

Test Report

Electromagnetic Compatibility (EMC)

TESTS ACCORDING TO FCC PART 15 B AND INDUSTRY CANADA REQUIREMENTS

Equipment Under Test: Control Unit for Parking Heater

Model: TCon 2
TCon 2 Pro

Manufacturer: Embelin Oy
Yrtipellontie 10
FI-90230, Oulu
Finland

Customer: Embelin Oy
Yrtipellontie 10
FI-90230, Oulu
Finland

FCC Rule Part: CFR 47 Part 15 Subpart B, Class B
IC Rule Part: ICES-003, Issue 7 (2020), Class B

Date: 28 April 2021

Issued by:

Henri Mäki
Testing Engineer

Date: 28 April 2021

Checked by:

Mikko Halonen
Development Engineer

TABLE OF CONTENTS

TABLE OF CONTENTS	2
GENERAL REMARKS.....	3
Disclaimer	3
RELEASE HISTORY	4
PRODUCT DESCRIPTION	5
Equipment Under Test (EUT).....	5
General description	5
Samples and modifications	5
Ports and cables.....	5
TEST CONDITIONS	6
EUT Test Conditions During EMC-Testing	6
Operation modes	6
Emission Measurement Uncertainty.....	6
SUMMARY OF TESTING.....	7
EMISSION TEST RESULTS	8
Radiated Emissions In The Frequency Range 30 MHz – 22 GHz.....	8
TEST EQUIPMENT	15

GENERAL REMARKS**Disclaimer**

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

RELEASE HISTORY

Version	Changes	Issued
1.0	Initial release	28 April 2021

PRODUCT DESCRIPTION**Equipment Under Test (EUT)**

EUT information	
General Product Description	Control Unit for Parking Heater
Trademark	-
Model	TCon 2, TCon 2 Pro
Serial number	9354679095549930
Power input port type	DC
Rated voltage	12 / 24 V
Rated current	-
Rated frequency	-
Rated power	-
EUT Highest operation freq.	2155 MHz (LTE band 4)
Hardware Version (if any)	-
Software Version (if any)	-
Mechanical size of the EUT	Height: 19 mm Width: 71 mm Length: 112 mm
Parallel models	-

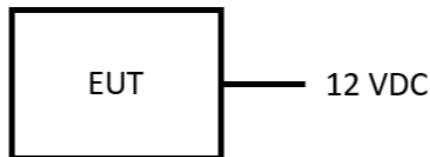
The EUT was tested as a tabletop unit.

General description

The equipment under test is a control unit for parking heater. The control unit can be operated remotely with a smart phone application, or with a push button. The equipment includes an LTE Cat-M1 / NB-IoT and 2G module (u-blox AG SARA-R412M).

Samples and modifications

No.	Name	Description
1	TCon 2	Normal sample
2	TCon 2 Pro	Normal sample


Ports and cables

Cable / Port	Description
DC input	Power input port

TEST CONDITIONS

EUT Test Conditions During EMC-Testing

Configuration of the EUT was made to correspond to the actual assembling conditions as far as possible. The EUT was powered on and continuously sent messages to the CAN-bus. The radio was in stand-by mode during testing. The input voltage was 12 VDC.

Figure 1: Test setup block diagram

Operation modes

During the tests the EUT was in the following operation modes:

Mode	Description
1	Power on, continuous messages to the CAN-bus, radio in stand-by mode

Emission Measurement Uncertainty

The uncertainties comply with CISPR 16-4-2 ed.2 requirements ($U_{lab} < U_{cispr}$).

SUMMARY OF TESTING

Test Specification	Description of Test	Result
§15.107 / ICES-003 3.2.1	Conducted Emissions, Class B	N/A
§15.109 / ICES-003 3.2.2	Radiated Emissions, Class B	PASS

Decision rule used for the emission tests are defined in standard CISPR 16-4-2 / EN 55016-4-2 clause 4.2

Test Facility

Testing Laboratory / address: FCC designation number: FI0002 ISED CAB identifier: T004	SGS Fimko Ltd Takomotie 8 FI-00380, HELSINKI FINLAND
Test Site:	<input type="checkbox"/> K10LAB, ISED Canada registration number: 8708A-1 <input checked="" type="checkbox"/> K5LAB, ISED Canada registration number: 8708A-2 <input type="checkbox"/> T10LAB

EMISSION TEST RESULTS

Radiated Emissions In The Frequency Range 30 MHz – 22 GHz

Standard:	ANSI C63.4-2014		
Tested by:	HEM		
Date:	18 February 2021	27 April 2021	28 April 2021
Temperature:	22.9 °C	23.2 °C	23.0 °C
Humidity:	12.0 %RH	24.8 %RH	21.8 %RH
Barometric pressure:	1020.5 mbar	1005.6 hPa	1006.7 hPa
Measurement uncertainty:	± 4.9 dB (30 – 200 MHz)	Level of confidence 95 % (k = 2).	
	± 4.1 dB (200 – 1 000 MHz)		
	± 4.3 dB (1 – 18 GHz)		

FCC Rule: 15.109(a)

ICES-003: 3.2.2

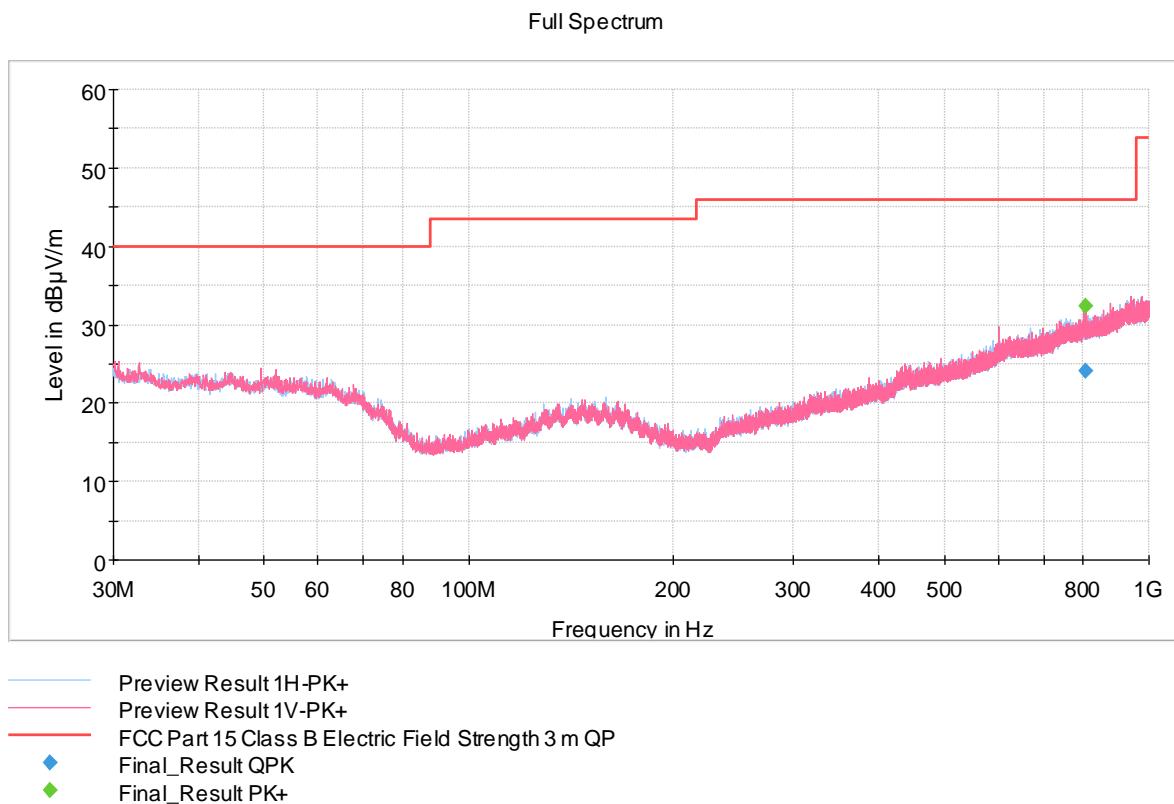
Test plan

The radiated emission measurements were done within a semi anechoic screened chamber. Additional floor absorbers were used on the floor between the EUT and receiving antenna in radiated emission test above 1 GHz. The EUT was placed on a table 0.8 m above the reflecting ground plane. The measurement distance was 3 meters. The worst interferences were determined during measurements by rotating the turntable and adjusting the antenna height. The measurements were done in horizontal and vertical antenna polarizations. The supply voltage to the turntable was fed through the filter.

The EUT was working as described in the section “EUT Test Conditions”.

The pre-measurements were performed with the EUT being in three orthogonal positions (X, Y, Z). Final measurements were done in worst position.

Radiated measurement settings


Preliminary testing:

Turtable movement:	30° step (30-1000 MHz), 15° step (1-18 GHz), 8° step (18-22 GHz)
Turtable position:	15° to 345° (30 MHz – 18 GHz), 0° to 352° (18-22 GHz)
Antenna movement:	1.5 m step (30 MHz – 18 GHz), 1.0 m step (18-22 GHz)
Antenna height:	1.0 m to 4.0 m (30 MHz – 18 GHz), 1.0 m to 2.0 m (18-22 GHz)
Antenna polarization:	Vertical and horizontal

Final testing:

Turtable movement:	Continuous
Turtable position:	± 30° (30-1000 MHz), ± 7.5° (1-18 GHz), ± 15° (18-22 GHz)
Antenna movement:	Continuous
Antenna height:	± 0.75 m (30 MHz – 18 GHz), ± 0.50 m (18-22 GHz)
Antenna polarization:	Vertical and horizontal

Measured Quasi-Peak Values In The Frequency Range 30 – 1000 MHz

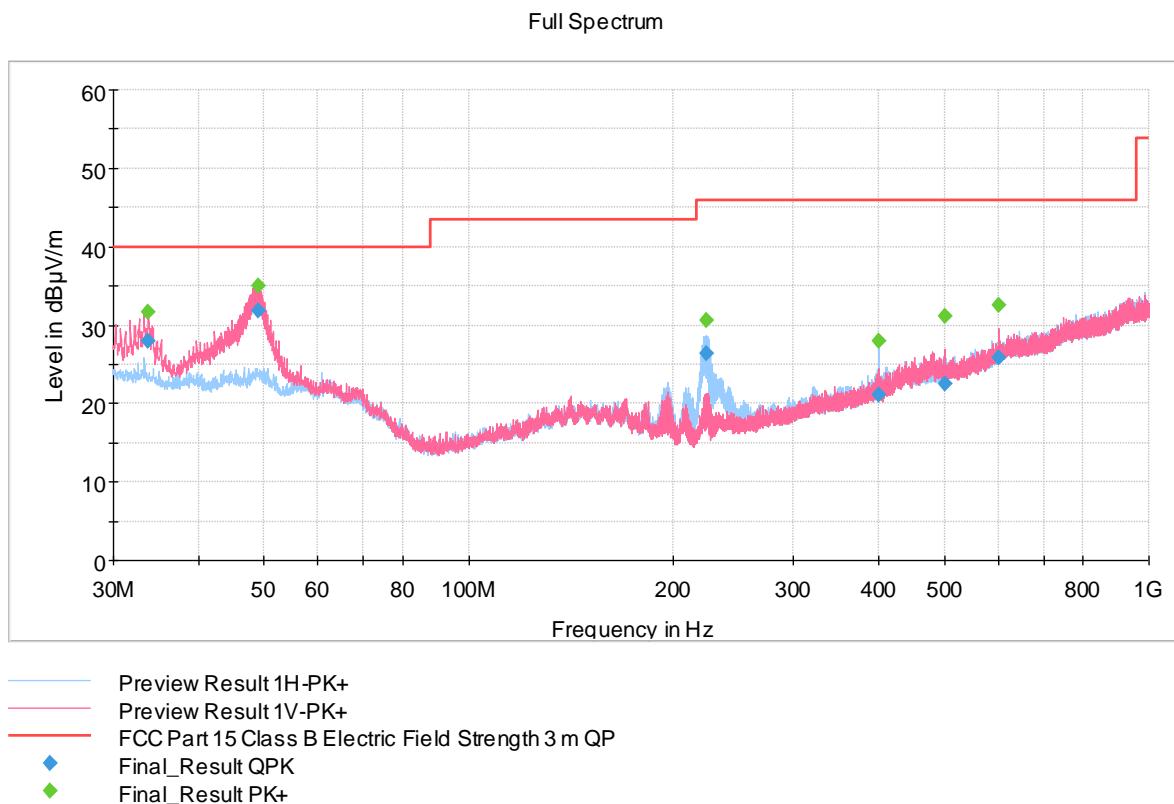


Figure 2: Measured curve with peak-detector, Sample 1

Table 1: Final quasi-peak measurement from the worst frequencies, Sample 1

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
805.970000	24.12	46.00	21.88	1000.0	120.000	250.0	V	135.0	29.9

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + cables).

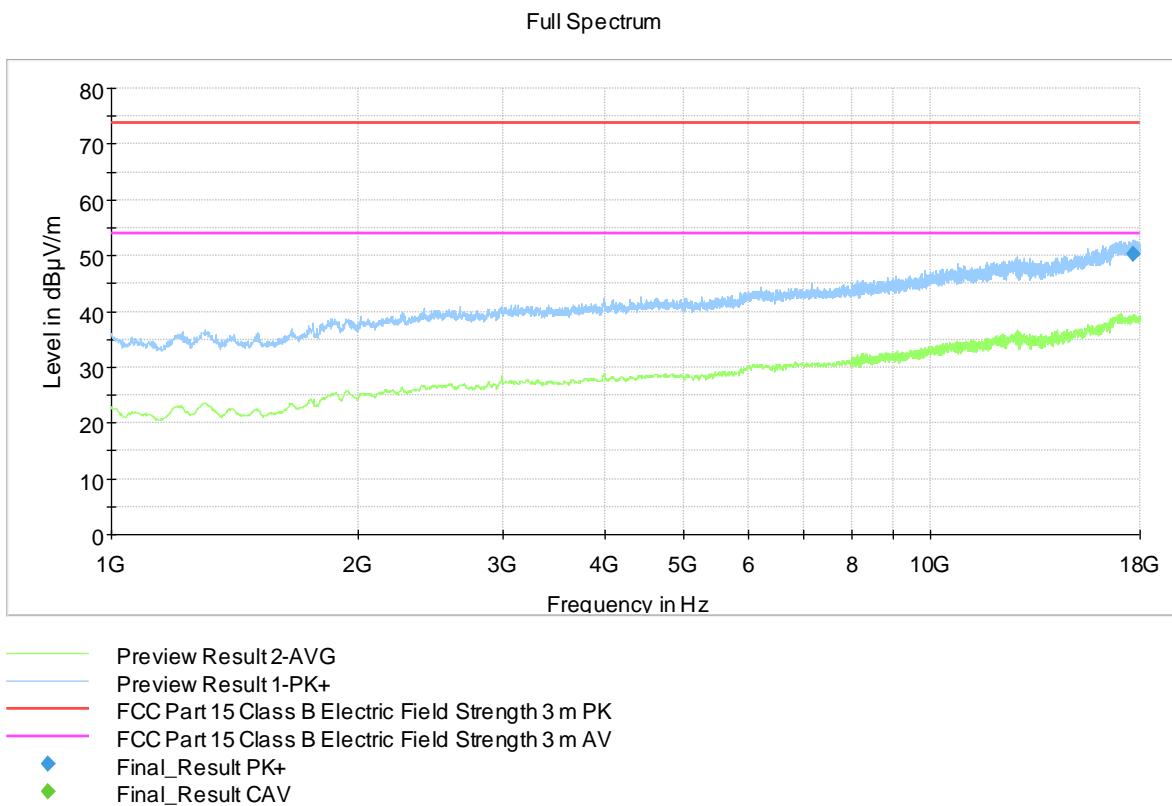

Figure 3: Measured curve with peak-detector, Sample 2

Table 2: Final quasi-peak measurement from the worst frequencies, Sample 2

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.770000	27.97	40.00	12.03	1000.0	120.000	100.0	V	55.0	16.5
49.040000	31.79	40.00	8.21	1000.0	120.000	100.0	V	149.0	17.8
223.270000	26.38	46.00	19.62	1000.0	120.000	144.0	H	95.0	15.3
399.980000	21.04	46.00	24.96	1000.0	120.000	281.0	H	64.0	21.8
499.990000	22.49	46.00	23.51	1000.0	120.000	175.0	V	105.0	24.6
600.000000	25.82	46.00	20.18	1000.0	120.000	144.0	V	149.0	26.8

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + cables).

Measured Peak and Average Values In The Frequency Range 1 – 18 GHz

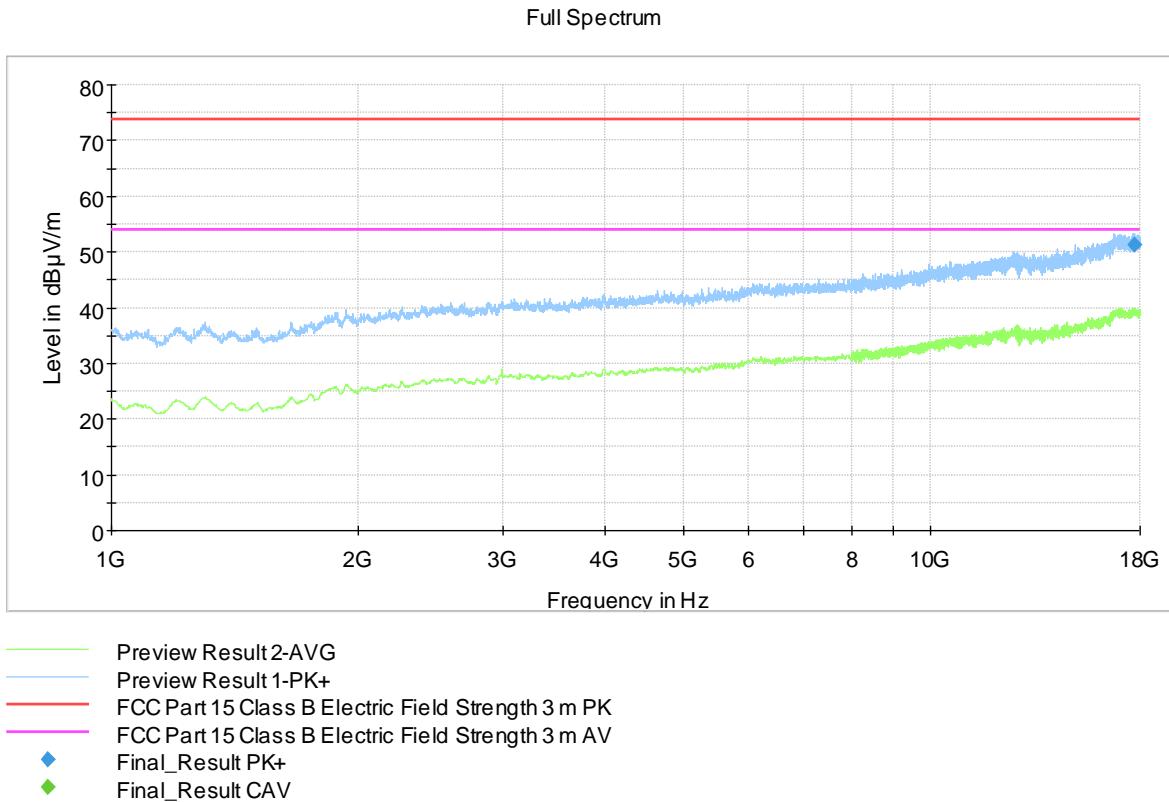


Figure 4: Measured curve with peak and average detectors, Sample 1

Table 3: Final peak and average measurement from the worst frequencies, Sample 1

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
17666.875000	50.32	---	73.90	23.58	1000.0	1000.000	244.0	V	186.0	23.6

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

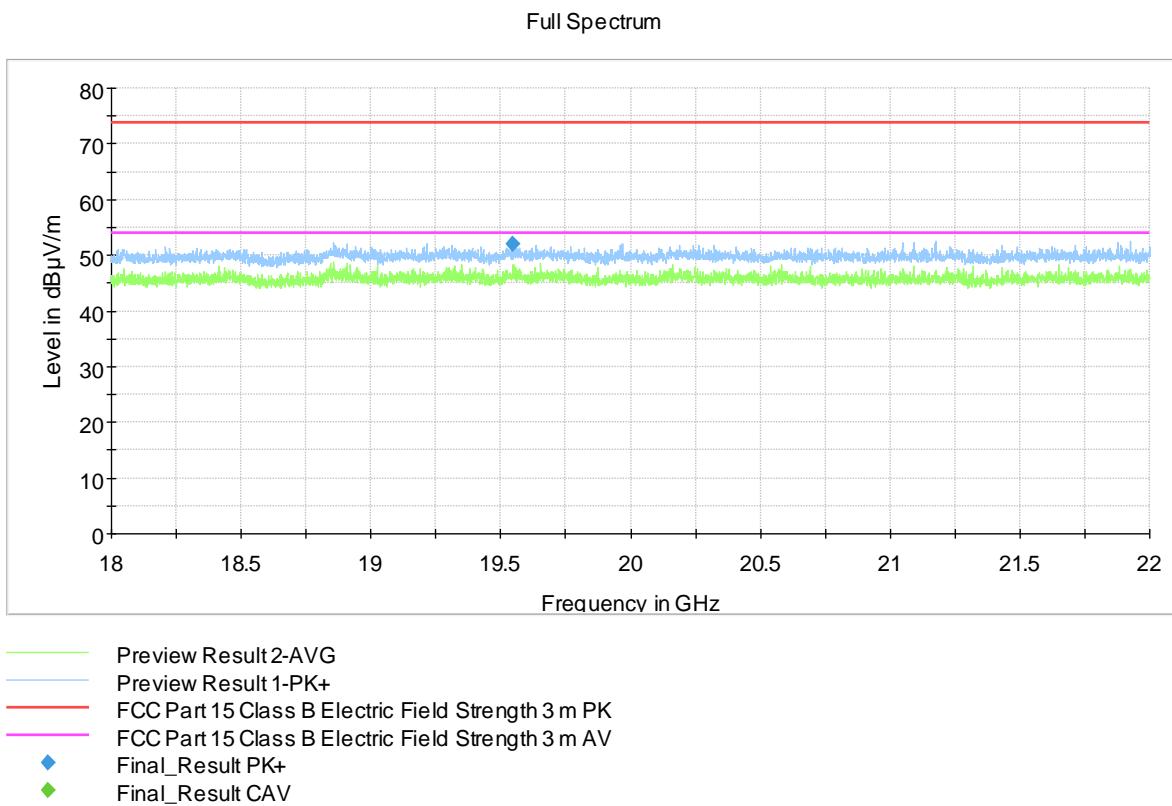

Figure 5: Measured curve with peak and average detectors, Sample 2

Table 4: Final peak and average measurement from the worst frequencies, Sample 2

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
17705.825000	51.34	---	73.90	22.56	1000.0	1000.000	231.0	H	142.0	24.0

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

Measured Peak and Average Values In The Frequency Range 18 – 22 GHz

Figure 6: Measured curve with peak and average detectors, Sample 1

Table 5: Final peak and average measurement from the worst frequencies, Sample 1

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
19548.150000	52.02	---	73.90	21.88	1000.0	1000.000	231.0	V	308.0	7.1

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

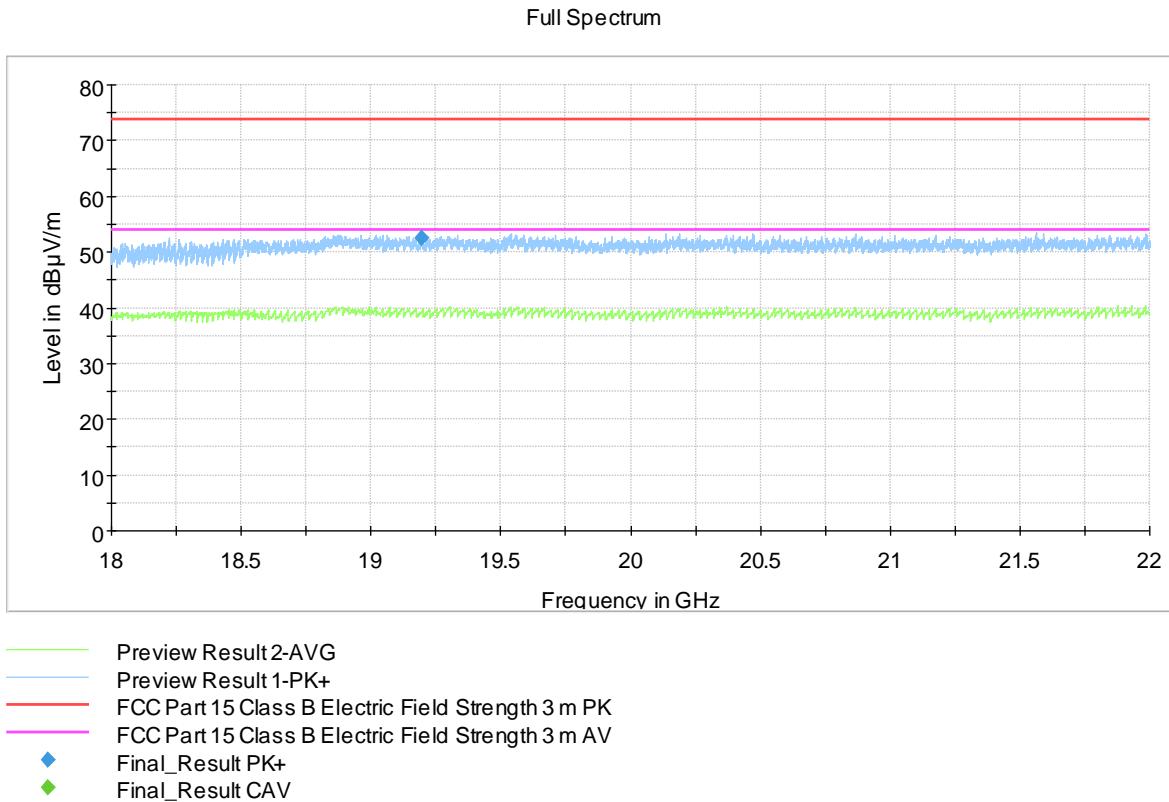


Figure 7: Measured curve with peak and average detectors, Sample 2

Table 6: Final peak and average measurement from the worst frequencies, Sample 2

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
19193.100000	52.52	---	73.90	21.38	1000.0	1000.000	139.0	H	133.0	7.1

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

TEST EQUIPMENT

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
ANTENNA	EMCO	3160-09	inv. 7294	2020-02-20	2021-02-20
				2021-02-19	2022-02-19
ANTENNA	EMCO	3117	inv. 7293	2020-03-11	2022-03-11
ANTENNA	SCHWARZBECK	VULB 9168	inv. 8911	2020-11-04	2022-11-04
ANTENNA MAST	MATURO	TAM 4.0E	inv. 10181	NCR	NCR
ATTENUATOR	PASTERNACK	PE 7004-4 (4dB)	inv. 10126	2019-04-01	2021-04-01
				2021-03-26	2023-03-26
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv. 10679	2020-07-20	2021-07-20
MAST & TURNTABLE CONTROLLER	MATURO	NCD	inv. 10183	NCR	NCR
POWER SUPPLY	DELTA	SM 130-25D	inv. 10406	NCR	NCR
RF PREAMPLIFIER	CIAO	CA1840-5019	inv. 10593	2020-10-09	2021-10-09
RF PREAMPLIFIER	CIAO	CA118-3123	inv. 10278	2020-10-09	2021-10-09
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
TURNTABLE	MATURO	DS430 UPGRADED	inv. 10182	NCR	NCR

NCR = No Calibration Required

END OF REPORT