

A-dec, Inc.

43.0536.00 FCC 15.407:2021 RSS-247 Issue 2:2017 802.11 a/b/g/n/ac SISO Radio

Report: A-DE0170 Rev. 1, Issue Date: March 12, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: September 17, 2021 A-dec, Inc. EUT: 43.0536.00

Radio Equipment Testing

Standards

Specification	Method
FCC 15.407:2021	ANSI C63.10:2013, KDB 789033, KDB 905462 D02
RSS-247 Issue 2:2017	ANSI C63.10:2013, KDB 789033, KDB 905462 D02

Results

itcourto				
Method Clause	Test Description	Applied	Results	Comments
KDB 905462 (D02) -7.5	DFS Testing - Test Signal Level	No	N/A	Not required if EUT is a "Client" without radar detection.
KDB 905462 (D02) -7.7	DFS Testing - Channel Loading and Channel Utilization	Yes	Pass	
KDB 905462 (D02) -7.8.1	DFS Testing - Detection Bandwidth	No	N/A	Not required if EUT is a "Client" without radar detection.
KDB 905462 (D02) -7.8.2	DFS Testing - Channel Availability Check	No	N/A	Not required if EUT is a "Client" without radar detection.
KDB 905462 (D02) -7.8.3	DFS Testing – Channel Move Time	Yes	Pass	
KDB 905462 (D02) -7.8.3	DFS Testing - Closing Time	Yes	Pass	
KDB 905462 (D02) -7.8.3	DFS Testing - Non Occupancy Period	Yes	Pass	
KDB 905462 (D02) -7.8.4	DFS Testing - Statistical Performance	No	N/A	Not required if EUT is a "Client" without radar detection.
N/A	DFS Testing - DFS Product Information	Yes	N/A	A1 Product Information filled out by the manufacturer and included in the test report.

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Added RSS-247 Issue 2:2017 specification to the test report	2022-03-10	1, 2, 17, 22, 26, 29
	Updated test descriptions	2022-03-10	16, 21, 25, 28
01	Added additional comments	2022-03-10	17, 22, 26, 29
	Added Introduction Client DFS section to the test report	2022-03-10	12-15
	Added Appendix – DFS Product Information to the test report	2022-03-10	32-35

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

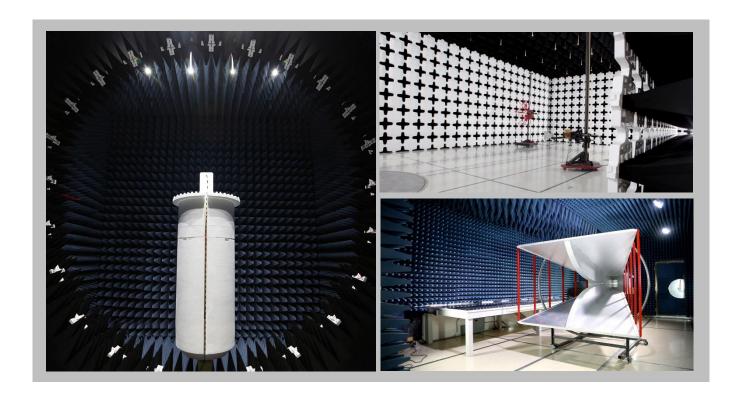
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

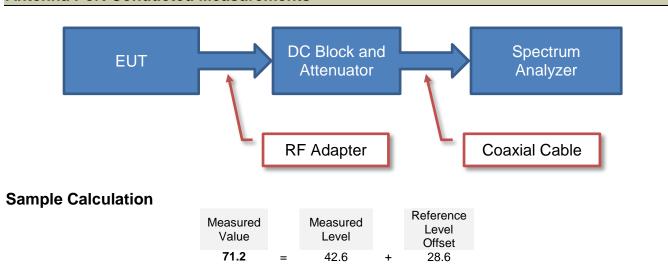
California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
		A2LA				
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06		
Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
		BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
VCCI						
A-0029	A-0109	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157		

MEASUREMENT UNCERTAINTY

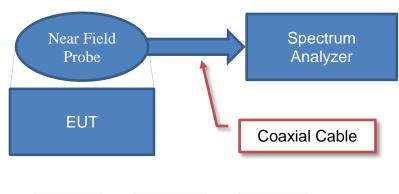
Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

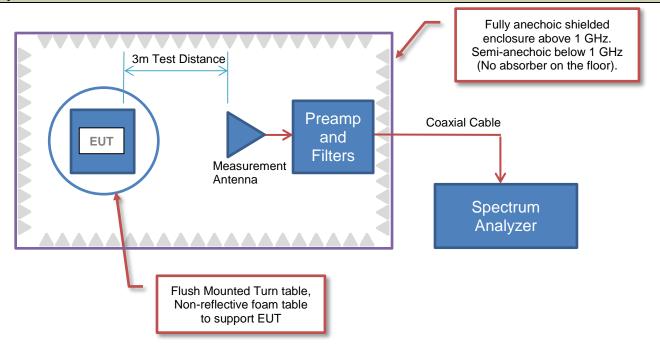

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

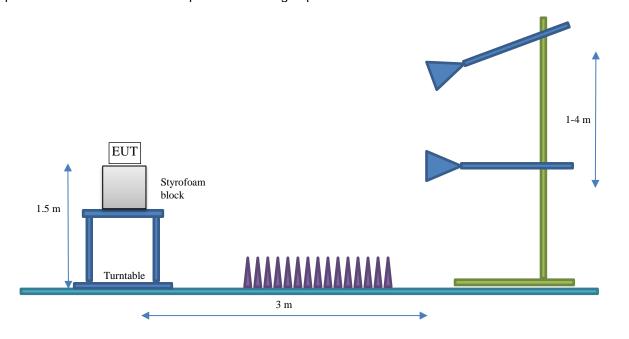

TEST SETUP BLOCK DIAGRAMS

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements


Sample Calculation

TEST SETUP BLOCK DIAGRAMS



Spurious Radiated Emissions

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	A-dec, Inc.
Address:	2601 Crestview Dr Building 4
City, State, Zip:	Newberg, OR 97132-9528
Test Requested By:	Russell Perkins
EUT:	43.0536.00
First Date of Test:	September 17, 2021
Last Date of Test:	September 17, 2021
Receipt Date of Samples:	September 8, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Radio module with 802.11abgn ac and Bluetooth and Bluetooth LE.

Testing Objective:

To demonstrate compliance of the 802.11 a/b/g/n/ac SISO radio under FCC 15.407 for operation in the, 5.3 GHz, 5.6 GHz and 5.8 GHz band(s).

CONFIGURATIONS

Configuration A-DE0170-3

Software/Firmware Running during test				
Description	Version			
Teraterm	4.105			
Murata Test Firmware	None			

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Bluetooth and WiFi module	A-dec, Inc.	43.0536.00	SN001 00001		

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Host PCB	A-dec, Inc.	43.0528.00 Rev 2	528P068188		
Switching Power Supply	Total Power	TMPU130-108 (P00B)	2015017141		

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Laptop Dell Latitude 740 7437666170					

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power	No	2.0	No	AC Mains	Switching Power Supply	
FTDI to USB	No	2.0	No	Laptop	Host PCB	
DC Power	No	2.7	No	Switching Power Supply	Host PCB	
DC Power	No	1.0	No	Host PCB	Linear DC Power Supply	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
		DFS Testing -	Tested as	No EMI suppression	EUT remained at	
1	2021-09-17	Channel Loading	delivered to	devices were added or	Element following	
		Channel Utilization	Test Station.	modified during this test.	the test.	
		DEC Tooting	Tested as	No EMI suppression	EUT remained at	
2	2 2021-09-17	DFS Testing - Move Time	delivered to	devices were added or	Element following	
			Test Station.	modified during this test.	the test.	
	DEC Testing		Tested as	No EMI suppression	EUT remained at	
3	2021-09-17	DFS Testing - Closing Time	delivered to	devices were added or	Element following	
		Closing Time	Test Station.	modified during this test.	the test.	
		DFS Testing - Non	Tested as	No EMI suppression	Scheduled testing	
4	2021-09-17	2021-09-17 Occupancy Period	delivered to	devices were added or	was completed.	
		Occupancy Fenou	Test Station.	modified during this test.	was completed.	

Overview

For a Client Device without DFS, the Channel Move Time and Channel Closing Transmission Time requirements are verified with one Short Pulse Radar and one Long Pulse Radar. Non-occupancy period can be confirmed with either short or long pulses.

Channel Closing Transmission Time: The total duration of transmissions, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time.

Channel Move Time: The time to cease all transmissions on the current Channel upon detection of a Radar Waveform above the DFS Detection Threshold. A Client Device will not transmit before having received appropriate control signals from a Master Device. A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

Non-Occupancy Period: Time during which both the client and master device shall not make any transmissions on a channel after a radar signal was detected on that channel. It should at least the minimum requirements but it can be more.

Applicability of DFS Requirements Pr	ior to Use of a Ch	annel	
Requirement		Operational Mode	
	Master	Client (without DFS)	Client (with DFS)
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Applicability of DFS requirements during r	ormal operation	
Requirement	Operationa	al Mode
	Master Device or Client with Radar Detection	Client Without Radar Detection
DFS Detection Threshold	Yes	Not required
Channel Closing Transmission Time	Yes	Yes
Channel Move Time	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required

Additional requirement for devices with	Operationa	al Mode
multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

DFS Detection Thresholds for Master or Client Devices In	corporating DFS
Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Response Requirement Values	
Parameter	Value
Non-occupancy	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining
	10 second period. (See Notes 1 and 2).
	Minimum 100% of the UNII 99% transmission power bandwidth.
U-NII Detection Bandwidth	(See Note 3).

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Short Pulse Rada	ar Test Waveform	S			
Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	(See KDB section 6.1)	60%	30
2	1 - 5	150 - 230	23 - 29	60%	30
3	6 -10	200 - 500	16 – 18	60%	30
4	11 - 20	200 - 500	12 -16	60%	30
Aggregate (Radar	· · · · · · · · · · · · · · · · · · ·	ould be used for the	a data ati an ban da d	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Long Puls	se Radar Test	Waveforn	ns				
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	1000 - 2000	1 - 3	8 - 20	80%	30

Frequenc	Frequency Hopping Radar Test Waveform										
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials				
6	1	333	9	0.333	300	70%	30				

Setting the Test Signal Level

The radar test signal level is set at the Master Device, or the Client Device with In-Service Monitoring, as appropriate for the particular test. This device is known as the Radar Detection Device (RDD). The RDD consists of the applicable device and the device antenna assembly that has the lowest antenna assembly gain of all available antenna assemblies. Depending on the UUT, the following configurations exist:

- When the Master Device is the UUT, the Master Device is the RDD.
- When a Client Device without Radar Detection is the UUT, the Master Device is the RDD.
- When a Client Device with Radar Detection is the UUT, and is tested for response to the Master Device detections, the Master Device is the RDD.
- When a Client Device with Radar Detection is the UUT, and is tested for independent response to detections by the Client Device, the Client Device is the RDD.

A spectrum analyzer is used to establish the test signal level for each radar type. During this process, there are no transmissions by either the Master Device or Client Device. The spectrum analyzer is switched to the zero span (time domain) mode at the frequency of the Radar Waveform generator. The peak detector function of the spectrum analyzer is utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) are set to at least 3 MHz.

The signal generator amplitude and/or step attenuators are set so that the power level measured at the spectrum analyzer is equal to the DFS Detection Threshold that is required for the tests. The signal generator and attenuator settings are recorded for use during the test.

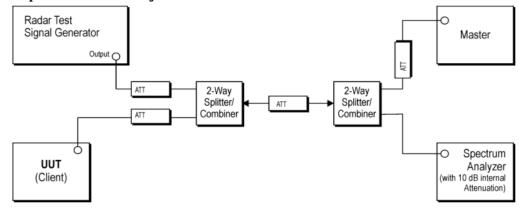
Data demonstrating that the test signal level is correctly set for each radar type (0-6) will be recorded and reported.

XMit 2019.09.09

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Access Point	Cisco	AIR-SAP2602E-A-K9	TIY	NCR	NCR
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAJ	2021-07-02	2022-07-02
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2021-03-14	2022-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMW	2021-03-14	2022-03-14
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06


TEST DESCRIPTION

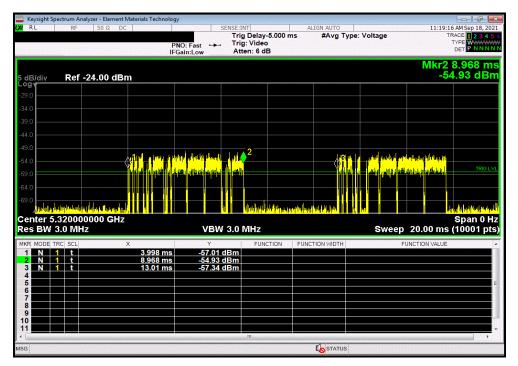
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The master and client were connected using the conducted method described in the FCC KDB 905462 D02 v02, 7.2.2 via a series of splitters and attenuators.

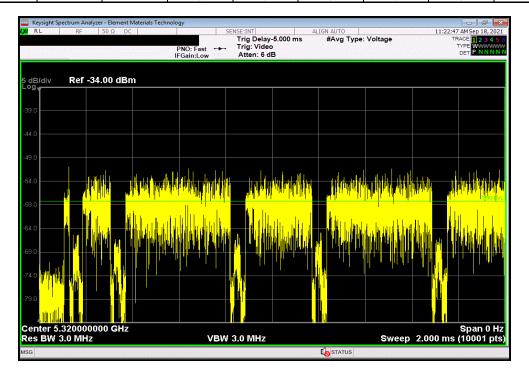
A series of sceen caputres were collected in zero span (2 mS, 10 mS, 25 mS, 100 mS, 10 Sec) to clearly document that the communication traffic was configured to a duty cycle of 17% or greater.

Setup for Client with injection at the Master

EUT: 43.0536.00 Work Order: A-DE0170 Serial Number: SN001 00001 Date: 17-Sep-21 Temperature: 22.3 °C
Humidity: 37.3% RH
Barometric Pres.: 1013 mbar
Job Site: EV06 Customer: A-dec, Inc.
Attendees: Michael Yurkoski and Cameron Hamilton Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Power: 3.3 VDC Test Method FCC 15.407:2021 ANSI C63.10:2013 RSS-247 Issue 2:2017 COMMENTS RSS-Gen Issue 5:2018 +A1:2019 Channel loading accplished through the use if iPerf3. Channel loading was confirmed on Ch. 60/64, 5310 MHz, MCS7. The same loading was applied on Ch. 132/136, 5670 MHz, MCS7. DEVIATIONS FROM TEST STANDARD None Configuration # Signature Loading Value (%) Pulse Period Limit Width (mS) (mS) (%) Result 40 MHz BW, Ch. 60/62, 5310 MHz, MCS7 Duty Cycle 2 mS 10 mS 25 mS 55 N/A N/A N/A 4.97 9.012 ≥ 17 Pass N/A N/A N/A N/A N/A N/A N/A N/A N/A 100 mS 10 Sec N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A



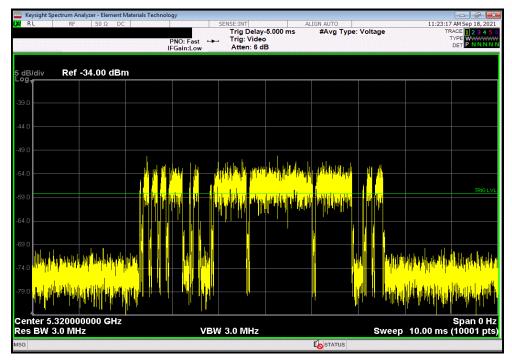
40 MHz BW, Ch. 60/62, 5310 MHz, MCS7, Duty Cycle


Pulse Period Loading Limit

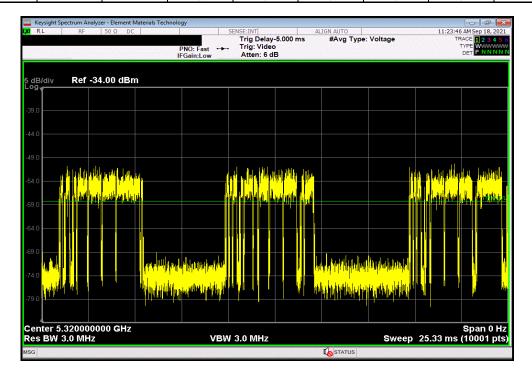
Width (mS) (mS) Value (%) (%) Result

4.97 9.012 55.15 ≥ 17 Pass

40 MHz BW, Ch. 60/62, 5310 MHz, MCS7, 2 mS								
			Pulse	Period	Loading	Limit		
-			Width (mS)	(mS)	Value (%)	(%)	Result	
			N/A	N/A	N/A	N/A	N/A	



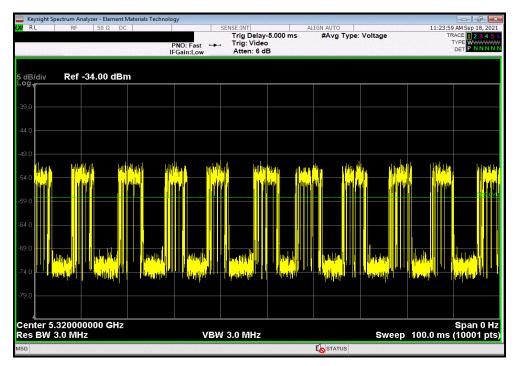
40 MHz BW, Ch. 60/62, 5310 MHz, MCS7, 10 mS


Pulse Period Loading Limit

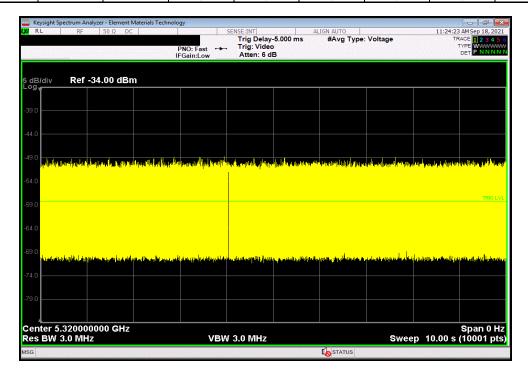
Width (mS) (mS) Value (%) (%) Result

N/A N/A N/A N/A N/A N/A

	40 MHz BW, Ch. 60/62, 5310 MHz, MCS7, 25 mS							
			Pulse	Period	Loading	Limit		
			Width (mS)	(mS)	Value (%)	(%)	Result	
I			N/A	N/A	N/A	N/A	N/A	



40 MHz BW, Ch. 60/62, 5310 MHz, MCS7, 100 mS


Pulse Period Loading Limit

Width (mS) (mS) Value (%) (%) Result

N/A N/A N/A N/A N/A N/A

	40 MHz BW, Ch. 60/62, 5310 MHz, MCS7, 10 Sec							
	Pulse Period Loading				Limit			
_			Width (mS)	(mS)	Value (%)	(%)	Result	
i		<u> </u>	N/A	N/A	N/A	N/A	N/A	

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due	
Access Point	Cisco	AIR-SAP2602E-A-K9	TIY	NCR	NCR	
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR	
Power Supply - DC	Dr. Meter	PS-305DM	TZZ	NCR	NCR	
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2021-03-14	2022-03-14	
Attenuator	S.M. Electronics	SA26B-20	AUY	2021-03-14	2022-03-14	
Block - DC	Fairview Microwave	SD3379	AMW	2021-03-14	2022-03-14	
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR	
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR	
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02	
Power Divider/Combiner Fairview Microw		MP0208-2	IAJ	2021-07-02	2022-07-02	
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06	

TEST DESCRIPTION

The master and client were connected using the conducted method described in FCC KDB 905462 D02, v02, 7.2.2 via a series of splitters and attenuators which allows the radar signals to be injected and monitored.

The radar waveform generator was configured to send Short Pulse Radar Type 0 waveforms. The amplitude level of the radar pulse was verified prior to testing by temporarily replacing the master device with the analyzer. An additional 1 dB was added to the radar signal to ensure it is at or above the DFS threshold for the master device.

The master device was then returned to the test setup.

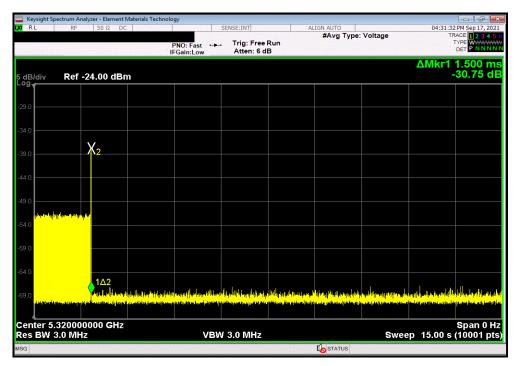
A data stream was established between the EUT and the master device. The radar waveform was injected into the system. The transmissions of the EUT were then monitored for the duration greater than 10 seconds.

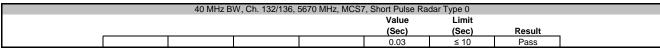
Serial Number: SN001 00001 Date: 18-Dec-21 Temperature: 22.5 °C Customer: A-dec, Inc. Humidity: 37.3% RH
Barometric Pres.: 1013 mbar Attendees: Michael Yurkoski and Cameron Hamilton Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Power: 3.3 VDC Job Site: EV06 Test Method FCC 15.407:2021 ANSI C63.10:2013 RSS-247 Issue 2:2017 COMMENTS RSS-Gen Issue 5:2018 +A1:2019 Data stream between client and master was established using iPerf3. The marker delta function was used to indicate when the radar pusle was applied and when transmissions ceased on the monitored channel. The master device changes channel upon detection of the of the radar pulse. The EUT moves channels with the master. At the time of test, the radar pulse injected at the master device was configured -64 dBm + 1 dB, and it was confirmed that the master device can detect the signal prior to testing. The verification screen capture is to demonstrate the waveform generated by the Colt generator. DEVIATIONS FROM TEST STANDARD None Configuration # 3 Signature Value Limit (Sec) Result 40 MHz BW, Ch. 60/64, 5310 MHz, MCS7 0.0015 Short Pulse Radar Type 0 ≤ 10 Pass 40 MHz BW, Ch. 132/136, 5670 MHz, MCS7 Short Pulse Radar Type 0 0.0300 ≤ 10 Pass FCC Short Pulse Radar - Type 0

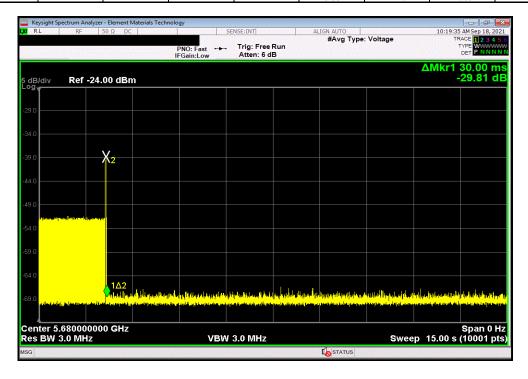
40 MHz BW, Ch. 60/64, 5310 MHz, MCS7, Short Pulse Radar Type 0

Value

(Sec)

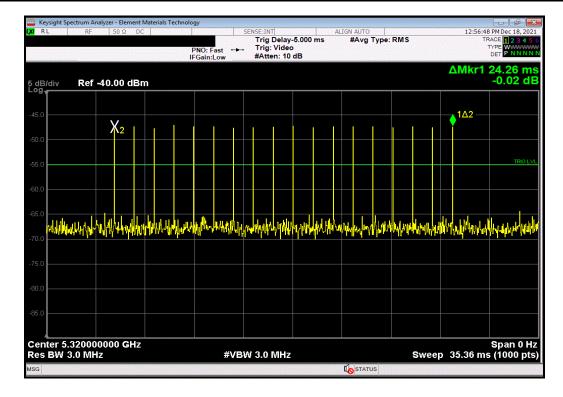

(Sec)


Result


0.0015

≤ 10

Pass



FCC Short Pulse Radar - Type 0, Verification

Value Limit
(Sec) (Sec) Result

N/A N/A N/A

DFS TESTING - CLOSING TIME

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Access Point	Cisco	AIR-SAP2602E-A-K9	TIY	NCR	NCR
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR
Power Supply - DC	Dr. Meter	PS-305DM	TZZ	NCR	NCR
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2021-03-14	2022-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2021-03-14	2022-03-14
Block - DC	Fairview Microwave	SD3379	AMW	2021-03-14	2022-03-14
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAJ	2021-07-02	2022-07-02
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

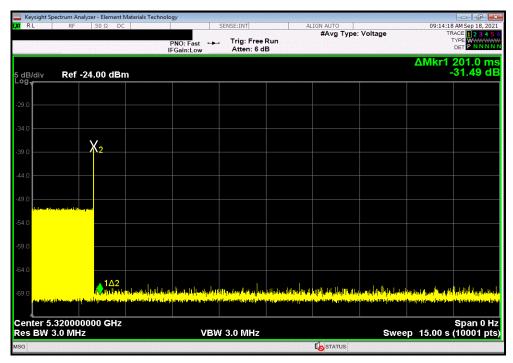
The master and client were connected using the conducted method described in FCC KDB 905462 D02, 7.2.2 via a series of splitters and attenuators which allows the radar signals to be injected and monitored.

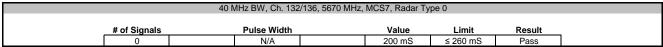
The radar waveform generator was configured to send Short Pulse Radar Type 0 waveforms. The amplitude of the radar pulse was verified prior to testing by temporarily replacing the master device with the analyzer, setting the power level according to Table 3 and Section 7.5. An additional 1dB was added to the radar signal to ensure it is at or above the DFS threshold for the master device.

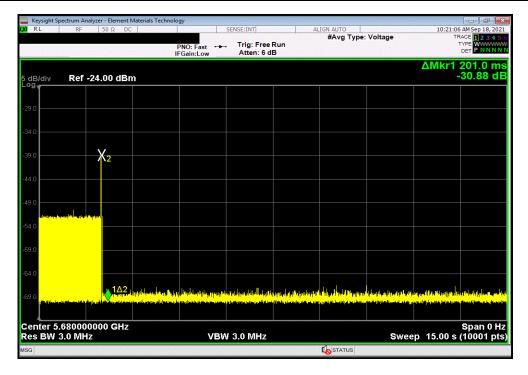
Where required, an approved Media file was streamed through the master and client or an alternative method to load the channel may be used instead. Channel loading requirements were also verified prior to testing. Configuration and status of the master and client devices were then monitored using the spectrum analyzer. The Closing Time test was performed by starting a transmission between the master and client device, and then injecting the appropriate radar signals. All transmission signals between the master and client in the first 200mS after application of the radar signal are allowed. After this time period, the number of transmissions signals are counted and multiplied by the pulse width value(s). This aggregate is then added to the 200mS allowance for the final value and compared to the specified limit.

DFS TESTING - CLOSING TIME

Work Order: A-DE0170
Date: 17-Sep-21
Temperature: 22.5 °C EUT: 43.0536.00 Serial Number: SN001 00001 Customer: A-dec, Inc. Attendees: Michael Yurkoski and Cameron Hamilton
Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Humidity: 37.4% RH
Barometric Pres.: 1013 mbar
Job Site: EV06 Power: 3.3 VDC **Test Method** FCC 15.407:2021 ANSI C63.10:2013 RSS-247 Issue 2:2017 COMMENTS The marker delta function was used to indicate when the radar pulse was applied and when the 200 mS overvation window ends. No intermittent control signals were observed beyond the 200 mS window during the Channel Move Time, therefore there is no additional aggragate was added to the final value. DEVIATIONS FROM TEST STANDARD None 3 Configuration # # of Signals Pulse Width Value Limit Result 40 MHz BW, Ch. 60/64, 5310 MHz, MCS7 Radar Type 0 40 MHz BW, Ch. 132/136, 5670 MHz, MCS7 Radar Type 0 0 N/A 200 mS ≤ 260 mS Pass 200 mS ≤ 260 mS Pass


DFS TESTING - CLOSING TIME




40 MHz BW, Ch. 60/64, 5310 MHz, MCS7, Radar Type 0

of Signals Pulse Width Value Limit Result

0 N/A 200 mS ≤ 260 mS Pass

DFS TESTING - NON OCCUPANCY PERIOD

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

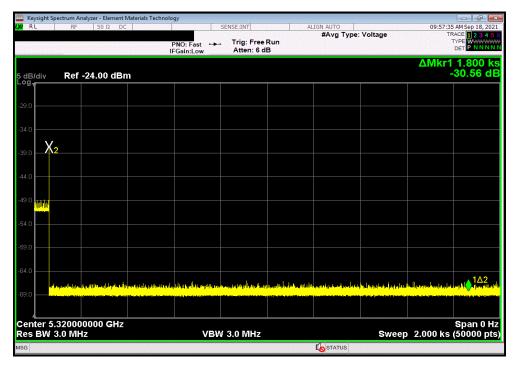
TEST EQUIPMENT

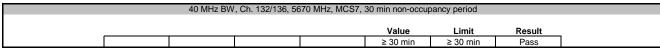
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due	
Access Point	Cisco	AIR-SAP2602E-A-K9	02E-A-K9 TIY		NCR	
Generator - Signal	Benchforge Manufacturing	Colt	TIN	NCR	NCR	
Power Supply - DC	Dr. Meter	PS-305DM	TZZ	NCR	NCR	
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2021-03-14	2022-03-14	
Attenuator	S.M. Electronics	SA26B-20	AUY	2021-03-14	2022-03-14	
Block - DC	Fairview Microwave	SD3379	AMW	2021-03-14	2022-03-14	
Attenuator	Aeroflex/Weinschel	3053	RKF	NCR	NCR	
Attenuator	Aeroflex/Weinschel	3053	RKG	NCR	NCR	
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAI	2021-07-02	2022-07-02	
Power Divider/Combiner	Fairview Microwave	MP0208-2	IAJ	2021-07-02	2022-07-02	
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06	

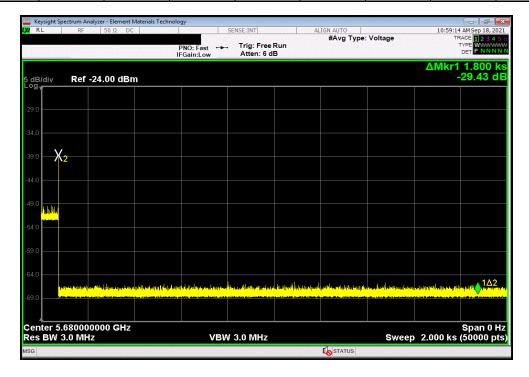
TEST DESCRIPTION

The master and client were connected using the conducted method described in the FCC KDB 905462 D02, 7.2.2 via a series of splitters and attenuators which allows the communication and injected radar signals to be monitored simultaneously. The spectrum analyzer was configured to sweep the frequency for at least 30 minutes. The Short Pulse Radar Type 0 was injected and the channel was monitored to make sure the master and client devices vacated the channel and did not use it again for a period of time equal to or greater than 30 minutes.

DFS TESTING - NON OCCUPANCY PERIOD


						XMit 2020.12.3
EUT: 43.0	0536.00			Work Order:	A-DE0170	
Serial Number: SN	001 00001			Date:	17-Sep-21	
Customer: A-d	Customer: A-dec, Inc.			Temperature:	22.5 °C	
Attendees: Mic	hael Yurkoski and Car	neron Hamilton		Humidity:	37.4% RH	
Project: Nor	ne			Barometric Pres.:	1013 mbar	
Tested by: Jef	f Alcoke		Power: 3.3 VDC	Job Site:	EV06	
EST SPECIFICATIONS	S		Test Method			
CC 15.407:2021			ANSI C63.10:2013			
SS-247 Issue 2:2017			RSS-Gen Issue 5:2018 +A1:2019	9		
OMMENTS						
EVIATIONS FROM TE	ST STANDARD					
lone						
Configuration #	3	Signature	Telf			
				Value	Limit	Result
MHz BW, Ch. 60/64,	5310 MHz, MCS7			_		
30 min non-occupancy period			≥ 30 min	≥ 30 min	Pass	
MHz BW, Ch. 132/13	6, 5670 MHz, MCS7					
30 i	min non-occupancy peri	od		≥ 30 min	≥ 30 min	Pass


DFS TESTING - NON OCCUPANCY PERIOD



40 MHz BW, Ch. 60/64, 5310 MHz, MCS7, 30 min non-occupancy period

| Value | Limit | Result |
| ≥ 30 min | ≥ 30 min | Pass |

APPENDIX

Information Provided by the Party Requesting the Test

Example answers have been given (italicized) to help you understand what information is required. Please replace "Your answer here" with information specific to your product.

Section 1

The following information must be provided prior to the start of testing:

List all antenna assemblies and their corresponding gains.

- 1. If radiated tests are to be performed, the U-NII Device should be tested with the lowest gain antenna assembly (regardless of antenna type). The report should indicate which antenna assembly was used for the tests. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
- If conducted tests are to be performed, indicate which antenna port/connection was used for the tests and the antenna assembly gain that was used to set the DFS Detection Threshold level during calibration of the test setup.
 - a. Indicate the calibrated conducted DFS Detection Threshold level.
 - b. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
 - c. Indicate the antenna connector impedance. Ensure that the measurement instruments match (usually 50 Ohms) or use a minimum loss pad and take into account the conversion loss.
- 3. Antenna gain measurement verification for tested antenna.
 - a. Describe procedure
 - b. Describe the antenna configuration and how it is mounted
 - c. If an antenna cable is supplied with the device, cable loss needs to be taken into account. Indicate the maximum cable length and either measure the gain with this cable or adjust the measured gain accordingly. State the cable loss.

Example: The client device (EUT) has one 50 ohm antenna port. The antenna assembly gain of the client device was measured by the antenna manufacturer. The maximum gain in the 5 GHz bands is 4.2 dBi.

Linear Polarization SMD mount ceramic antenna soldered to PCB, not user removable. 5 GHz 5.2 dB Mounted 0.6in from transmitter on same PCB as transmitter. Antenna cable length and loss 0.6in PCB trace 50ohm feedline, no loss Spacing distance from operator is >20 cm.

Functional Description of the EUT (Equipment Under Test):

Example: 802.11abgn SISO radio with 1 stream and 1 antenna.

A-dec M.2 WiFi/BT Module (43.0536.00) is an M.2 form factor module designed to enable 802.11a/b/g/n/ac W-LAN + Bluetooth 5.0, Single input, single output (SISO) radio with 1 stream and 1 antenna.

The operating modes (Master and/or Client) of the U-NII device.

Example: Client device with no ad-hoc capability, with both 802.11a and 802.11n (20/40MHz)

The module by default supports active scanning and ad-hoc mode with 802.11AC/AN radio that supports 20/40/80 MHz Bandwidths. RF-related settings including modes are set via firmware and are not accessible for change via the UI.

For Client devices, indicate whether or not it has DFS Radar detection capabilities.

Example: The client device has no radar detection and no ad-hoc capability.

The client device has no radar detection and no ad-hoc mode.

System architectures, data rates, U-NII Channel bandwidths.

1. Indicate the type(s) of system architecture (e.g. IP based or Frame based) that the U-NII device employs. Each type of unique architecture must be tested.

Example: The client device (EUT) employs IP based system architecture.

The client device (EUT) employs IP based system architecture.

Applicable only to devices with Radar detection capabilities: The time required for the Master Device or Client Device (with radar detection) to complete its power-on cycle.

No radar detection capabilities.

Section 2

The following information must be provided prior to the completion of a test report:

Hardware, Firmware, and OS Versions:

Example: Hardware version: 0.1.5.6

Firmware version: 12.6.8 OS versions: CPM 7.8.2.1

DUT: WiFi/BT5 M.2 Module HW version: 43.0536.00 Rev. 3, FW: None

Test host board: ACHB HW version: 43.0258.00 Rev 2

The operating frequency band(s) of the equipment.

Example: 5150 - 5250 MHz, 5250 - 5350 MHz (DFS Band), etc

5180-5850 MHz

List the highest and the lowest possible power level (equivalent isotropic radiated power (EIRP) of the equipment.

Example: The maximum EIRP of the 5 GHz equipment is 24.4 dBm conducted.

The maximum EIRP of the 5 GHz equipment is 16.7 dBm conducted.

Test sequences or messages that should be used for communication between Master and Client Devices, which are used for loading the Channel.

- 1. Stream the test file from the Master Device to the Client Device for IP based systems or frame based systems which dynamically allocate the talk/listen ratio.
- 2. For frame based systems with fixed talk/listen ratio, set the ratio to 45%/55% and stream the test file from the Master to the Client.
- 3. For other system architectures, supply appropriate Channel loading methodology.

Example: Testing was performed with an audio file streamed from the Master Device to the Client Device. Channel loading was greater than 64%.

- 1. Establish a data stream through use of iPerf:
 - a. On the Client Device (receiver of data), the command is: iperf3 -s
 - b. On the Master Device (sender of data), the command is: iperf3 -c <ip> -u -t 9999
 - i. -u indicates that the client should use UDP for transfer (no error checking/retransmit)
 - ii. -t 9999 makes the iperf3 stream last as long as is needed for testing.
 - iii. Determine (at time of test) the IP address it is dependent on the network setup of the test environment, so that remains as a "fill in".

Transmit Power Control description.

Example: This device does not exceed 27dBm EIRP, so no transmit power control is implemented.

This device does not exceed 27dBm EIRP, so no transmit power control is implemented.

Applicable only to devices with Radar detection capabilities: Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

No radar detection capabilities.

Applicable only to Master devices: Uniform Channel Spreading requirement for Master Devices. For Master Devices, indicate how the master provides, on aggregate, uniform Channel loading of the spectrum across all Channels.

Not a master device.

For Client devices, indicate the FCC (and IC) identifier for the Master U-NII Device that is used with it for DFS testing.

Example: A DFS-compliant Master device was used for testing. It's the CISCO Model AIR-AP1252AG-A-K9, FCC ID:LDK102061, IC: 2461B-102061

A DFS-compliant Master device was used for testing: CISCO Model AIR-AP2602E-A-K9, FCC ID:LDK102080, IC: 2461B-102080

End of Test Report