank below)		

DC 24.0V


2.4. Short description of the Equipment under Test (EUT)

This is a POS Device

For more details, refer to the user's manual of the EUT.

Report No.: GTS20250219002-1-08 Page 8 of 37

2.5. Block Diagram of Test Setup

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AYD5-I24D06** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. EUT Exercise Software

N/A.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN HONOR ELECTRONIC CO.,LTD.	Adapter	ADS-65HI-19A- 124036F		SDOC
Jiangsu Chenyang Electron Co.,Ltd.	Adapter	CYZS36-240150		SDOC
LENOVO	PC	DESKYOP-EUIVCNR		SDOC
LENOVO	Keyboard	T460S		SDOC
LENOVO	Mouse	Howard		SDOC
aigo	USB flash disk	U330		SDOC
SONY	Earphone	MDR-XB550AP	-	SDOC
	Electronic Scale			SDOC
	Cashbox			SDOC

Note: The PC, Electronic Scale, Cashbox, Keyboard, Mouse, Earphone and USB flash disk is only used for auxiliary testing.

2.9. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	Non-Shielded, 1.0m
USB Port	3	N/A
RJ11 Port	1	N/A
RJ12 Port	1	N/A
RJ45 Port	1	Non-Shielded, 10m
HDMI Port	1	N/A
Type-C Port	1	N/A
Earphone Port	1	N/A

2.10. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20250219002-1-08 Page 9 of 37

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	-20-50 ° C	
Humidity:	30-60 %	
Atmospheric pressure:	950-1050mbar	

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: GTS20250219002-1-08 Page 10 of 37

3.5. Summary of measurement results

Applied Standard: FCC Part 15 Subpart C								
Test Items	FCC Rules	Test Sample	Result					
Line Conducted Emissions	§15.207(a)	GTS20241108022-2- S0001-2# GTS20241108022-2- S0001-3#	PASS					
		GTS20241108022-2- S0001-4#						
Field Strength of Fundamental Emissions	§15.225(a)(b)(c)	GTS20241108022-2- S0001-1#	PASS					
		GTS20241108022-2- S0001-1#						
Radiated Emissions	\$45,005(J) 8,\$45,000	GTS20241108022-2- S0001-2#	PASS					
Natiated Efficiency	§15.225(d) & §15.209	GTS20241108022-2- S0001-3#	F A00					
		GTS20241108022-2- S0001-4#						
20dB Bandwidth	§ 15.215	GTS20241108022-2- S0001-1#	PASS					
Frequency Stability	§15.225(e)	GTS20241108022-2- S0001-1#	PASS					
Antenna Requirement	§15.203	GTS20241108022-2- S0001-3#	PASS					

Remark:

- The measurement uncertainty is not included in the test result. NA = Not Applicable; NP = Not Performed
- 2.
- Note 1 Test results inside test report; 3.
- Note 2 Test results in other test report (SAR Report).
- We tested all test mode and recorded worst case in report

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2024/07/15	2025/07/14
LISN	R&S	ESH2-Z5	893606/008	2024/07/15	2025/07/14
EMI Test Receiver	R&S	ESPI3	101841-cd	2024/07/15	2025/07/14
EMI Test Receiver	R&S	ESCI7	101102	2024/07/15	2025/07/14
Spectrum Analyzer	Agilent	N9020A	MY48010425	2024/07/15	2025/07/14
Spectrum Analyzer	R&S	FSV40-N	101800	2024/07/15	2025/07/14
Vector Signal generator	Agilent	N5181A	MY49060502	2024/07/15	2025/07/14
Signal generator	Agilent	N5182A	3610AO1069	2024/07/15	2025/07/14
Climate Chamber	ESPEC	EL-10KA	A20120523	2024/07/15	2025/07/14
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2024/12/16	2025/12/15
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2024/07/15	2025/07/14
Bilog Antenna	Schwarzbeck	VULB9163	000976	2024/07/15	2025/07/14
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2024/07/15	2025/07/14
Amplifier	SKET	LAPA_30M01G-32	SK2024010400 1	2025/01/21	2026/01/20
Amplifier	EMCI	EMC012645SE	980340	2025/01/21	2026/01/20
Amplifier	Schwarzbeck	BBV9179	9719-025	2025/01/21	2026/01/20
Temperature/Humidity Meter	Gangxing	CTH-608	02	2024/07/15	2025/07/14
High-Pass Filter	HUBER+SUHNER	RG214	RE01	2024/07/15	2025/07/14
High-Pass Filter	HUBER+SUHNER	RG214	RE02	2024/07/15	2025/07/14
RF Cable(below 1GHz)	HUBER+SUHNER	RG214	RE01	2024/07/15	2025/07/14
RF Cable(above 1GHz)	HUBER+SUHNER	RG214	RE02	2024/07/15	2025/07/14
Data acquisition card	Agilent	U2531A	TW53323507	2024/07/15	2025/07/14
Power Sensor	Agilent	U2021XA	MY5365004	2024/07/15	2025/07/14
Test Control Unit	Tonscend	JS0806-1	178060067	2024/07/15	2025/07/14
Automated filter bank	Tonscend	JS0806-F	19F8060177	2024/07/15	2025/07/14
Wireless Commnunication Tester	Rohde&Schwarz	CMW500	125408	2024/07/15	2025/07/14
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/

Note: The Cal.Interval was one year.

Report No.: GTS20250219002-1-08 Page 12 of 37

4. RADIATED MEASUREMENT

4.1. Standard Applicable

According to §15.209/ §15.205

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110 \1\ 0.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.17775 4.20725-4.20775 6.215-6.218	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2	399.9-410 608-614 960-1240 1300-1427 1435-1626.5 1645.5-1646.5 1660-1710	4.5-5.15 5.35-5.46 7.25-7.75 8.025-8.5 9.0-9.2 9.3-9.5 10.6-12.7
6.26775-6.26825 6.31175-6.31225 8.291-8.294 8.362-8.366 8.37625-8.38675 8.41425-8.41475 12.29-12.293. 12.51975-12.52025 12.57675-12.57725 13.36-13.41	108-121.94 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285 322-335.4	1718.8-1722.2 2200-2300 2310-2390 2483.5-2500 2690-2900 3260-3267 3332-3339 3345.8-3358 3600-4400	13.25-13.4 14.47-14.5 15.35-16.2 17.7-21.4 22.01-23.12 23.6-24.0 31.2-31.8 36.43-36.5 (\2\)

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

Report No.: GTS20250219002-1-08 Page 13 of 37

4.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Report No.: GTS20250219002-1-08 Page 14 of 37

3) Sequence of testing 1 GHz to 18 GHz

Setup

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

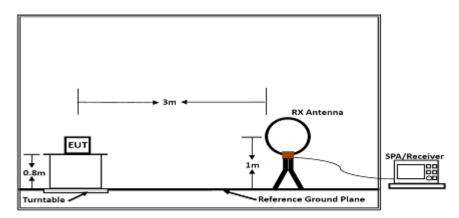
Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

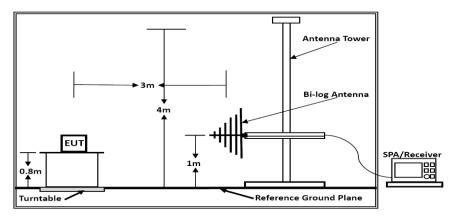
Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

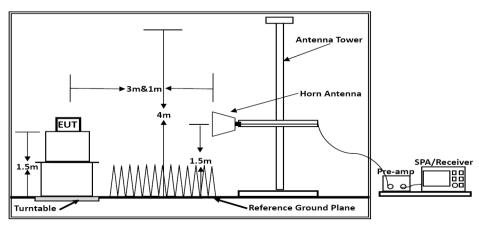
Field Strength Calculation


The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG


Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG


4.4. Test Setup Layout

Below 30MHz

Below 1GHz

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

Report No.: GTS20250219002-1-08 Page 16 of 37

4.5. Test Results

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Evan Ouyang	Configurations	NFC

PASS.

The test data please refer to following page:

9 KHz~30MHz

Version A(Adapter: ADS-65HI-19A-124036F, NFC antenna Model:DS2-52):

Freq. MHz	Reading dBuV	Factor dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
0.17	30.77	20.54	51.31	103.12	51.81	QP
0.89	29.70	20.48	50.18	83.12	32.94	QP
2.02	29.38	20.30	49.68	69.54	19.86	QP
5.03	29.63	20.32	49.95	69.54	19.59	QP
13.56	66.88	20.18	87.06	124.00	36.94	QP
15.01	27.96	20.12	48.08	69.54	21.46	QP
22.00	27.20	19.94	47.14	69.54	22.40	QP
25.98	26.51	19.95	46.46	69.54	23.08	QP

Version B(Adapter: ADS-65HI-19A-124036F, NFC antenna Model:DS2-52):

Freq. MHz	Reading dBuV	Factor dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
0.23	32.75	20.54	53.29	100.28	46.99	QP
0.84	33.95	20.48	54.43	80.28	25.85	QP
1.97	25.88	20.30	46.18	69.54	23.36	QP
5.04	28.00	20.32	48.32	69.54	21.22	QP
13.56	65.42	20.18	85.60	124.00	38.40	QP
14.98	34.38	20.12	54.50	69.54	15.04	QP
21.99	25.60	19.94	45.54	69.54	24.00	QP
25.95	26.48	19.95	46.43	69.54	23.11	QP

Report No.: GTS20250219002-1-08 Page 17 of 37

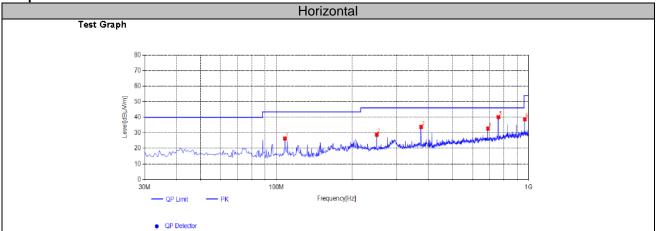
Version C(Adapter: ADS-65HI-19A-124036F, NFC antenna Model:DS2-52):

Freq. MHz	Reading dBuV	Factor dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
0.19	30.86	20.54	51.40	102.11	50.71	QP
0.92	33.76	20.48	54.24	82.11	27.87	QP
2.04	26.40	20.30	46.70	69.54	22.84	QP
4.97	33.00	20.32	53.32	69.54	16.22	QP
13.56	63.00	20.18	83.18	124.00	40.82	QP
14.99	34.42	20.12	54.54	69.54	15.00	QP
21.95	32.70	19.94	52.64	69.54	16.90	QP
26.03	24.40	19.95	44.35	69.54	25.19	QP

*Note: Emission Level= Reading Level + Factor

Factor= Antenna Factor + Cable Loss

Margin = Emission Level Limit – Measured Values

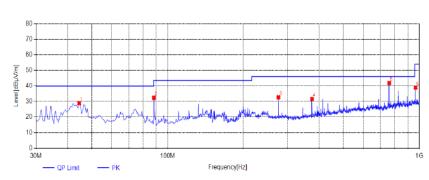

NOTE: All the modes have been tested and recorded worst mode in the report.

[&]quot;--" means noise floor.

Report No.: GTS20250219002-1-08 Page 18 of 37

For 30MHz-1GHz Version A:

Adapter: ADS-65HI-19A-124036F

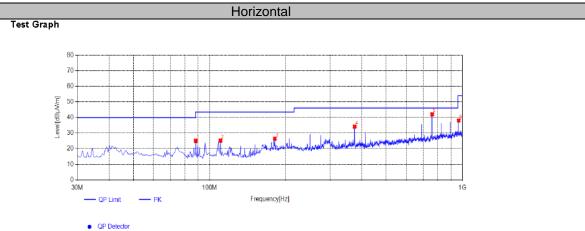

Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	108.085	37.77	-11.37	26.40	43.50	17.10	100	294	PK	Horizonta	PASS
2	250.19	37.56	-8.70	28.86	46.00	17.14	100	320	PK	Horizonta	PASS
3	374.835	39.51	-5.71	33.80	46.00	12.20	100	19	PK	Horizonta	PASS
4	690.085	32.28	0.51	32.79	46.00	13.21	100	327	PK	Horizonta	PASS
5	759.44	38.85	1.32	40.17	46.00	5.83	100	29	PK	Horizonta	PASS
6	966.535	36.24	2.48	38.72	54.00	15.28	100	132	PK	Horizonta	PASS

Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

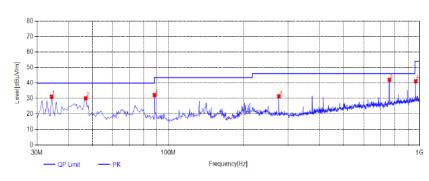

Su	Suspected List										
NC	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	44.55	40.38	-11.41	28.97	40.00	11.03	100	106	PK	Vertical	PASS
2	88.2	45.90	-13.50	32.40	43.50	11.10	100	83	PK	Vertical	PASS
3	275.895	40.53	-7.82	32.71	46.00	13.29	100	242	PK	Vertical	PASS
4	374.835	37.36	-5.71	31.65	46.00	14.35	100	331	PK	Vertical	PASS
5	759.44	40.60	1.32	41.92	46.00	4.08	100	215	PK	Vertical	PASS
6	966.535	36.44	2.48	38.92	54.00	15.08	100	17	PK	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

 $2.\,Factor\,(dB) = Antenna\,\,Factor\,(dB/m) + Cable\,\,loss\,(dB) - Pre\,Amplifier\,gain\,(dB).$

Report No.: GTS20250219002-1-08 Page 19 of 37

Adapter: CYZS36-240150


Susp	Suspected List											
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark	
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]				
1	88.2	38.51	-13.50	25.01	43.50	18.49	100	68	PK	Horizonta	PASS	
2	110.51	36.68	-11.56	25.12	43.50	18.38	100	247	PK	Horizonta	PASS	
3	181.32	38.43	-12.04	26.39	43.50	17.11	100	0	PK	Horizonta	PASS	
4	374.835	39.86	-5.71	34.15	46.00	11.85	100	11	PK	Horizonta	PASS	
5	759.44	40.78	1.32	42.10	46.00	3.90	100	28	PK	Horizonta	PASS	
6	966.535	35.59	2.48	38.07	54.00	15.93	100	341	PK	Horizonta	PASS	

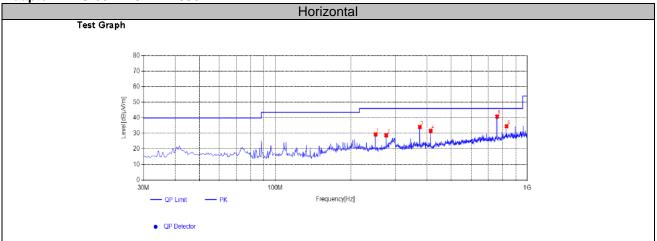
Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

Susp	Suspected List											
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark	
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]				
1	34.365	43.74	-12.50	31.24	40.00	8.76	100	88	PK	Vertical	PASS	
2	46.975	41.36	-11.21	30.15	40.00	9.85	100	191	PK	Vertical	PASS	
3	88.2	45.73	-13.50	32.23	43.50	11.27	100	39	PK	Vertical	PASS	
4	275.895	39.29	-7.82	31.47	46.00	14.53	100	211	PK	Vertical	PASS	
5	759.44	40.79	1.32	42.11	46.00	3.89	100	218	PK	Vertical	PASS	
6	966.535	38.75	2.48	41.23	54.00	12.77	100	3	PK	Vertical	PASS	

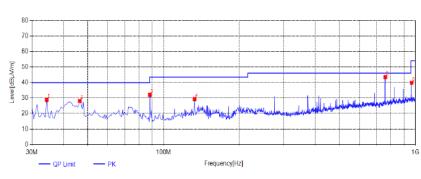

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

Report No.: GTS20250219002-1-08 Page 20 of 37

Version B:

Adapter: ADS-65HI-19A-124036F

Test Graph



Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	, ,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	250.19	38.05	-8.70	29.35	46.00	16.65	100	86	PK	Horizonta	PASS
2	275.895	36.60	-7.82	28.78	46.00	17.22	100	272	PK	Horizonta	PASS
3	374.835	39.80	-5.71	34.09	46.00	11.91	100	2	PK	Horizonta	PASS
4	414.12	36.46	-4.83	31.63	46.00	14.37	100	106	PK	Horizonta	PASS
5	759.44	39.56	1.32	40.88	46.00	5.12	100	26	PK	Horizonta	PASS
6	828.31	32.70	1.87	34.57	46.00	11.43	100	36	PK	Horizonta	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

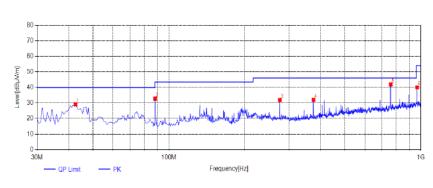
QP Detector

Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[**** 12]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	34.365	41.43	-12.50	28.93	40.00	11.07	100	289	PK	Vertical	PASS
2	46.49	39.43	-11.28	28.15	40.00	11.85	100	123	PK	Vertical	PASS
3	88.2	45.57	-13.50	32.07	43.50	11.43	100	47	PK	Vertical	PASS
4	132.82	43.23	-13.85	29.38	43.50	14.12	100	140	PK	Vertical	PASS
5	759.44	42.22	1.32	43.54	46.00	2.46	100	219	PK	Vertical	PASS
6	966.535	37.34	2.48	39.82	54.00	14.18	100	2	PK	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

Adapter: CYZS36-240150

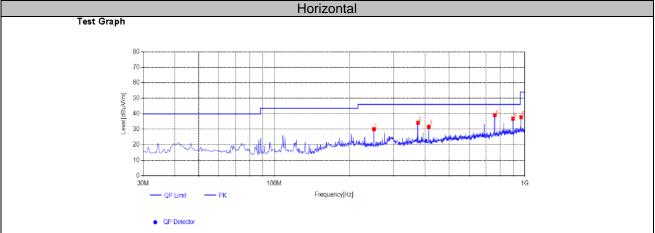
Test Graph Organical Presidency (Hz) Organical Presidency (Hz)


Sus	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	275.895	36.57	-7.82	28.75	46.00	17.25	100	264	PK	Horizonta	PASS
2	374.835	39.73	-5.71	34.02	46.00	11.98	100	9	PK	Horizonta	PASS
3	414.12	35.47	-4.83	30.64	46.00	15.36	100	115	PK	Horizonta	PASS
4	759.44	37.06	1.32	38.38	46.00	7.62	100	320	PK	Horizonta	PASS
5	897.18	35.26	2.10	37.36	46.00	8.64	100	29	PK	Horizonta	PASS
6	966.535	37.01	2.48	39.49	54.00	14.51	100	132	PK	Horizonta	PASS

Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor(dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

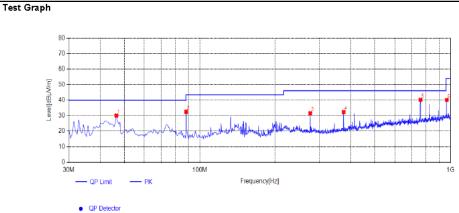

Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	42.61	40.71	-11.56	29.15	40.00	10.85	100	99	PK	Vertical	PASS
2	88.2	46.29	-13.50	32.79	43.50	10.71	100	89	PK	Vertical	PASS
3	275.895	39.74	-7.82	31.92	46.00	14.08	100	278	PK	Vertical	PASS
4	374.835	37.75	-5.71	32.04	46.00	13.96	100	324	PK	Vertical	PASS
5	759.44	40.66	1.32	41.98	46.00	4.02	100	225	PK	Vertical	PASS
6	966.535	37.55	2.48	40.03	54.00	13.97	100	2	PK	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20250219002-1-08 Page 22 of 37

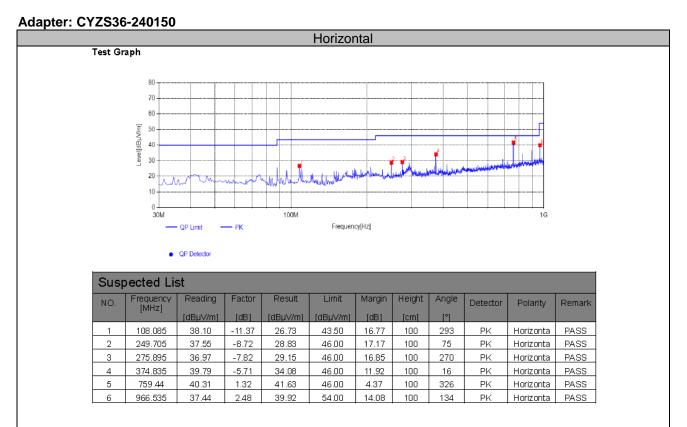
Version C:

Adapter: ADS-65HI-19A-124036F



Sus	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	250.19	38.80	-8.70	30.10	46.00	15.90	100	82	PK	Horizonta	PASS
2	374.835	39.90	-5.71	34.19	46.00	11.81	100	19	PK	Horizonta	PASS
3	414.12	36.45	-4.83	31.62	46.00	14.38	100	43	PK	Horizonta	PASS
4	759.44	37.80	1.32	39.12	46.00	6.88	100	324	PK	Horizonta	PASS
5	897.18	34.68	2.10	36.78	46.00	9.22	100	29	PK	Horizonta	PASS
6	966.535	35.25	2.48	37.73	54.00	16.27	100	29	PK	Horizonta	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .


2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[2]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	46.49	41.36	-11.28	30.08	40.00	9.92	100	129	PK	Vertical	PASS
2	88.2	45.97	-13.50	32.47	43.50	11.03	100	66	PK	Vertical	PASS
3	275.895	39.40	-7.82	31.58	46.00	14.42	100	288	PK	Vertical	PASS
4	374.835	38.06	-5.71	32.35	46.00	13.65	100	327	PK	Vertical	PASS
5	759.44	38.93	1.32	40.25	46.00	5.75	100	215	PK	Vertical	PASS
6	966.535	37.65	2.48	40.13	54.00	13.87	100	337	PK	Vertical	PASS

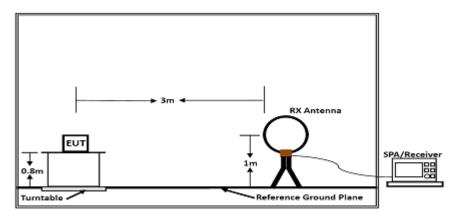
Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

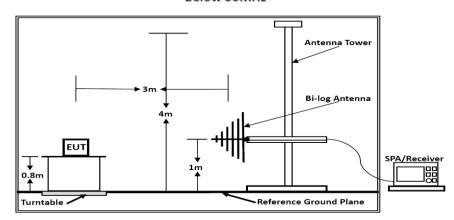
2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical Test Graph .evel[dBµV/m] 40 100M 30M - QP Limit Frequency[Hz] QP Detector Suspected List Frequency [MHz] Reading Factor Result Margin Height Angle NO. Detector Polarity Remark [dBµV/m] [dBuV/m] 34.365 45.24 -12.50 32.74 40.00 7.26 100 282 PΚ Vertical PASS 2 46.49 43.06 -11.28 31.78 40.00 8.22 100 82 PΚ Vertical PASS 32.40 PASS 3 88.2 45.90 -13.50 43.50 11.10 100 92 PΚ Vertical 4 132.82 42.57 -13.85 28.72 43.50 14.78 100 142 PΚ Vertical PASS 5 197.325 38.37 -10.43 27.94 43.50 15.56 100 135 PK Vertical PASS 3.20 218 Vertical

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).


Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

Note: All modes have been tested and the worst mode is recorded in the report, NFC has three optional antennas, with the worst mode recorded in the report (NFC antenna Model:DS2-52).


Report No.: GTS20250219002-1-08 Page 24 of 37

5. <u>FIELD STRENGTH OF FUNDAMENTAL EMISSIONS</u> AND MASK MEASUREMENT

5.1. Block Diagram of Test Setup

Below 30MHz

Below 1GHz

5.2. Field strength of fundamental emissions limit and Mask limit

The field strength of fundamental emissions shall not exceed 15848 microvolts/meter at 30 meters. The emissions limit in this paragraph is based on measurement instrumentation employing a QP detector.

Frequencies	Field Strength	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBµV/m) at 10m	(dBµV/m) at 3m
13.553 ~ 13.567MHz	15848 at 30m	103.08 (QP)	124 (QP)

Mask Limit:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
1.705-13.110	69.5	3
13.110-13.410	80.5	3
13.410-13.553	90.5	3
13.553-13.567	124.0	3
13.567-13.710	90.5	3
13.710-14.010	80.5	3
14.010-30.000	69.5	3

Report No.: GTS20250219002-1-08 Page 25 of 37

5.3. Test Results

Temperature	24.5℃	Humidity	53.7%
Test Engineer	Evan Ouyang	Configurations	NFC

PASS.

The test data please refer to following page:

Version A(Adapter: ADS-65HI-19A-124036F, NFC antenna Model:DS2-52):

	Freq.(MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin dB	Remark
1	13.25	31.53	20.18	51.71	80.50	28.79	QP
2	13.40	35.92	20.18	56.10	90.50	34.40	QP
3	13.42	33.14	20.18	53.32	90.50	37.18	QP
4	13.56	66.88	20.18	87.06	124.00	36.94	QP
5	13.62	26.29	20.18	46.47	90.50	44.03	QP
6	14.71	27.70	21.18	48.88	81.50	32.62	QP

Version B(Adapter: ADS-65HI-19A-124036F, NFC antenna Model:DS2-52):

	Freq.(MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin dB	Remark
1	13.16	32.43	20.18	52.61	80.50	27.89	QP
2	13.42	28.95	20.18	49.13	90.50	41.37	QP
3	13.56	65.42	20.18	85.60	124.00	38.40	QP
4	13.62	29.23	20.18	49.41	90.50	41.09	QP
5	13.59	32.14	20.18	52.32	90.50	38.18	QP
6	14.67	29.28	21.18	50.46	81.50	31.04	QP

Version C(Adapter: ADS-65HI-19A-124036F, NFC antenna Model:DS2-52):

	Freq.(MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin dB	Remark
1	13.16	13.22	34.89	20.18	55.07	80.50	QP
2	13.43	13.42	33.07	20.18	53.25	90.50	QP
3	13.56	63.00	20.18	83.18	124.00	40.82	QP
4	13.57	13.56	34.28	20.18	54.46	90.50	QP
5	13.61	13.66	29.37	20.18	49.55	90.50	QP
6	14.74	14.67	31.47	21.18	52.65	81.50	QP

*Note: Factor= Antenna Factor + Cable Loss

Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

Measured distance is 3m.

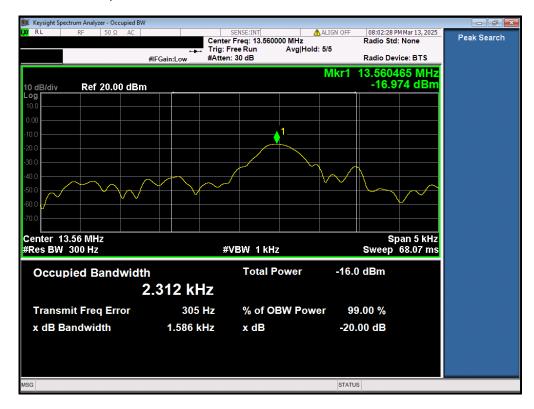
All emissions emit from non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

NOTE: All the modes have been tested and recorded worst mode in the report.

Report No.: GTS20250219002-1-08 Page 26 of 37

6. BANDWIDTH OF THE OPERATING FREQUENCY

6.1. Standard Applicable


Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band $(13.553 \sim 13.567 \text{MHz})$.

6.2. Test Result

Temperature	24.5℃	Humidity	53.7%		
Test Engineer Evan Ouyang		Configurations	NFC		

Carrier Frequency (MHz)	20dB Bandwidth (KHz)	F _L (MHz)	F _H (MHz)
13.56	1.586	13.559207	13.560793

Please refer to the test plot:

Report No.: GTS20250219002-1-08 Page 27 of 37

7. FREQUENCY STABILITY MEASUREMENT

7.1. Standard Applicable

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a full charged battery.

7.2. Test Result

Temperature	emperature 24.5℃		53.7%		
Test Engineer	Evan Ouyang	Configurations	NFC		

Voltage vs. Frequency Stability

Voltage(V)	Measurement Frequency (MHz)	Deviation (KHz)	Deviation (ppm)	Limit (ppm)
DC 26.4V	13.560025	0.025	1.87	100
DC 24.0V	13.560029	0.029	2.16	100
DC 21.6V	13.560047	0.047	3.43	100

Temperature vs. Frequency Stability

Temperature (°C)	Measurement Frequency (MHz)	Deviation (KHz)	Deviation (ppm)	Limit (ppm)
-20	13.560054	0.054	3.99	100
-10	13.560057	0.057	4.21	100
0	13.560036	0.036	2.62	100
10	13.560051	0.051	3.77	100
20	13.560023	0.023	1.71	100
30	13.560038	0.038	2.84	100
40	13.560038	0.038	2.78	100
45	13.560031	0.031	2.30	100

Report No.: GTS20250219002-1-08 Page 28 of 37

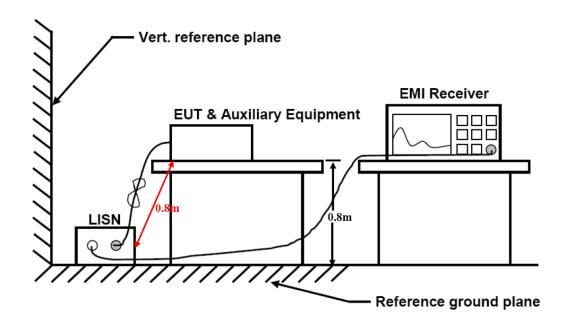
8. LINE CONDUCTED EMISSIONS

8.1. Standard Applicable

According to §15.207(a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

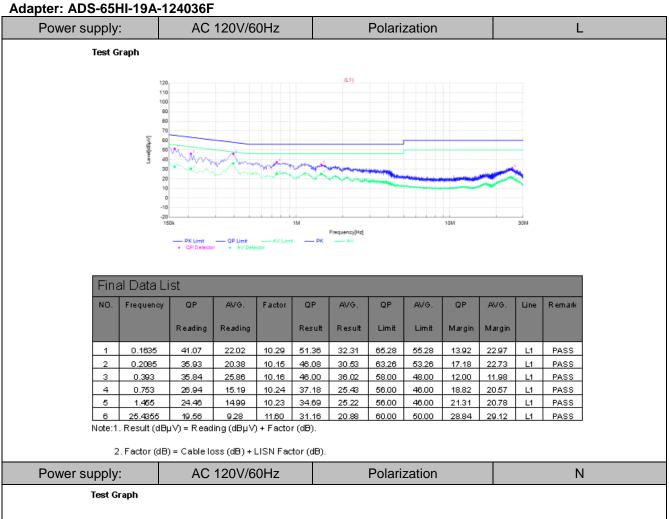

DISTURBANCE Calculation

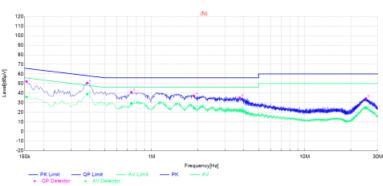
The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

8.2. Block Diagram of Test Setup

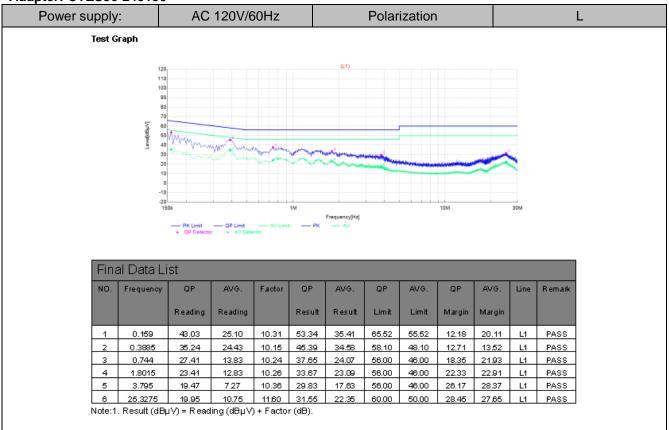



8.3. Test Results

Temperature	Temperature 24.5℃		53.7%		
Test Engineer	Evan Ouyang	Configurations	NFC		

Report No.: GTS20250219002-1-08 Page 29 of 37

Version A:



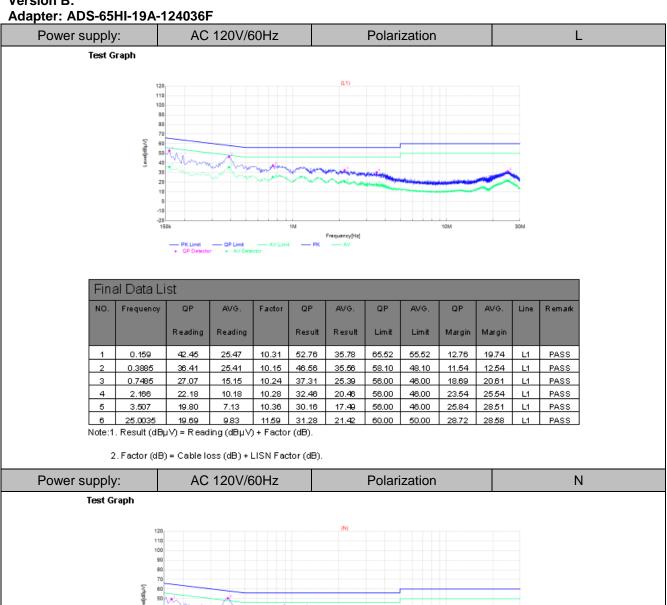
Fina	Final Data List											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1545	41.87	25.59	10.33	52.20	35.92	65.75	55.75	13.55	19.83	N	PASS
2	0.384	40.33	28.70	10.15	50.48	38.85	58.19	48.19	7.71	9.34	N	PASS
3	0.744	30.81	19.45	10.24	41.05	29.69	56.00	48.00	14.95	16.31	N	PASS
4	1.887	26.90	14.23	10.26	37.16	24.49	56.00	46.00	18.84	21.51	N	PASS
5	3.759	24.89	12.11	10.36	35.25	22.47	56.00	46.00	20.75	23.53	z	PASS
6	25.0395	23.08	12.70	11.54	34.62	24.24	60.00	50.00	25.38	25.76	N	PASS

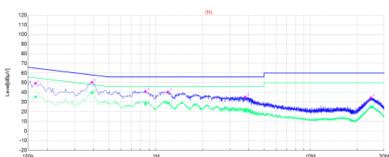
Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

Report No.: GTS20250219002-1-08 Page 30 of 37

Adapter: CYZS36-240150

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

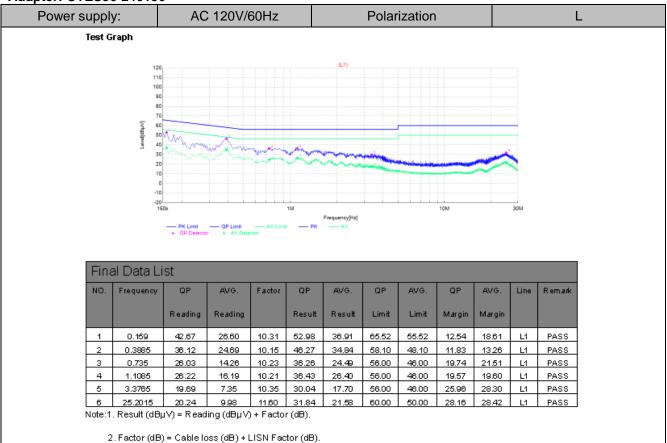

Power supply:	AC 120V/60Hz	Polarization	N		
Test Graph					
	120 110 100 90 80 70 60 50	(N)			
	30 20 10 0				


Final Data List AVG. Frequency QP AVG. AVG. Remark Reading Reading Result Result Limit Limit Margin Margin 37.78 10.18 47.96 64.21 54.21 16.25 PASS 1 0.186 23.67 33.85 20.36 N 0.3885 40.15 31.18 10.15 50.30 41.33 58.10 48.10 7.80 6.77 N PASS 3 40.82 46.00 PASS 0.735 30.59 17.36 10.23 27.59 56.00 15.18 18.41 Ν 4 1.077 30.26 18.25 10.21 40.47 28.46 56.00 46.00 15.53 17.54 Ν PASS 3.678 24.73 11.74 10.36 35.09 22.10 56.00 46.00 20.91 23.90 Ν PASS 5 25.0755 22.79 13.36 11.54 34.33 24.90 PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

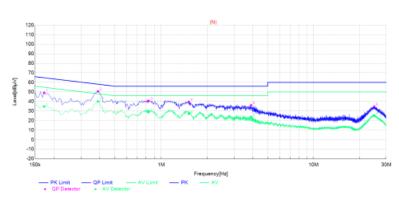
Report No.: GTS20250219002-1-08 Page 31 of 37

Version B:



Final Data List												
NO.	Frequency	QP	AVG.	Factor	QΡ	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.168	39.38	25.28	10.27	49.65	35.55	65.06	55.06	15.41	19.51	N	PASS
2	0.3885	40.31	29.36	10.15	50.46	39.51	58.10	48.10	7.64	8.59	N	PASS
3	0.852	30.83	17.71	10.24	41.07	27.95	56.00	46.00	14.93	18.05	N	PASS
4	1.194	30.36	18.98	10.21	40.57	29.19	56.00	46.00	15.43	16.81	N	PASS
5	3.7815	24.91	9.82	10.36	35.27	20.18	56.00	46.00	20.73	25.82	N	PASS
6	24.5805	23.05	13.49	11.53	34.58	25.02	60.00	50.00	25.42	24.98	N	PASS

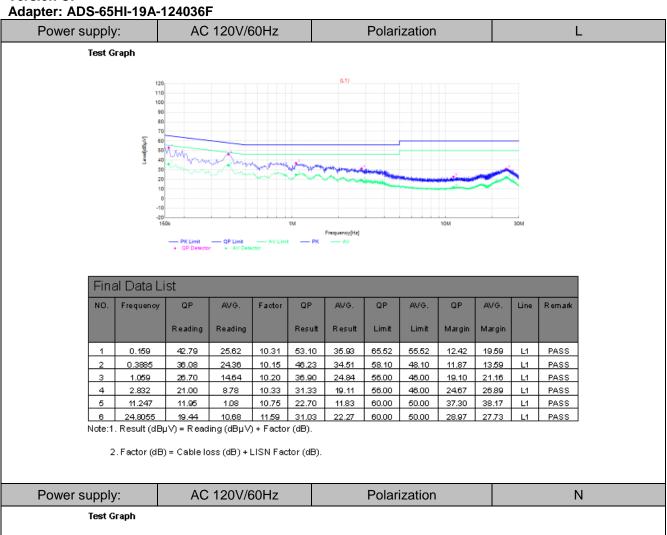
Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

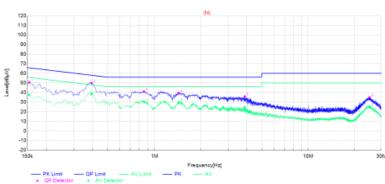

Report No.: GTS20250219002-1-08 Page 32 of 37

Adapter: CYZS36-240150

_			
Power supply:	AC 120V/60Hz	Polarization	N

Test Graph

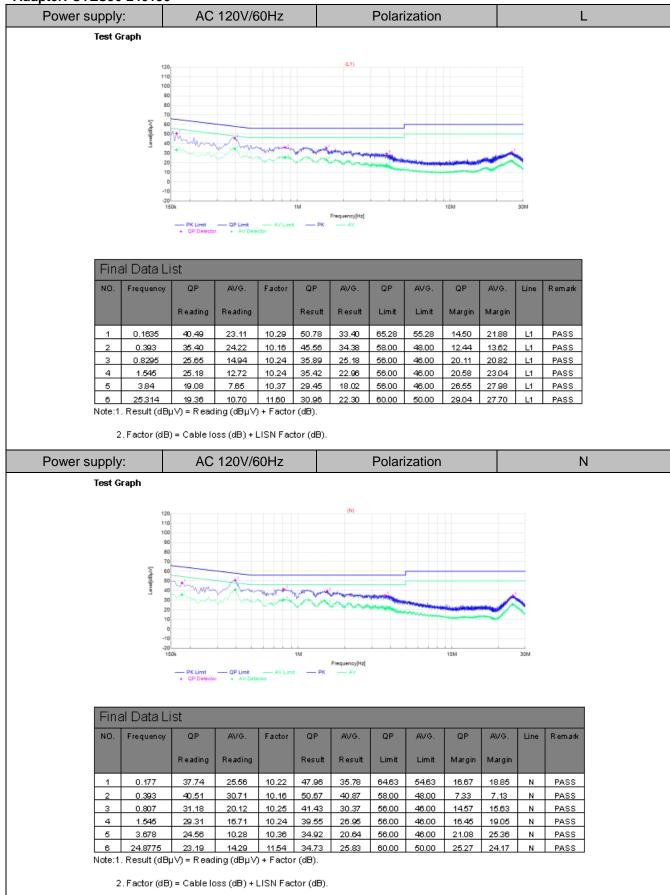



Final Data List												
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1725	38.92	24.49	10.24	49.16	34.73	64.84	54.84	15.68	20.11	z	PASS
2	0.3885	40.46	29.88	10.15	50.61	40.03	58.10	48.10	7.49	8.07	N	PASS
3	0.825	30.34	18.71	10.24	40.58	28.95	56.00	46.00	15.42	17.05	N	PASS
4	1.518	29.44	16.78	10.24	39.68	27.02	56.00	46.00	16.32	18.98	N	PASS
5	3.894	25.82	13.51	10.37	36.19	23.88	56.00	46.00	19.81	22.12	z	PASS
6	25.017	23.29	13.68	11.54	34.83	25.22	60.00	50.00	25.17	24.78	N	PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

Report No.: GTS20250219002-1-08 Page 33 of 37

Version C:



Final Data List												
NO.	Frequency	QP	AVG.	Factor	QΡ	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
1	0.1545	40.28	27.15	10.33	50.61	37.48	65.75	55.75	15.14	18.27	N	PASS
2	0.393	39.61	28.18	10.16	49.77	38.34	58.00	48.00	823	9.66	z	PASS
3	0.852	30.92	20.12	10.24	41.16	30.36	56.00	46.00	14.84	15.64	z	PASS
4	1.437	29.37	19.56	10.23	39.60	29.79	56.00	46.00	16.40	1621	N	PASS
5	3.867	25.54	14.21	10.37	35.91	24.58	56.00	46.00	20.09	21.42	N	PASS
6	25.1115	23.47	13.20	11.54	35.01	24.74	60.00	50.00	24.99	2526	N	PASS

Note:1. Result (dBμV) = Reading (dBμV) + Factor (dB).

Report No.: GTS20250219002-1-08 Page 34 of 37

Adapter: CYZS36-240150

Note: All modes have been tested and the worst mode is recorded in the report, NFC has three optional antennas, with the worst mode recorded in the report (NFC antenna Model:DS2-52).

Report No.: GTS20250219002-1-08 Page 35 of 37

9. ANTENNA REQUIREMENTS

9.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

9.2. Antenna Connected Construction

9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2.2. Antenna Connector Construction

The gains of antenna used for transmitting is 0dBi, and the antenna is a Loop antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

9.2.3. Results: Compliance.

10. TEST SETUP PHOTOS OF THE EUT

Photo of Radiated Emissions Measurement

Report No.: GTS20250219002-1-08

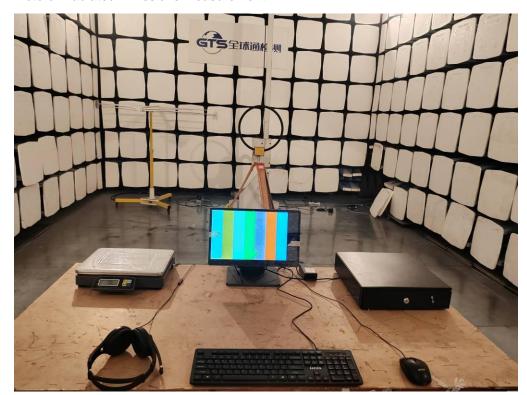


Fig. 1

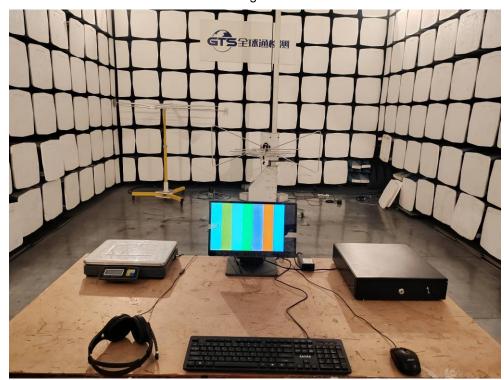


Fig. 2

Fig. 3

11. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the GTS20250219002-1-03.