

TEST REPORT

Report Number	210200004SEL-TEL1
Applicant Name / Address	palmcat corp. 992A, 2nd Floor, H-1, KIST, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
Test Sample Description	
- Product name	pero
- Model and/or Brand name	pero.21e
- FCC ID	2AY5CPERO21E
- Manufacturer Name	palmcat corp.
- Manufacturer Address	992A, 2nd Floor, H-1, KIST, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
- Variant model Name	N/A
Date of receipt of sample(s)	01 Feb. 2021
Date of Test	08 Feb. 2021 - 17 Feb. 2021
Test standard(s)	CFR 47 Part15 Subpart C CFR 47 Part 2.1091
Test Results & uncertainty	See Summary
Issue date	18 Feb. 2021

Note 1. The results shown in this test report refer only to the sample(s) tested.

Note 2: This report shall not be reproduced except in full, without the written approval of Intertek.

Tested by

Name : Criss.Lee
RF Engineer

Approved by

Name : Bran.Ko
RF Technical Manager

Intertek ETL SEMKO Korea Ltd.

Except where explicitly agreed in writing, all work and services performed by Intertek is subject to our standard Terms and Conditions which can be obtained at our website: <http://www.intertek.com/terms/>. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. This report is made solely on the basis of your instructions and / or information and materials supplied by you and provide no warranty on the tested sample(s) be truly representative of the sample source. The report is not intended to be a recommendation for any particular course of action, you are responsible for acting as you see fit on the basis of the report results. Intertek is under no obligation to refer to or report upon any facts or circumstances which are outside the specific instructions received and accepts no responsibility to any parties whatsoever, following the issue of the report, for any matters arising outside the agreed scope of the works. This report does not discharge or release you from your legal obligations and duties to any other person. You are the only one authorized to permit copying or distribution of this report (and then only in its entirety). Any such third parties to whom this report may be circulated rely on the content of the report solely at their own risk. This report shall not be reproduced, except in full.

SECTION 1 CONTENTS

SECTION NAMES	PAGE
1. Contents	2
2. General Description	3
3. Summary	7
4. Test Result	8
5. (APPENDIX 1) - PHOTOS	40
6. Revision History	43

SECTION 2 GENERAL DESCRIPTION

1. Laboratory Information

Name	Intertek ETL SEMKO Korea Ltd.
Address	Intertek building, 3, Gongdan-ro 160beon-gil, Gunpo-si, Gyeonggi-do, 15845, Korea
Phone No.	+82 2 567 7474
Fax No.	+82 2 567 8482

2. Applicant Information

Name	palmcat corp.
Address	992A, 2nd Floor, H-1, KIST, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
Contact Person	Jungmo Kim
Phone No.	+82 70 4322 6500

3. Description of EUT

Product name	pero
Model name	Pero.21e
Serial No.	-
Manufacturer	palmcat corp.
Country of Manufacture	Republic of Korea
Rated Voltage	DC 3.70 V
Approved RF Module	-
Approved Module FCC ID	-
Frequency Range	2 402 MHz ~ 2 480 MHz (BT LE)
Modulation Technique	GFSK (1 Mbps)
Number of Channel	40 CH
Antenna Type	Integral Antenna
Antenna Gain	2.50 dBi
Transmit Power	-0.36 dBm (Peak)
H/W Version	Pero-21E
S/W Version	DC7C01
RF Power Setting Parameter	TX Power: 3 dBm

4. Test Instrument

Control No.	Equipment	Manufacturer	Model	Serial No.	Cal. Due.
EMC001	EMI Test Receiver	Rohde & Schwarz	ESU40	100478	2022/1/4
EMC002	EMI Test Receiver	Rohde & Schwarz	ESU26	100590	2022/1/4
EMC003	Open Switch and Control Platform	Rohde & Schwarz	OSP130	101467	N/A
EMC007	Two-Line V-Network	Rohde & Schwarz	ENV216	101982	2021/10/5
EMC009	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100465	2021/2/25
EMC025	Biconilog (Type7)	ETS-Lindgren	3142E	00203547	2021/12/6
EMC029	DRG Horn (Medium)	ETS-Lindgren	3117	00203763	2021/7/2
EMC031	Standard Gain Horn	ETS-Lindgren	3160-09	LM9860	2021/5/12
EMC074	AMP	Rohde & Schwarz	SCU-01D	1904843	2021/6/22
EMC077	AMP	Rohde & Schwarz	SCU-18D	1952128	2021/6/22
EMC079	AMP	Rohde & Schwarz	SCU-26D	1879069	2021/6/22
EMC122	Programmable controller	PACIFIC smartsource	UPC12	N/A	2021/6/24
RF003	VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	261569	2021/6/22
RF004	SIGNAL GENERATOR	Rohde & Schwarz	SMB100A	178493	2021/6/30
RF005	SPECTRUM ANALYZER	Rohde & Schwarz	FSW43	103893	2021/6/23
RF009	FIXED COAXIAL ATTENUATOR	WEINSCHEL	56-10	71087	2021/6/24
RF018	Notch Rf filter	Micro-Tronics	BRM50702-02	G043	2021/6/23
RF022	System DC Power Supply	KEYSIGHT	N5747A	US16D4132P	2021/6/22
41	Softwarer	Rohde & Schwarz	EMC32	Ver10.30.00	N/A

5. Support Equipment

Description	Manufacturer	Model	Serial No.
Note-PC	Samsung Electronics Co., Ltd.	NT500R5Q	0HV991BH500176W

6. Channel List

Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
0	2 402	20	2 442
1	2 404	21	2 444
2	2 406	22	2 446
3	2 408	23	2 448
4	2 410	24	2 450
5	2 412	25	2 452
6	2 414	26	2 454
7	2 416	27	2 456
8	2 418	28	2 458
9	2 420	29	2 460
10	2 422	30	2 462
11	2 424	31	2 464
12	2 426	32	2 466
13	2 428	33	2 468
14	2 430	34	2 470
15	2 432	35	2 472
16	2 434	36	2 474
17	2 436	37	2 476
18	2 438	38	2 478
19	2 440	39	2 480

7. Test Condition

Mode	Test Frequency(MHz)		
	Lowest	Middle	Highest
GFSK	2 402	2 440	2 480

8. Duty Cycle Correction Factor

Note 1) Period : 0.625 5 ms, On time : 0.391 5 ms (Packet Transmission)

Note 2) DCCF = $10\log(1/x) = 10\log(1/0.626) = 2.035 \text{ dB}$, $x = 0.3915 / 0.6255 = 0.626$

Note 3) $D = 62.6\%$ (duty cycle < 98 %)

SECTION 3 SUMMARY

1. Summary of test results

Requirements	FCC Rule	Compliance
Antenna Requirement	15.203 15.247(b)(4)	Complied
Maximum Output Power	15.247(b)(4)	Complied
Power Spectral Density	15.247(e)	Complied
6 dB Channel Bandwidth	15.247(a)(2)	Complied
Occupied Bandwidth	-	Complied
Radiated Spurious Emissions & Restricted Band, Conducted Spurious Emissions & Band Edge	15.247(d) 15.205(a) 15.209(a)	Complied
Conducted Emissions	15.207(a)	Complied
Test method: According to ANSI C63.10-2013, KDB 558074 D01 DTS Meas. Guidance v04		

2. Measurement Uncertainty

Parameters	Uncertainty ($k = 2$)	
Maximum Peak Conducted Output Power	1.66 dB	
Power Spectral Density	1.32 dB	
Channel Bandwidth	2.02 kHz	
Spurious Emissions (Conducted)	1.32 dB	
Spurious Emissions (Radiated)	9 kHz to 30 MHz	4.5 dB
	30 MHz to 1 GHz	4.6 dB
	1 GHz to 6 GHz	5.6 dB
	6 GHz to 18 GHz	5.8 dB
	18 GHz to 26.5 GHz	4.5 dB

SECTION 4 TEST RESULT

1. Antenna Requirement

1.1 Rule

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

1.2 Test Results – Complied

The antenna(Chip antenna) of this product is **permanently attached** and there are no provisions for connection to an external antenna. Directional peak gain of the antenna is 2.50 dBi.

2. Maximum Peak Output Power

2.1 Rule

According to §15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2 400-2 483.5 MHz, and 5 725-5 850 MHz bands: 1 Watt.

As an alternative to a peak power measurement, compliance with the 1 Watt limit can be based on a measurement of the maximum conducted output power.

Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

2.2 Measurement Procedure

According to ANSI C63.10-2013 & KDB 558074 D01 DTS Meas. Guidance v04, 9.1.3 PKPM1 Peak power meter method.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

2.3 Test Results - Complied

Test Mode	Test Frequency	Peak Output Power (dBm)			Limit (dBm)
GFSK	2 402 MHz	P = -0.80	dBm		30
	2 440 MHz	P = -0.43	dBm		
	2 480 MHz	P = -0.36	dBm		

Note :

1. Peak Output Power = Reading (dBm) + Cable loss (dB) + Attenuator (dB)
2. Peak Output Power was tested by Power meter & sensor (VBW = 50 MHz)

3. Power Spectral Density

3.1 Rule

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

3.2 Measurement Procedure

According to ANSI C63.10-2013 & KDB 558074 D01 DTS Meas. Guidance v04, 10.2 Method PKPSD.

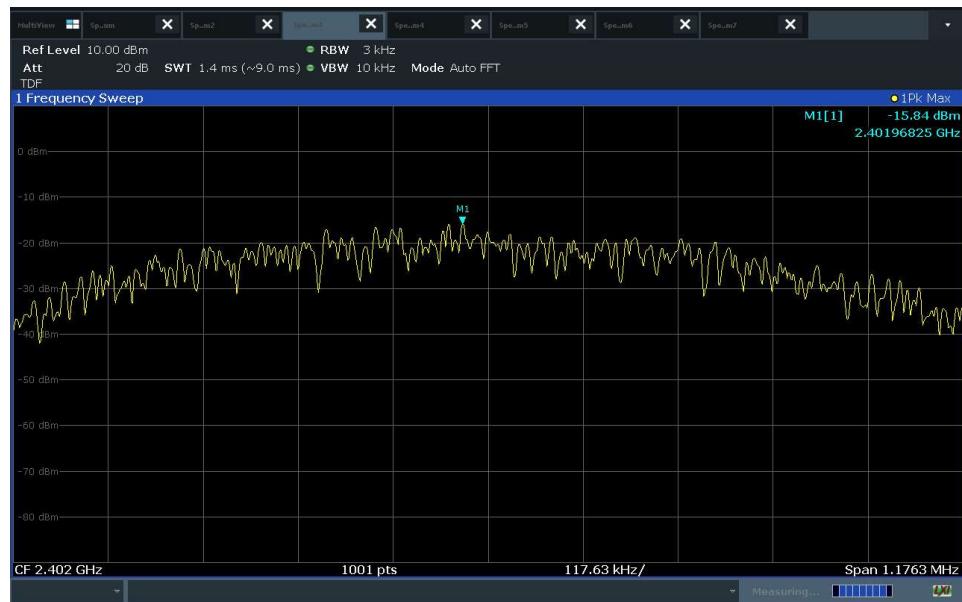
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

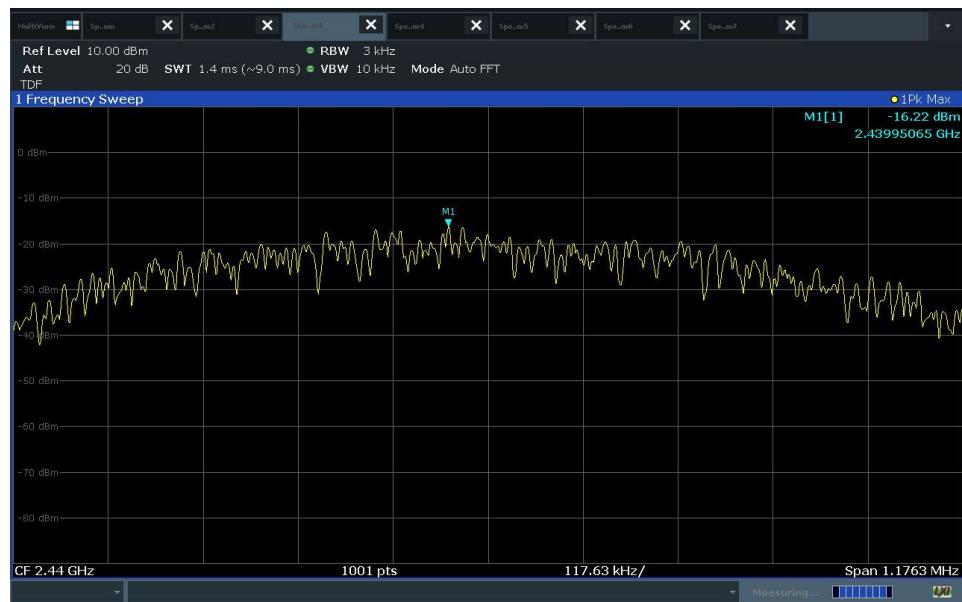
- a) Set Spectrum Analyzer centre frequency to DTS channel centre frequency.
- b) Set the span to 1.5 x DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW $\geq 3 \times \text{RBW}$.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

3.3 Test Results – Complied

Test Mode	Test Frequency	Power Spectral Density (dBm/3 kHz)			Limit (dBm/3 kHz)
GFSK	2 402 MHz	P.S.D. =	-15.84	dBm/3 kHz	8
	2 440 MHz	P.S.D. =	-16.22	dBm/3 kHz	
	2 480 MHz	P.S.D. =	-16.24	dBm/3 kHz	

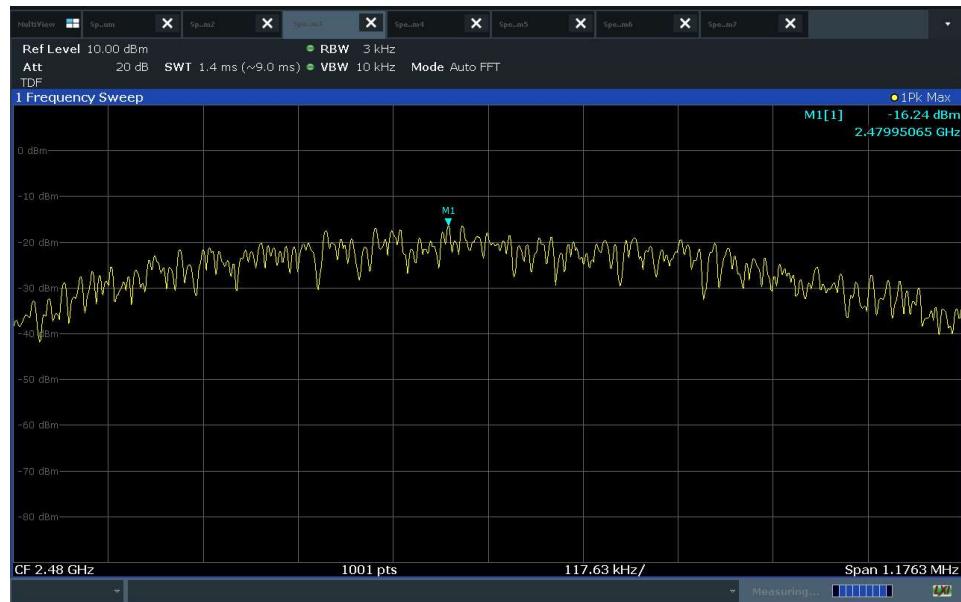
Note :


1. Power Spectral Density(dBm/3 kHz)= Reading (dBm/3 kHz) + Cable loss (dB) + Attenuator (dB)


Photographs of Test Results

Test Mode – GFSK 1 Mbps

Lowest – 2 402 MHz



Middle – 2 440 MHz

Highest – 2 480 MHz

4 6 dB Bandwidth (DTS Channel Bandwidth)

4.1 Rule

- 6 dB Bandwidth

According to §15.247(a)(2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2 400–2 483.5 MHz, and 5 725–5 850 MHz bands.

The minimum 6 dB bandwidth shall be at least 500 kHz.

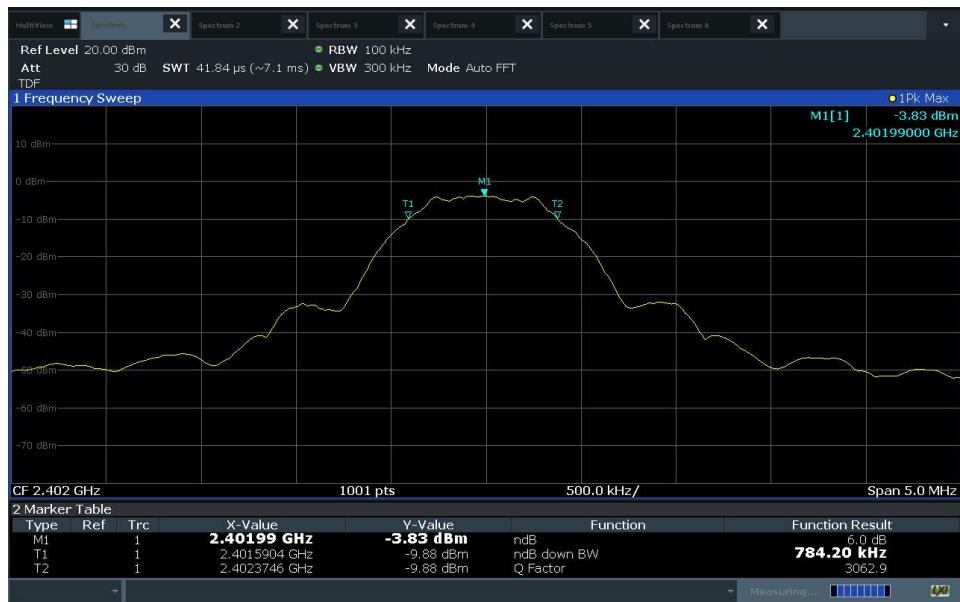
4.2 Measurement Procedure

- 6 dB Bandwidth

According to ANSI C63.10-2013 & KDB 558074 D01 DTS Meas. Guidance v04, 8.2 Option 2.

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., $RBW = 100$ kHz, $VBW \geq 3 \times RBW$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.3 Test Results - Complied


Test Mode	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (kHz)
GFSK	2 402	0.78	500
	2 440	0.78	
	2 480	0.78	

Photographs of Test Results (6 dB Bandwidth)

Test Mode – GFSK 1 Mbps

Lowest – 2 402 MHz

Middle – 2 440 MHz

Highest – 2 480 MHz

5. Radiated Spurious Emissions & Restricted Band, Conducted Spurious Emissions & Band Edge

5.1 Rule

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (kHz)	Field strength (μ V/m)	Field strength (dB μ V/m)	Measurement distance (m)
0.009 - 0.490	$2\ 400/F(\text{kHz})$	$20\log(2\ 400/F(\text{kHz}))$	300
0.490 - 1.705	$24\ 000/F(\text{kHz})$	$20\log(24\ 000/F(\text{kHz}))$	30
1.705 - 30	30	30	30
30 - 88	100**	100**	3
88 - 216	150**	150**	3
216 - 960	200**	200**	3
Above 960	500	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §15.231 and 15.241.

According to §15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

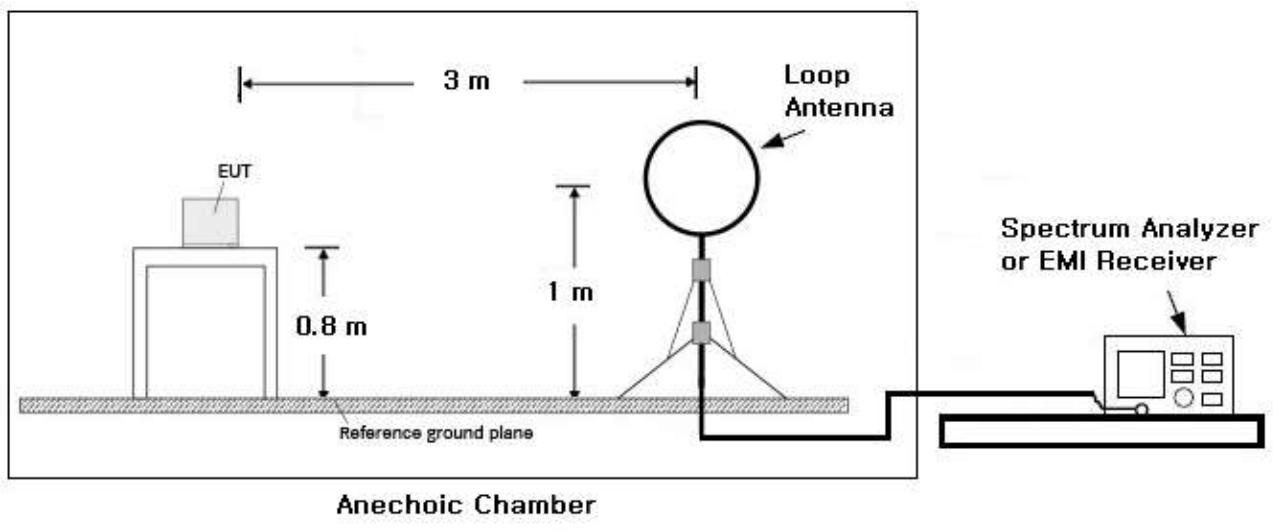
MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 - 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 - 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 - 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 - 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 - 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 - 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 - 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 - 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2 483.5 - 2 500	17.7 - 21.4
8.376 25 - 8.386 75	156.7 - 156.9	2 690 - 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 - 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 - 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 - 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 - 4 400	Above 38.6
13.36 - 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements

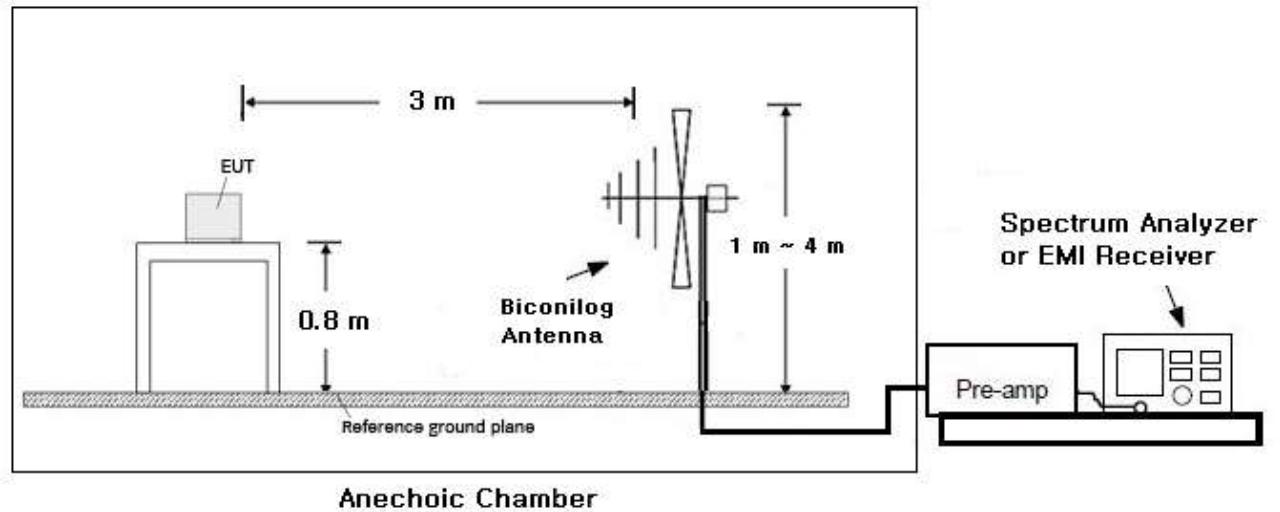
5.2 Measurement Procedure

According to ANSI C63.10-2013, 11.11 Emissions in non-restricted frequency band, and 11.12 Emissions in restricted frequency bands

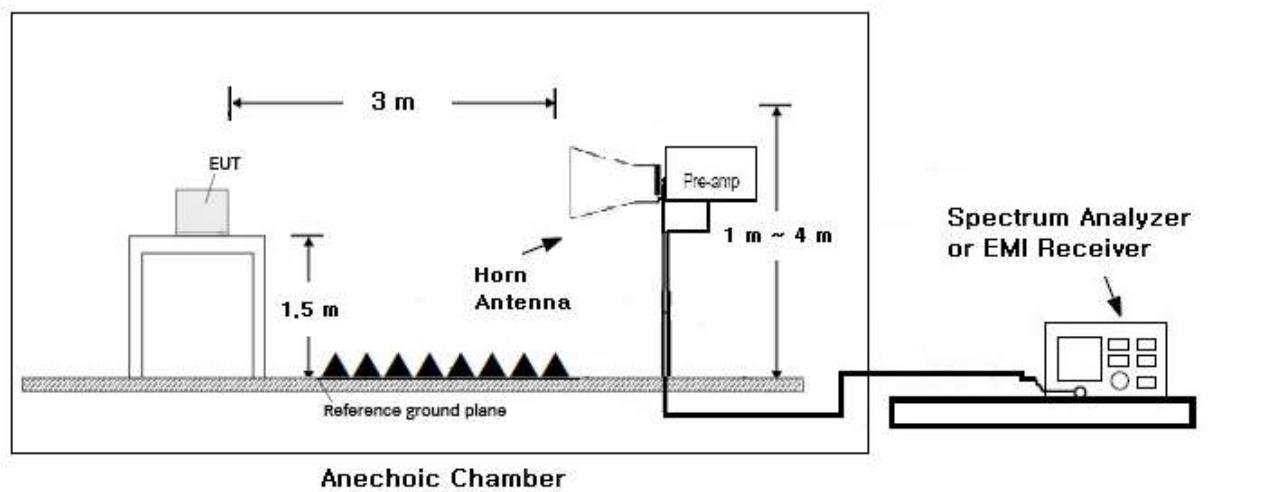
5.2.1. Test Procedures for emission below 30 MHz


1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
4. The test-receiver system was set to quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

5.2.2. Test Procedures for emission below 1 000 MHz & above 1 000 MHz


1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at anechoic chamber test site (below 1 GHz) and 1.5 meters above the ground at anechoic chamber test site (above 1 GHz). The table was rotated 360 degrees to determine the position of the highest radiation.
2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength (Keeping antenna aimed at EUT). Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. The test-receiver system was set to quasi peak detect function (below 1 GHz), peak detect function and average detect function (above 1 GHz).

5.2.3. Test Setup


1. 9 kHz to 30 MHz Emissions

2. 30 MHz to 1 000 MHz Emissions

3. Above 1 000 MHz Emissions

NOTE;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

1. Unwanted Emissions into Non-Restricted Frequency Bands

- The Reference Level Measurement refer to section 11.2

Set Analyzer centre frequency to DTS channel centre frequency, SPAN \geq 1.5 times the DTS bandwidth, the RBW = 100 kHz and VBW \geq 3 \times RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

- Unwanted Emissions Level Measurement refer to section 11.3

Set the centre frequency and span to encompass frequency range to be measured, the RBW = 100 kHz and VBW \geq 3 \times RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

2. Unwanted Emissions into Restricted Frequency Bands

- Peak Power measurement procedure refer to section 12.2.4

Set RBW = as specified in Table 1, VBW \geq 3 \times RBW, Detector = Peak, Sweep time = auto, Trace = Max hold.

Table 1- RBW as a function of frequency

Frequency	RBW
9 – 150 kHz	200 – 300 Hz
0.15 – 30 MHz	9 – 10 kHz
30 – 1 000 MHz	100 – 120 kHz
> 1 000 MHz	1 MHz

-Average Power measurements procedure refer to section 12.2.5.2

The EUT shall be configured to operate at the maximum achievable duty cycle.

Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.

Set RBW = 1 MHz, VBW \geq 3 \times RBW, Detector = RMS, if span / (# of points in sweep) \leq (RBW/2).

Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak.

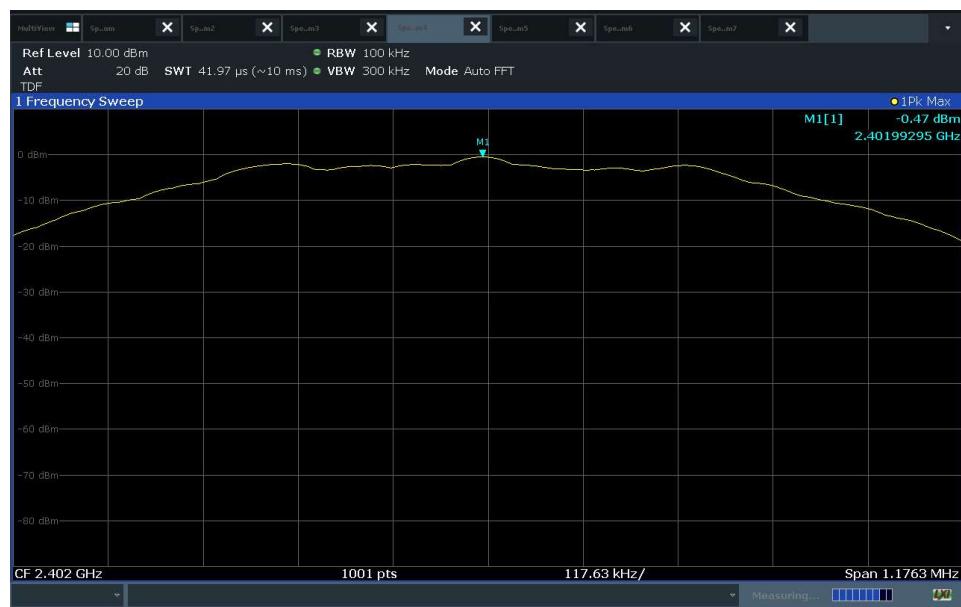
Averaging type = power (i.e., RMS).

As an alternative the detector and averaging type may be set for linear voltage averaging.

Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used. Sweep time = auto, Perform a trace average of at least 100 traces.

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log (1/x)$, where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.


the EUT is manipulated through three orthogonal planes (X, Y, Z). Worst orthogonal plan of EUT is X – axis during radiation test.

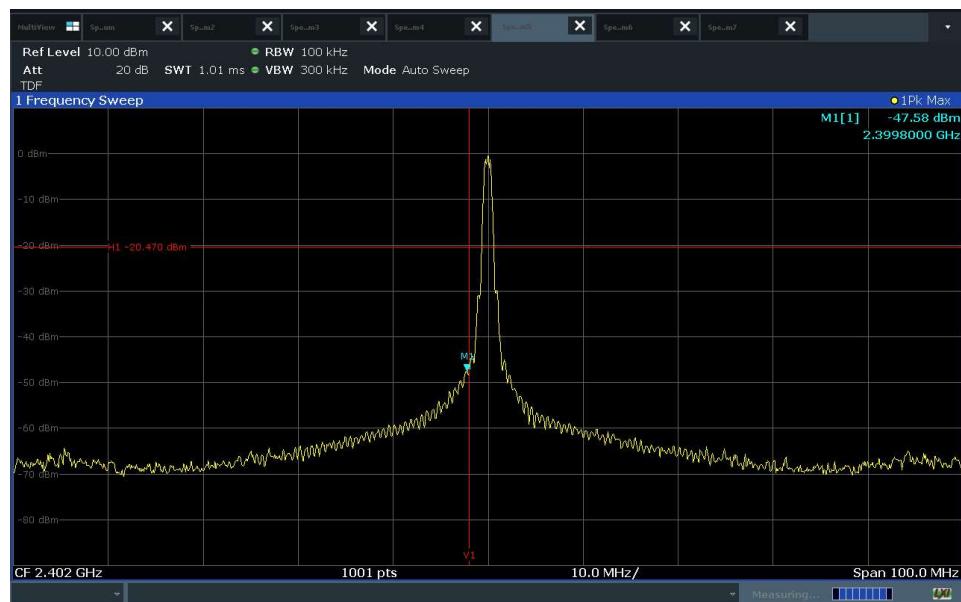
5.3 Test results – Complied

Photographs of Test Result (Conducted Measurements)

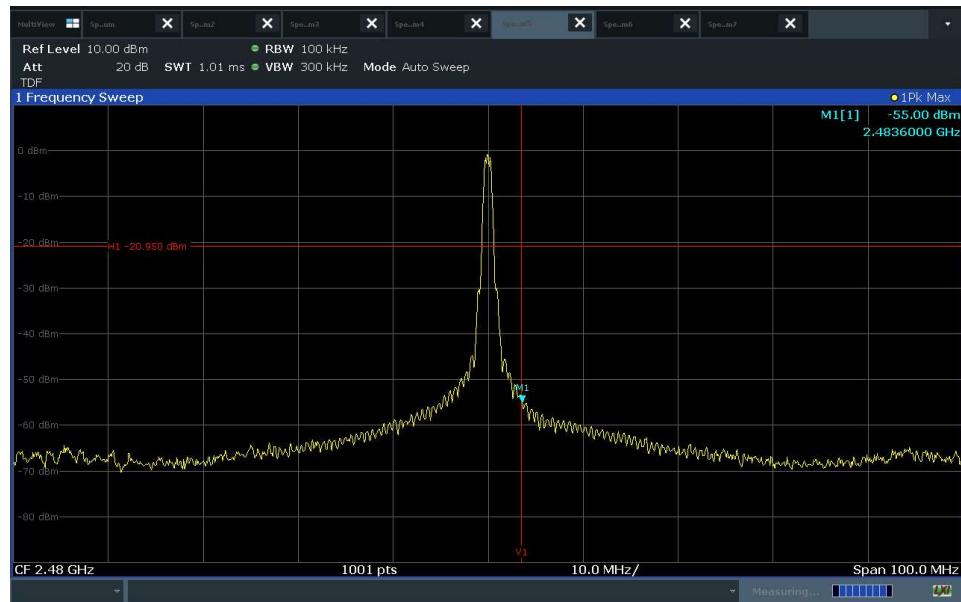
Test Mode – GFSK 1 Mbps

Reference Level– 2 402 MHz

Reference Level– 2 440 MHz



Reference Level– 2 480 MHz


Band Edge

Lowest – 2 402 MHz

Highest – 2 480 MHz

Spurious

Lowest – 2 402 MHz

Middle – 2 440 MHz

Highest – 2 480 MHz

Photographs of Test Result (Radiated Measurement)

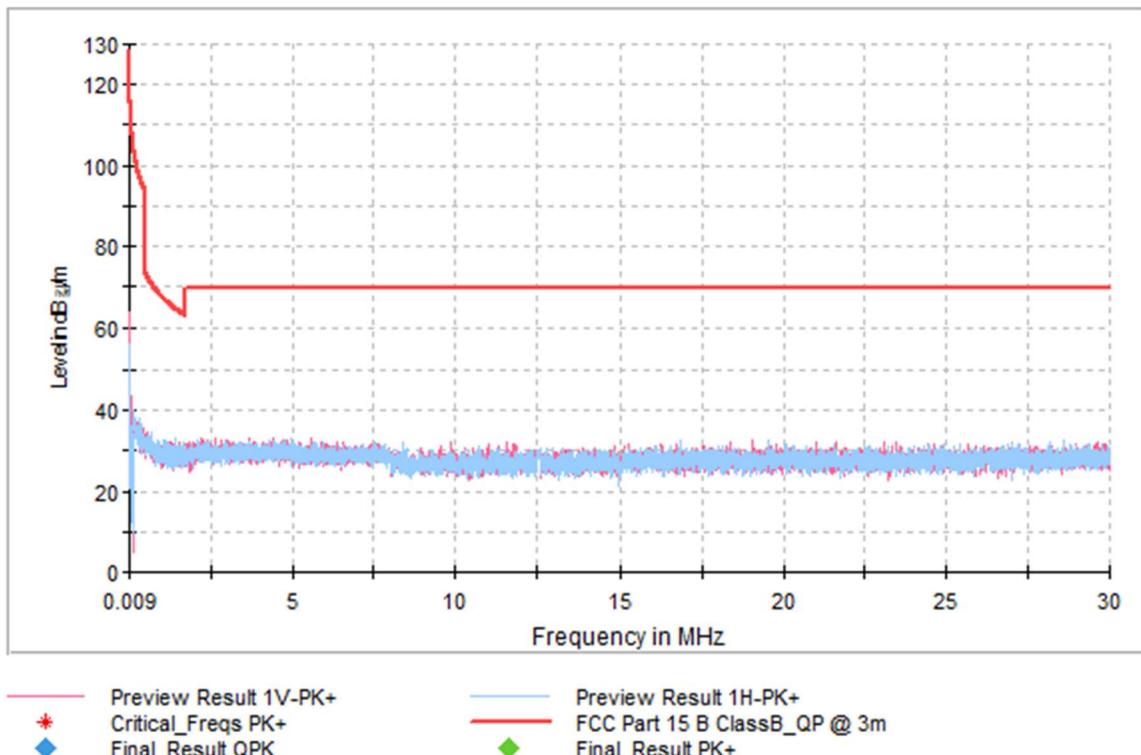
Note :

The radiated measurement was performed continuous transmission of the EUT (Duty cycle $D = 100\%$).

9 kHz ~ 30 MHz

Test Mode – GFSK 1 Mbps – highest Channel -2 480 MHz (Worst Case)

Frequency [MHz]	QuasiPeak [dB(μ V)/m]	Limit [dB(μ V/m)]	Margin [dB]	Bandwidth [kHz]	Pol.	Azimuth [deg]	Corr. [dB/m]
--------------------	-------------------------------	---------------------------	----------------	--------------------	------	------------------	-----------------

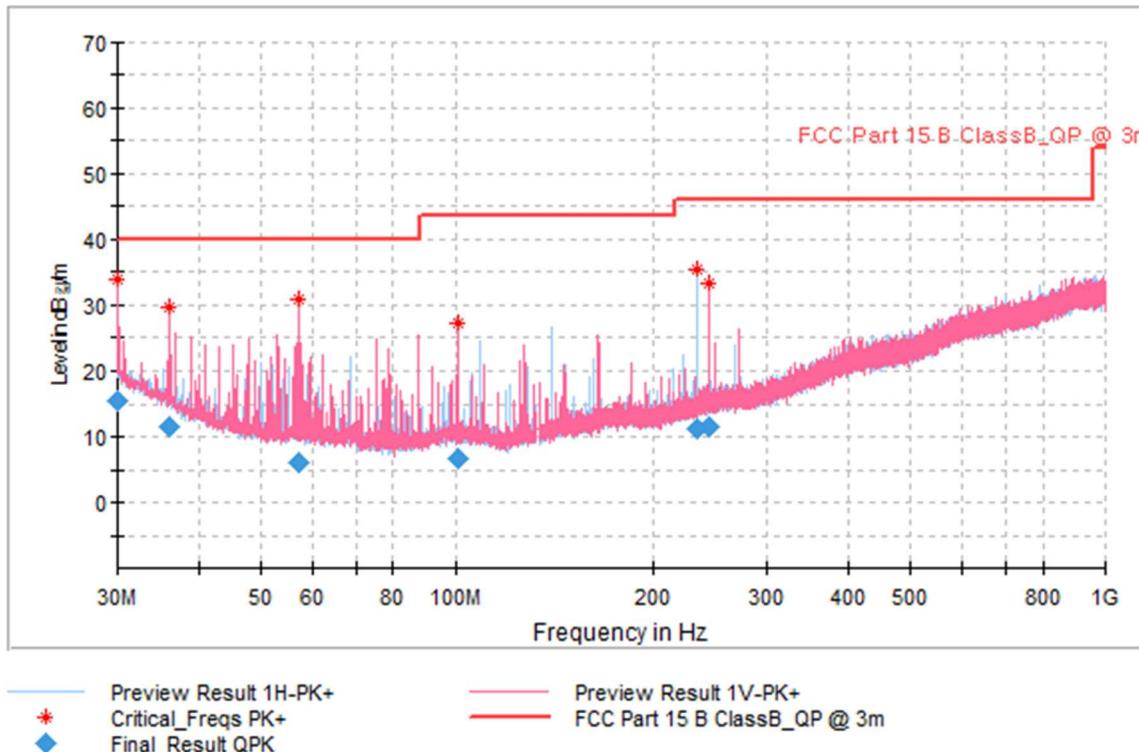

No spurious emissions were detected within 20 dB of the limit.

Note :

1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. QuasiPeak[dB(μ V)/m] = Reading value[dB(μ V)] + Corr.[dB/m]
3. According to § 15.31(f)(2), an extrapolation factor of 40 dB/decade is applied because measured distance of radiated emission is 3 m.

Test Data

- 9 kHz ~ 30 MHz



30 MHz ~ 1 GHz**Test Mode – GFSK 1 Mbps – highest Channel -2 480 MHz (Worst Case)**

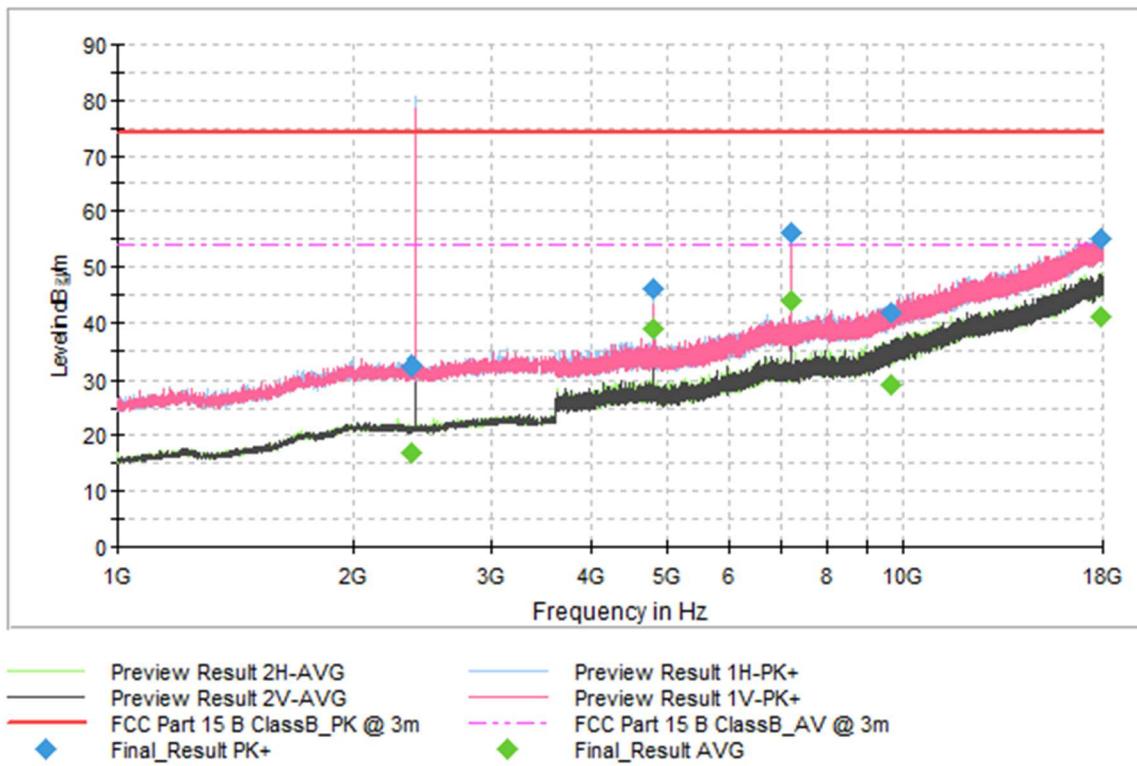
Frequency [MHz]	QuasiPeak [dB(µV)/m]	Limit [dB(µV/m)]	Margin [dB]	Bandwidth [kHz]	Height [cm]	Pol.	Azimuth [deg]	Corr. [dB/m]
30.09	15.52	40.00	24.48	120.0	100.0	V	178.0	-5.76
36.10	11.56	40.00	28.44	120.0	300.0	V	166.0	-9.48
57.09	6.24	40.00	33.76	120.0	100.0	V	224.0	-14.58
100.58	6.72	43.50	36.78	120.0	100.0	V	349.0	-14.01
234.61	11.17	46.00	34.83	120.0	100.0	H	152.0	-9.46
244.51	11.59	46.00	34.41	120.0	200.0	V	32.0	-9.02

Note :

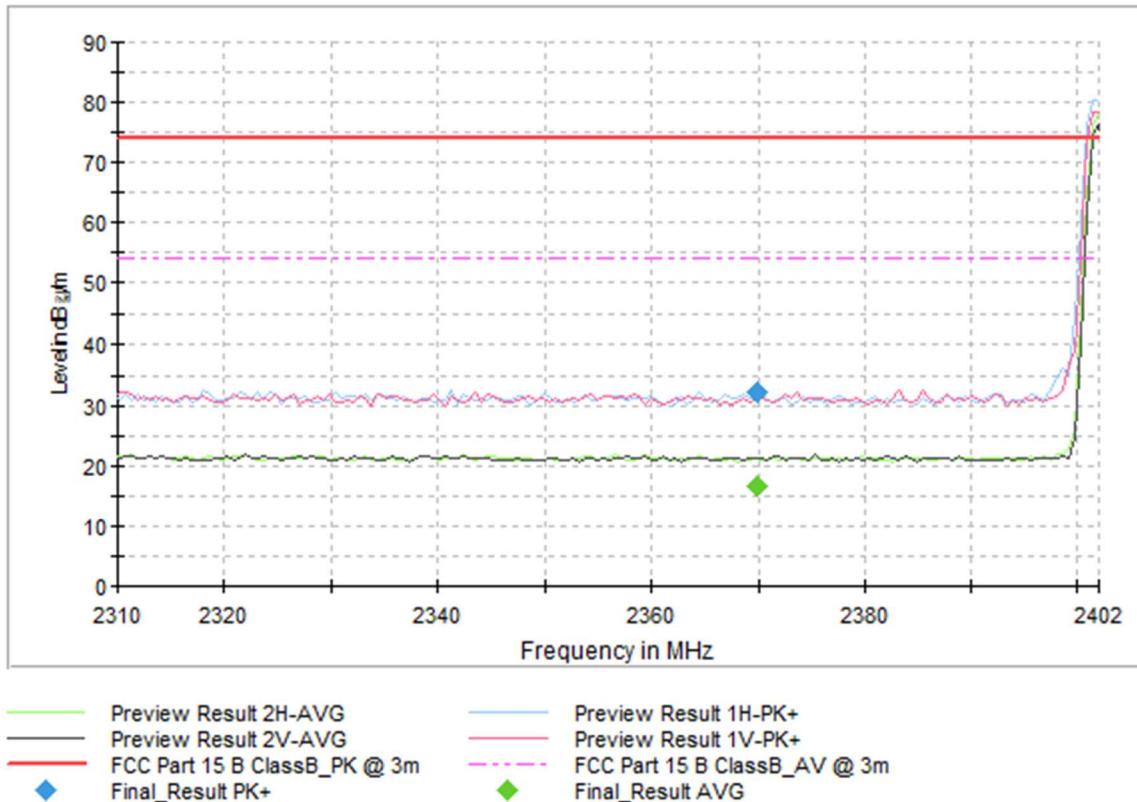
1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. QuasiPeak[dB(µV)/m] = Reading value[dB(µV)] + Corr.[dB/m]

Test Data**- 30 MHz ~ 1 GHz**

1 GHz ~ 18 GHz**Test Mode – GFSK 1 Mbps – Lowest Channel -2 402 MHz**


Frequency [MHz]	MaxPeak [dB(μV)/m]	Average [dB(μV)/m]	Limit [dB(μV/m)]	Margin [dB]	Bandwidth [kHz]	Height [cm]	Pol.	Azimuth [deg]	Corr. [dB/m]
#2 369.93	32.29	---	74.00	41.21	1000.0	300.0	H	70.0	0.98
#2 369.93	---	16.75	54.00	37.25	1000.0	300.0	H	70.0	0.98
#4 803.82	46.09	---	74.00	25.91	1000.0	100.0	H	147.0	4.79
#4 803.82	---	38.78	54.00	15.22	1000.0	100.0	H	147.0	4.79
7 206.00	56.22	---	74.00	17.28	1000.0	100.0	V	20.0	9.27
7 206.00	---	43.87	54.00	10.13	1000.0	100.0	V	20.0	9.27
9 639.76	---	29.06	54.00	24.94	1000.0	100.0	V	20.0	12.44
9 639.76	41.88	---	74.00	32.12	1000.0	100.0	V	20.0	12.44
#17 880.66	55.18	---	74.00	18.82	1000.0	200.0	V	340.0	24.41
#17 880.66	---	41.21	54.00	12.79	1000.0	200.0	V	340.0	24.41

Note :

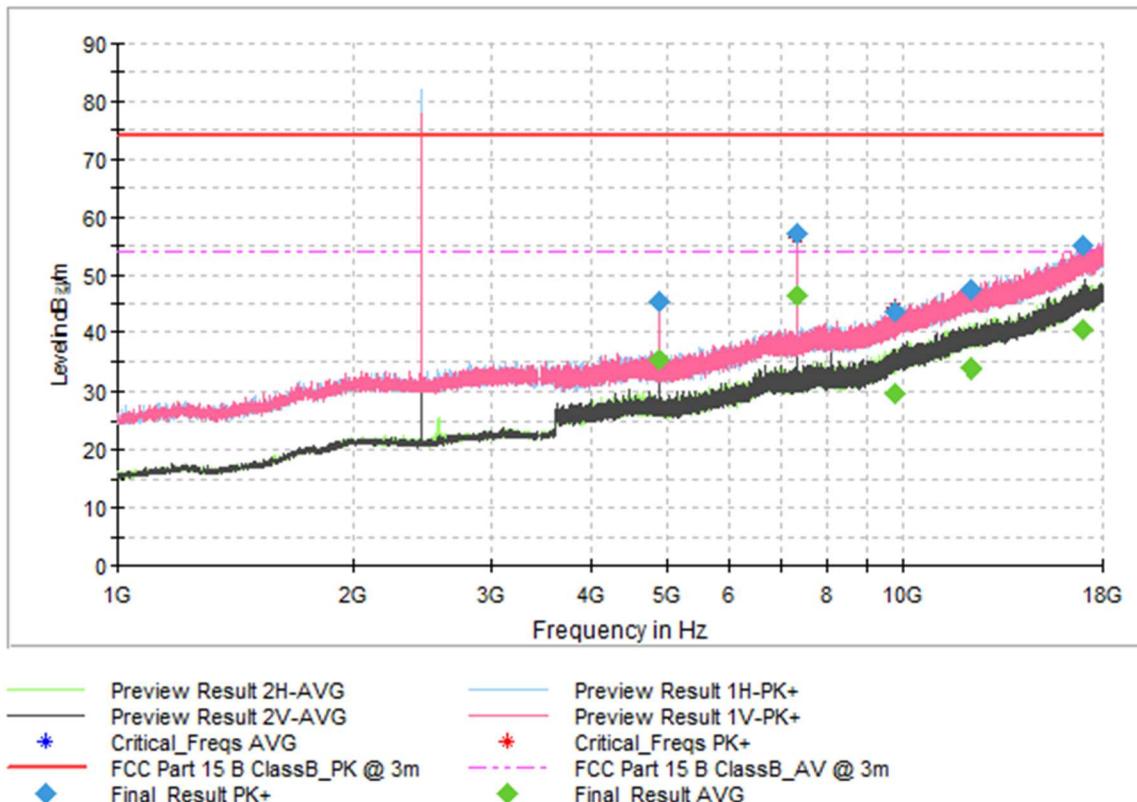

1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. “#” means the restricted band.
3. Maxpeak & Average = Reading value[dB(μV)] + Corr.[dB/m]

Test Data

- 1 GHz ~ 18 GHz

- Restricted Band

Test Mode – GFSK 1 Mbps – Middle Channel -2 440 MHz


Frequency [MHz]	MaxPeak [dB(μV)/m]	Average [dB(μV)/m]	Limit [dB(μV/m)]	Margin [dB]	Bandwidth [kHz]	Height [cm]	Pol.	Azimuth [deg]	Corr. [dB/m]
#4 880.450	45.26	---	74.00	28.74	1000.0	100.0	H	134.0	4.73
#4 880.450	---	35.17	54.00	18.83	1000.0	100.0	H	134.0	4.73
#7 319.180	---	46.41	54.00	7.59	1000.0	100.0	V	0.0	9.38
#7 319.180	57.13	---	74.00	16.87	1000.0	100.0	V	0.0	9.38
9 793.720	43.67	---	74.00	30.33	1000.0	300.0	V	0.0	12.87
9 793.720	---	29.60	54.00	24.40	1000.0	300.0	V	0.0	12.87
#12 210.980	---	33.78	54.00	20.22	1000.0	200.0	V	334.0	16.98
#12 210.980	47.51	---	74.00	26.49	1000.0	200.0	V	334.0	16.98
16 965.370	---	40.43	54.00	13.57	1000.0	100.0	H	0.0	23.42
16 965.370	54.99	---	74.00	19.01	1000.0	100.0	H	0.0	23.42

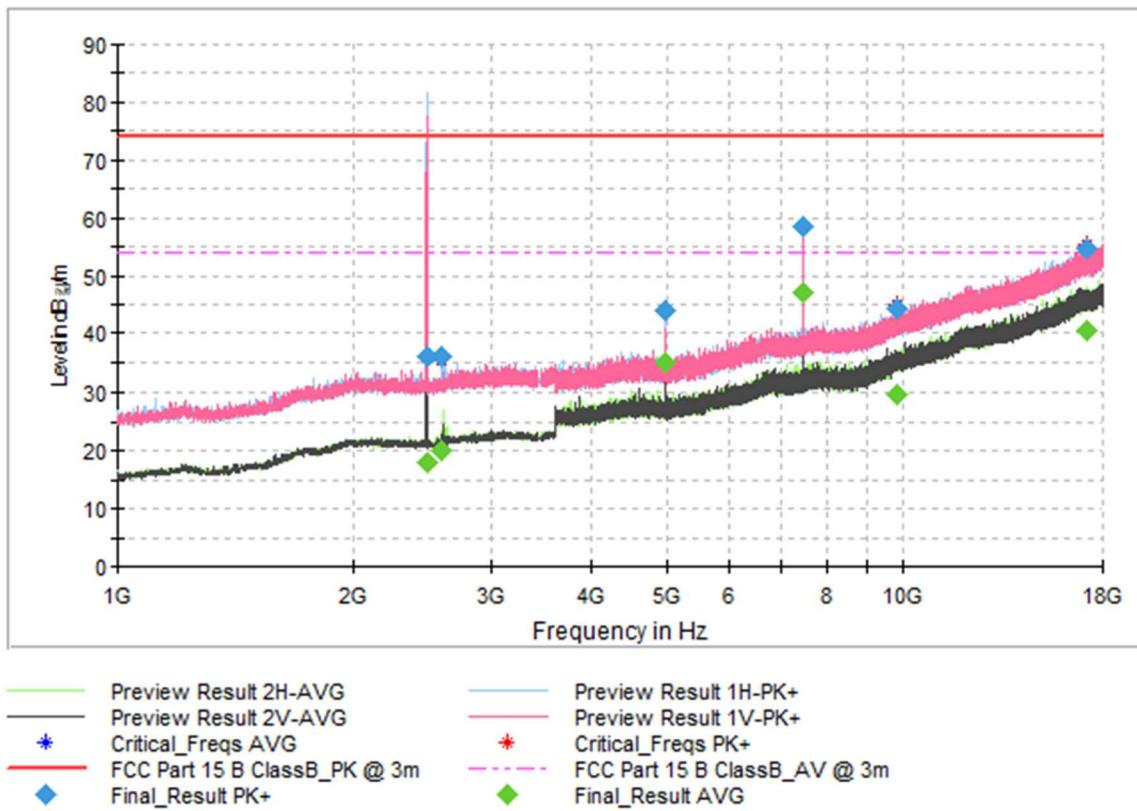
Note :

1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. “#” means the restricted band.
3. Maxpeak & Average = Reading value[dB(μV)] + Corr.[dB/m]

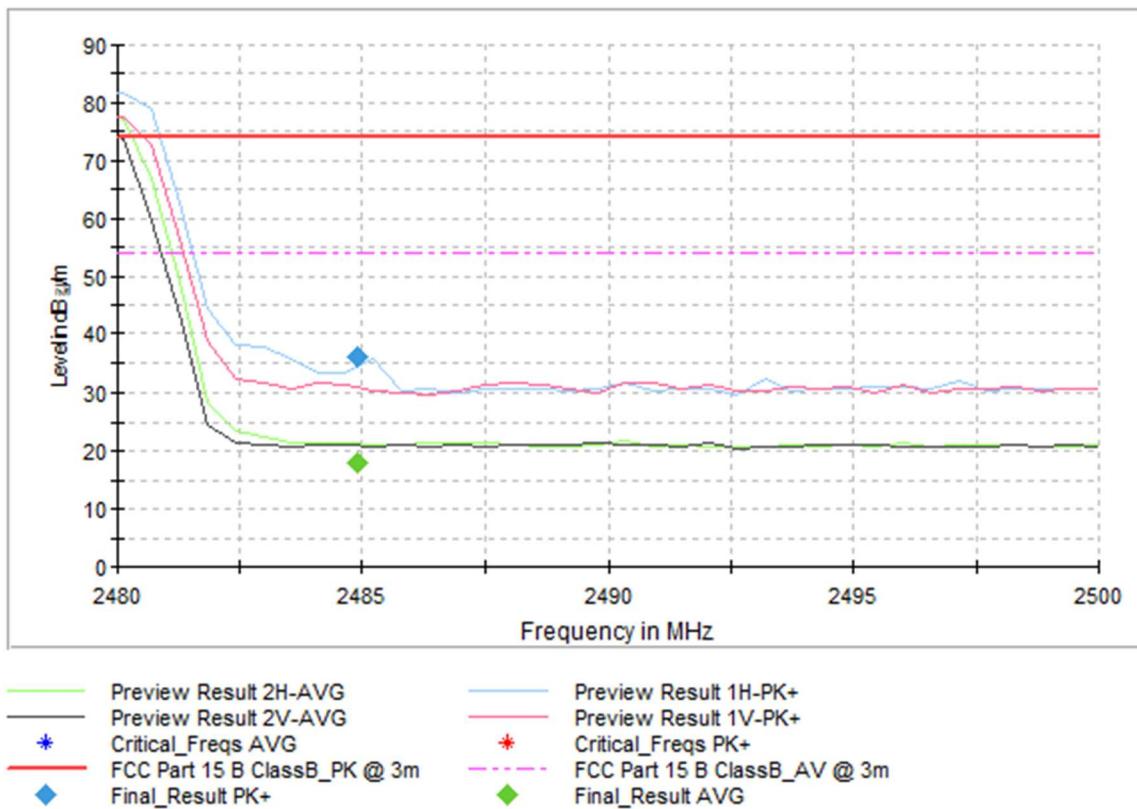
Test Data

- 1 GHz ~ 18 GHz

Test Mode – GFSK 1 Mbps – Highest Channel -2 480 MHz


Frequency [MHz]	MaxPeak [dB(µV)/m]	Average [dB(µV)/m]	Limit [dB(µV/m)]	Margin [dB]	Bandwidth [kHz]	Height [cm]	Pol.	Azimuth [deg]	Corr. [dB/m]
#2 484.910	35.88	---	74.00	36.62	1000.0	200.0	H	166.0	0.79
#2 484.910	---	18.17	54.00	35.83	1000.0	200.0	H	166.0	0.79
2 596.410	35.88	---	74.00	38.12	1000.0	200.0	H	166.0	1.19
2 596.410	---	20.06	54.00	33.94	1000.0	200.0	H	166.0	1.19
#4 959.600	---	34.87	54.00	19.13	1000.0	100.0	H	132.0	4.67
#4 959.600	44.09	---	74.00	29.91	1000.0	100.0	H	132.0	4.67
#7 440.730	---	47.11	54.00	6.89	1000.0	100.0	V	0.0	9.55
#7 440.730	58.51	---	74.00	15.49	1000.0	100.0	V	0.0	9.55
9 822.200	---	29.66	54.00	24.34	1000.0	400.0	V	103.0	12.95
9 822.200	44.35	---	74.00	29.65	1000.0	400.0	V	103.0	12.95
17 173.630	---	40.43	54.00	13.57	1000.0	400.0	V	103.0	23.44
17 173.630	54.86	---	74.00	19.24	1000.0	400.0	V	103.0	23.44

Note :


1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. “#” means the restricted band.
3. Maxpeak & Average = Reading value[dB(µV)] + Corr.[dB/m]

Test Data

- 1 GHz ~ 18 GHz

- Restricted Band

18 GHz ~ 26.5 GHz**Test Mode – GFSK 1 Mbps – Lowest Channel -2 402 MHz**

Frequency [MHz]	MaxPeak [dB(μV)/m]	Average [dB(μV)/m]	Limit [dB(μV/m)]	Margin [dB]	Bandwidth [kHz]	Height [cm]	Pol.	Azimuth [deg]	Corr. [dB/m]
25 797.47	---	36.54	54.00	17.46	1000.0	300.0	H	154.0	10.14
25 797.47	49.64	---	74.00	24.36	1000.0	300.0	H	154.0	10.14

Note :

1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. “#” means the restricted band.
3. Maxpeak & Average = reading value[dB(μV)] + Corr.[dB/m]

Test Data


- 18 GHz ~ 26.5 GHz

Test Mode – GFSK 1 Mbps – Middle Channel -2 440 MHz

Frequency [MHz]	MaxPeak [dB(μV)/m]	Average [dB(μV)/m]	Limit [dB(μV/m)]	Margin [dB]	Bandwidth [kHz]	Height [cm]	Pol.	Azimuth [deg]	Corr. [dB/m]
26 304.07	---	36.94	54.00	17.06	1000.0	300.0	H	352.0	10.52
26 304.07	49.70	---	74.00	24.30	1000.0	300.0	H	352.0	10.52

Note :

1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. “#” means the restricted band.
3. Maxpeak & Average = Reading value[dB(μV)] + Corr.[dB/m]

Test Data**- 18 GHz ~ 26.5 GHz**

Test Mode – GFSK 1 Mbps – Highest Channel -2 480 MHz

Frequency [MHz]	MaxPeak [dB(μV)/m]	Average [dB(μV)/m]	Limit [dB(μV/m)]	Margin [dB]	Bandwidth [kHz]	Height [cm]	Pol.	Azimuth [deg]	Corr. [dB/m]
23 298.26	---	35.60	54.00	18.40	1000.0	200.0	V	116.0	9.75
23 298.26	48.33	---	74.00	25.67	1000.0	200.0	V	116.0	9.75

Note :

1. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
2. “#” means the restricted band.
3. Maxpeak & Average = Reading value[dB(μV)] + Corr.[dB/m]

Test Data**- 18 GHz ~ 26.5 GHz**

6. Conducted Emissions

6.1 Rule

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range (MHz)	Limits dB(μ V)			
	Quasi-peak		Average	
	Class A	Class B	Class A	Class B
0.15 to 0.50	79	66 to 56	66	56 to 46
0.50 to 5	73	56	60	46
5 to 30		60		50

Note 1 The lower limit shall apply at the transition frequencies.

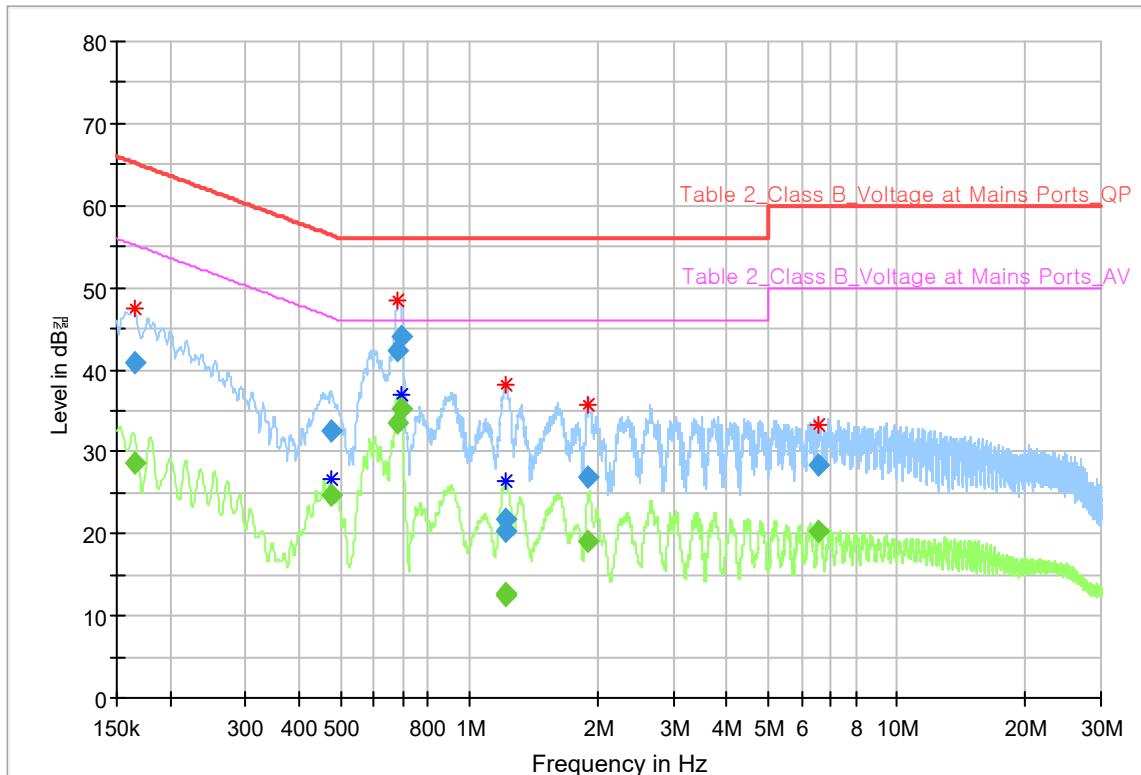
Note 2 The limit decreases linearly with the logarithm of the frequency in the range (0.15 ~ 0.5) MHz.

Note 3 Result (dB μ V) = Reading (dB μ V) + Corr. (Insertion Loss (dB) + Cable Loss (dB))

Result: Final value, Reading: Receiver reading value, Corr.: Correction Factor

Margin = Limit – Result

6.2 Measurement Procedure


All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

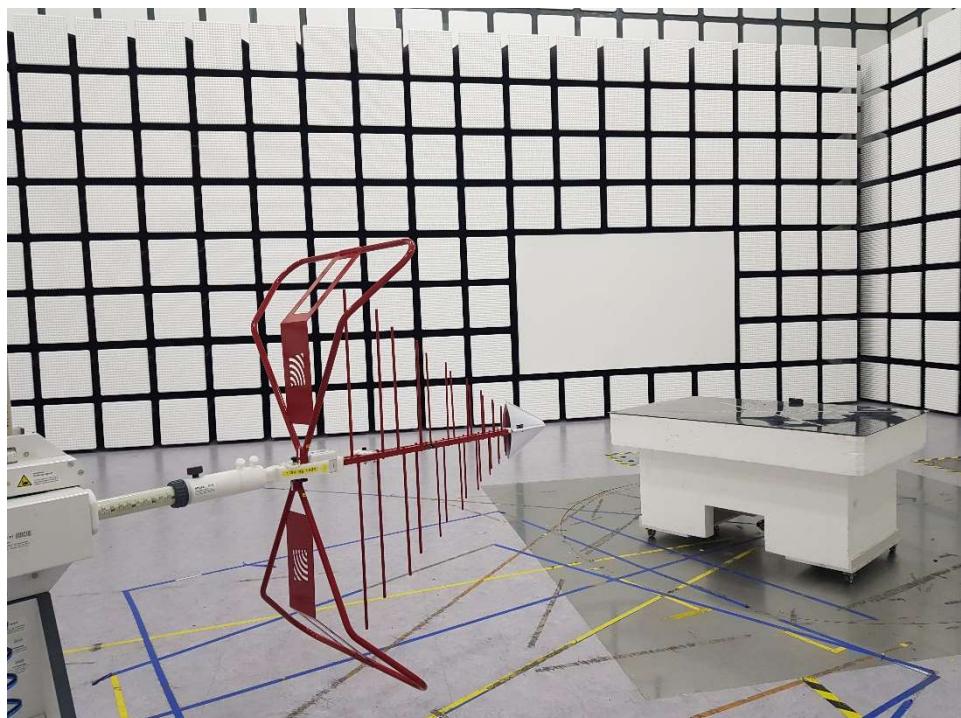
AC line conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2013

1. The test procedure is performed in a 6.5 m \times 3.6 m \times 3.6 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
3. The excess power cable between the EUT and the LISN was bundled. All connecting cables of EUT were moved to find the maximum emission.

6.3 Test result – Complied

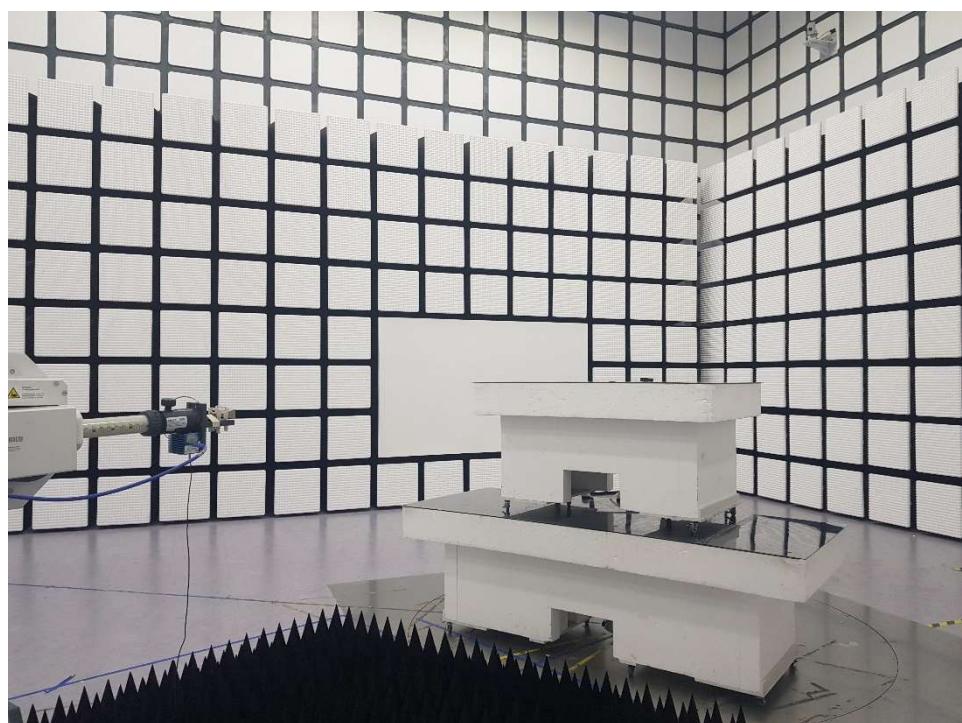
- Neutral / Live

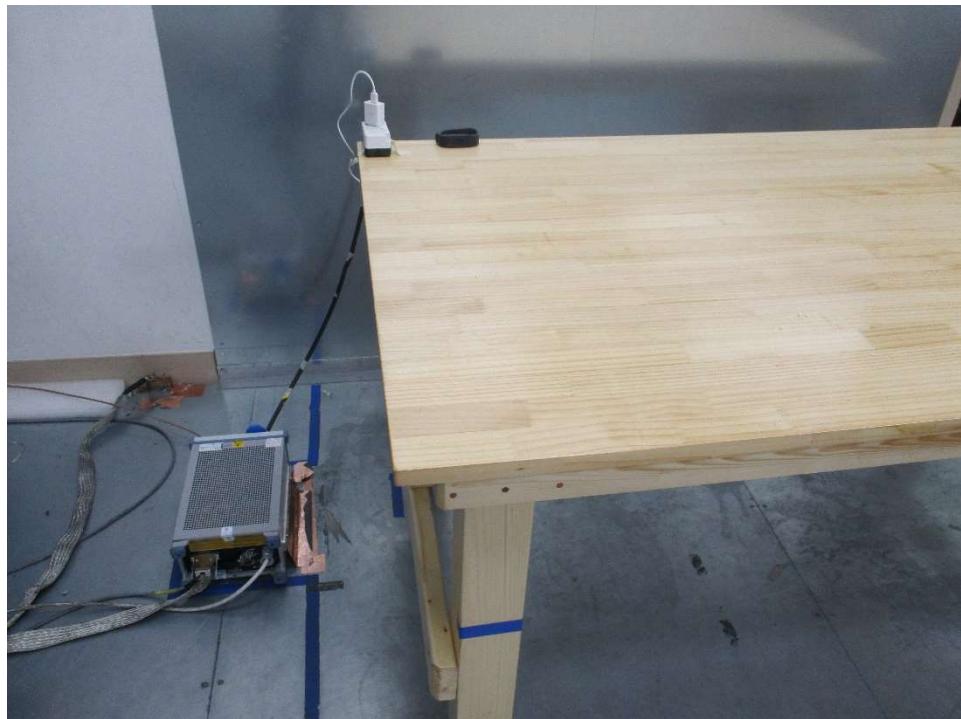
Frequency [MHz]	QuasiPeak [dB(μV)/m]	CAverage [dB(μV)/m]	Limit [dB(μV/m)]	Margin [dB]	Corr. [dB/m]
0.164925	---	28.73	55.21	26.48	9.9
0.164925	40.88	---	65.21	24.33	9.9
0.475365	---	24.66	46.42	21.76	10.0
0.475365	32.61	---	56.42	23.81	10.0
0.679340	---	33.48	46.00	12.52	10.0
0.679340	42.36	---	56.00	13.64	10.0
0.692275	---	35.20	46.00	10.80	10.0
0.692275	44.01	---	56.00	11.99	10.0
1.213655	---	12.65	46.00	33.35	9.9
1.213655	21.69	---	56.00	34.31	9.9
1.217635	---	12.42	46.00	33.58	9.9
1.217635	20.20	---	56.00	35.80	9.9
1.890255	---	19.07	46.00	26.93	10.0
1.890255	26.86	---	56.00	29.14	10.0
6.545860	---	20.22	50.00	29.78	10.2
6.545860	28.34	---	60.00	31.66	10.2

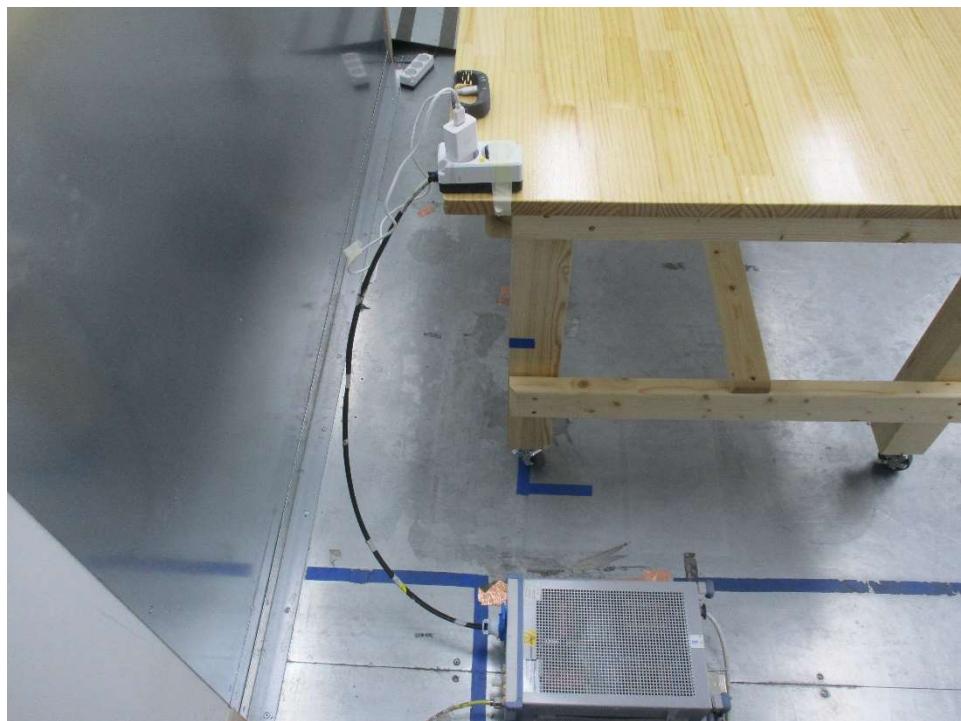

SECTION 5 APPENDIX 1 – PHOTOS

Setup Photos

- Radiated Emissions (9 kHz ~ 30 MHz)


- Radiated Emissions (30 MHz ~ 1 GHz)


- Radiated Emissions (1 GHz ~ 18 GHz)


- Radiated Emissions (18 GHz ~ 26.5 GHz)

- Conducted Emissions (150 kHz ~ 30 MHz)

Front

Rear

SECTION 6 REVISION HISTORY

REVISION HISTORY			
Revision	Report No.	Issue Date	Description
0	210200004SEL-TEL1	18 Feb. 2021	Initial

- End -