

TESTING LABORATORY
CERTIFICATE # 4821.01

FCC PART 15.249

TEST REPORT

For

Xiamen ZiFiSense InfoTech Co., Ltd

Room 803, Building A-05, Software Park Phase III, Jimei District, Xiamen, China

FCC ID: 2AY22-DMZ3ZT92

Report Type: Original Report	Product Type: ZETA Smart Door Sensor
Report Number:	XMTN1210430-14877E-00
Report Date:	2021-06-29
	Jacob Kong
Reviewed By:	RF Engineer
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk ★.

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk **. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY.....	4
TEST FACILITY.....	4
SYSTEM TEST CONFIGURATION.....	5
JUSTIFICATION	5
EUT EXERCISE SOFTWARE	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
SUPPORT CABLE DESCRIPTIONS.....	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS.....	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT.....	9
APPLICABLE STANDARD	9
ANTENNA CONNECTOR CONSTRUCTION	9
FCC§15.205, §15.209 & §15.249(D) - RADIATED EMISSIONS.....	10
APPLICABLE STANDARD	10
TEST EQUIPMENT SETUP	10
EUT SETUP	11
TEST PROCEDURE	12
CORRECTED AMPLITUDE & MARGIN CALCULATION	12
TEST DATA	12
FCC§15.215(C) - 20DB EMISSION BANDWIDTH	18
APPLICABLE STANDARD	18
TEST PROCEDURE	18
TEST DATA	18

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	ZETA Smart Door Sensor
Tested Model	DMZ3ZT92
Frequency Range	915.5~927.5MHz
Transmit Power	89.13dBuV/m@3m
Modulation Technique	2(G)FSK
Antenna Specification*	2 dBi (It is provided by the applicant)
Voltage Range	DC 3.6V form battery
Date of Test	2021-05-28 to 2021-06-29
Sample serial number	XMTN1210430-14877E-RF-S1 (Assigned by BACL, Shenzhen)
Received date	2021-04-30
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209, 15.215 and 15.249 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter	Uncertainty	
Occupied Channel Bandwidth	±5%	
RF Output Power with Power meter	±0.73dB	
RF conducted test with spectrum	±1.6dB	
AC Power Lines Conducted Emissions	±1.95dB	
Emissions, Radiated	Below 1GHz Above 1GHz	±4.75dB ±4.88dB
Temperature	±1°C	
Humidity	±6%	
Supply voltages	±0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing by manufacturer.

Channel frequency: $921.5 \pm 0.002 * N$ (MHz), where $N=0 \sim 3000$

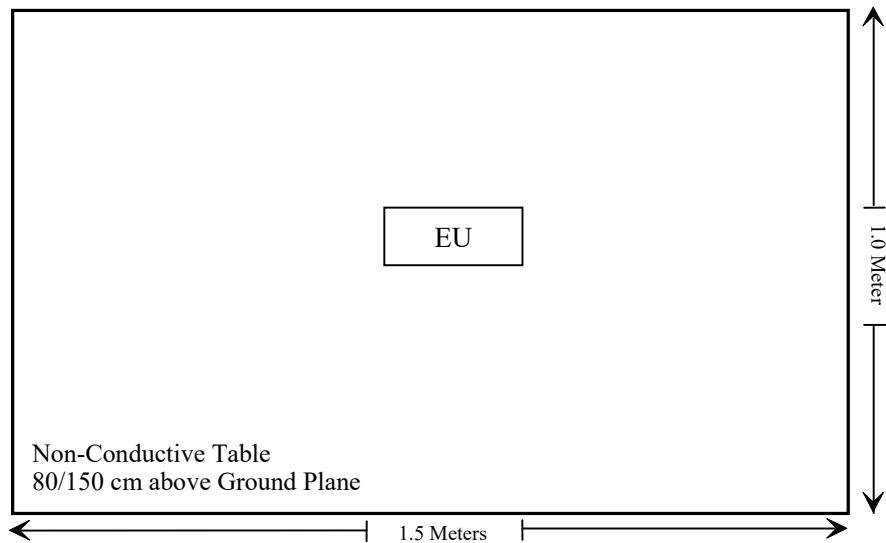
Test frequency: 915.5MHz, 921.5MHz, 927.5MHz

EUT Exercise Software

“Serial Port Utility”* software was used to the EUT tested and power level is 5*. The software and power level was provided by the applicant.

Equipment Modifications

No modifications were made to the unit tested.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

Support Cable Descriptions

Cable Description	Length (m)	From/Port	To
/	/	/	/

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conduction Emissions	Not Applicable
15.205, §15.209, §15.249(d)	Radiated Emissions& Outside of Band Emission	Compliance
§15.215 (c)	20 dB Bandwidth	Compliance

Not Applicable: The EUT was powered by battery only.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test					
R&S	EMI Test Receiver	ESR3	102455	2020/08/04	2021/08/03
Sonoma instrument	Pre-amplifier	310 N	186238	2020/08/04	2021/08/03
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2020/12/22	2023/12/21
Unknown	Cable 2	RF Cable 2	F-03-EM197	2020/11/29	2021/11/28
Unknown	Cable	Chamber Cable 1	F-03-EM236	2020/11/29	2021/11/28
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2020/08/04	2021/08/03
COM-POWER	Pre-amplifier	PA-122	181919	2020/11/29	2021/11/28
Sunol Sciences	Horn Antenna	3115	9107-3694	2021/01/15	2023/01/14
Insulated Wire Inc.	RF Cable	SPS-2503-3150	02222010	2020/11/29	2021/11/28
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2020/11/29	2021/11/28

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has an external antenna with unique antenna and the antenna gain is 2dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC§15.205, §15.209 & §15.249(d) - RADIATED EMISSIONS**Applicable Standard**

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

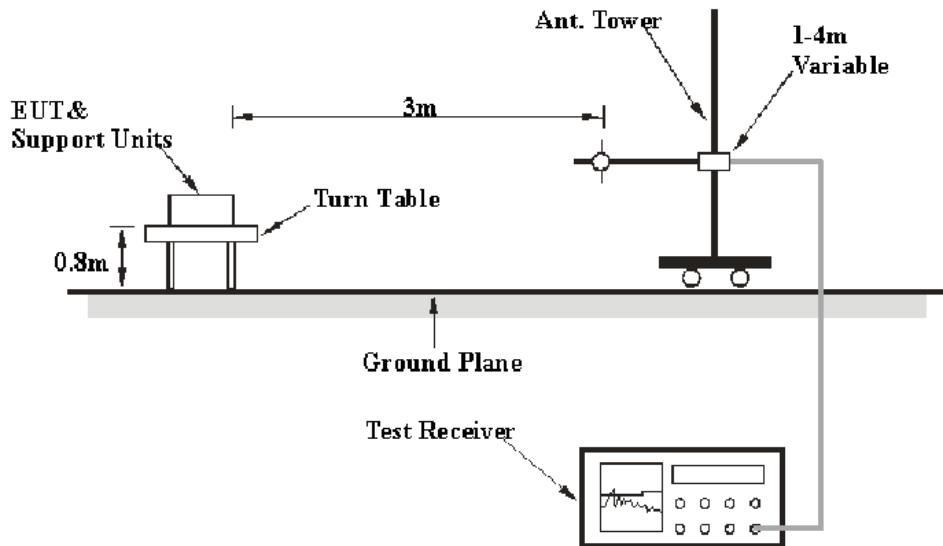
As per FCC§15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Test Equipment Setup

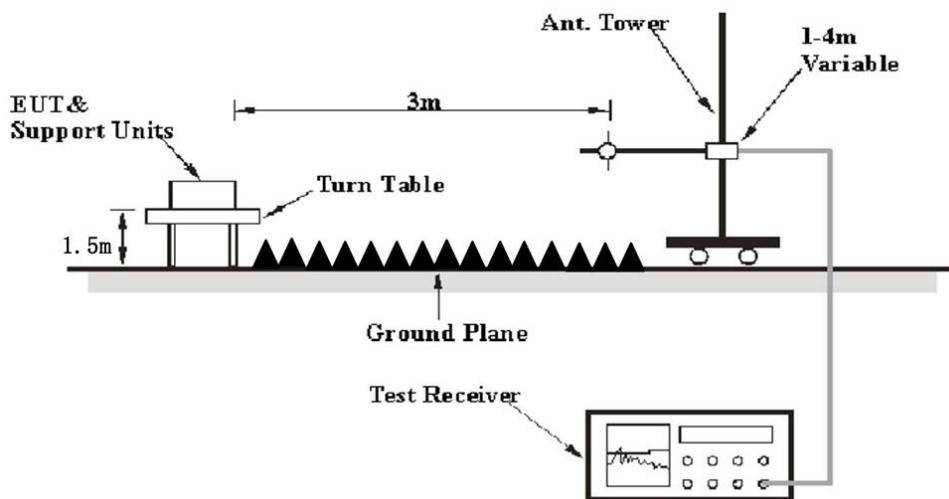
The spectrum analyzer or receiver is set as:

Below 1000MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto


Above 1000MHz:

Peak: RBW = 1MHz / VBW = 3MHz / Sweep = Auto


Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane for below 1GHz or 1.5 meter for above 1GHz, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

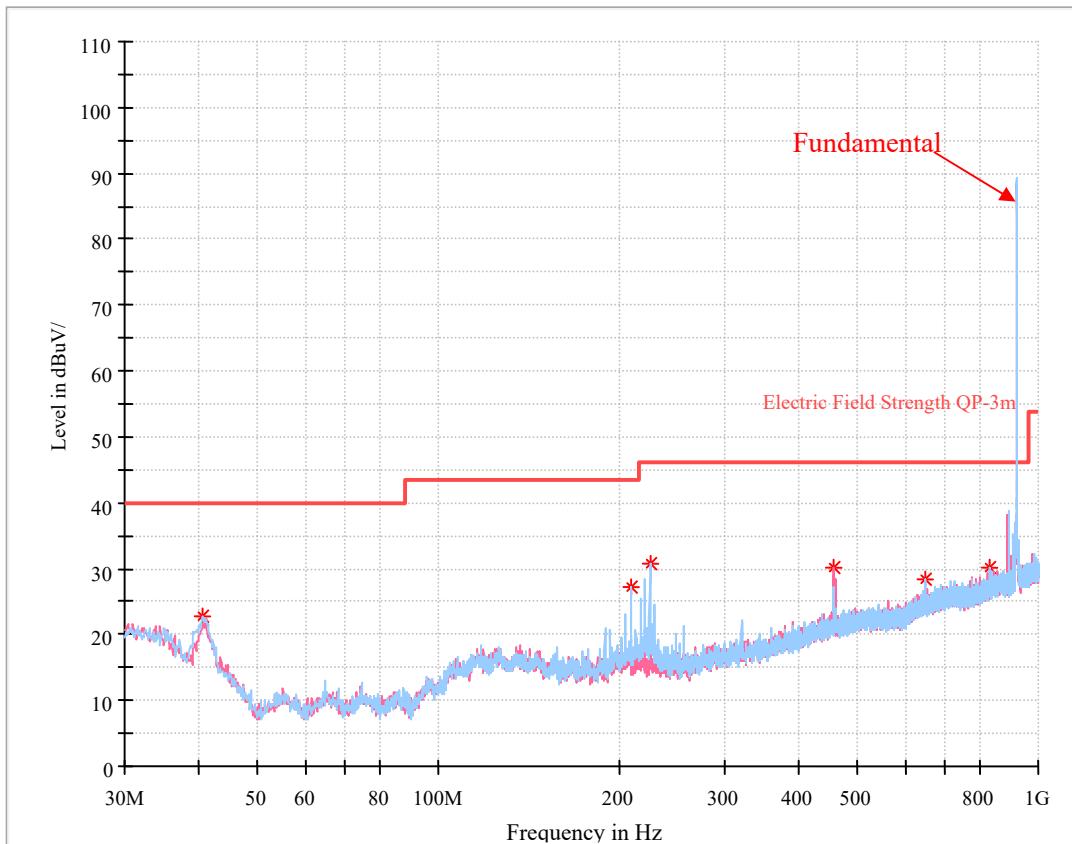
Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$


Test Data

Environmental Conditions

Temperature:	25~29 °C
Relative Humidity:	45~50 %
ATM Pressure:	101.0 kPa

The testing was performed by Zero Yan on 2021-05-28 for below 1GHz and Alan He on 2021-06-01 for above 1GHz.

Test Mode: Transmitting

30MHz – 1 GHz: (worst case in middle channel)**Critical_Freqs**

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.548750	22.89	40.00	17.11	100.0	H	282.0	-10.8
209.450000	27.14	43.50	16.36	100.0	H	78.0	-11.2
225.212500	30.65	46.00	15.35	100.0	H	271.0	-11.5
457.406250	30.18	46.00	15.82	100.0	V	274.0	-5.5
649.466250	28.52	46.00	17.48	300.0	H	99.0	-2.5
827.461250	30.12	46.00	15.88	300.0	H	141.0	-0.1

Fundamental and band edge:

Frequency (MHz)	Receiver		Turn-Table	Rx Antenna		Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	FCC Part15.249	
	Reading (dB μ V)	Detector	Angle Degree	Height (m)	Polar (H / V)			Limit (dB μ V/m)	Margin (dB)
Low Channel(915.5MHz)									
915.5	86.52	PK	193	2.1	H	1.20	87.72	94	6.28
915.5	86.11	PK	132	1.3	V	1.20	87.31	94	6.69
901.6	39.24	QP	266	1.5	H	1.00	40.24	46	5.76
928.1	38.55	QP	59	1.9	V	1.40	39.95	46	6.05
Middle Channel(921.5MHz)									
921.50	87.02	PK	131	1.1	H	1.30	88.32	94	5.68
921.50	87.83	PK	173	1.6	V	1.30	89.13	94	4.87
High Channel(927.5 MHz)									
927.5	86.21	PK	165	2.2	H	1.20	87.41	94	6.59
927.5	86.03	PK	333	2.4	V	1.20	87.23	94	6.77
901.9	38.64	QP	48	2.2	H	1.00	39.64	46	6.36
928.3	41.01	QP	274	2.5	V	1.40	42.41	46	3.59

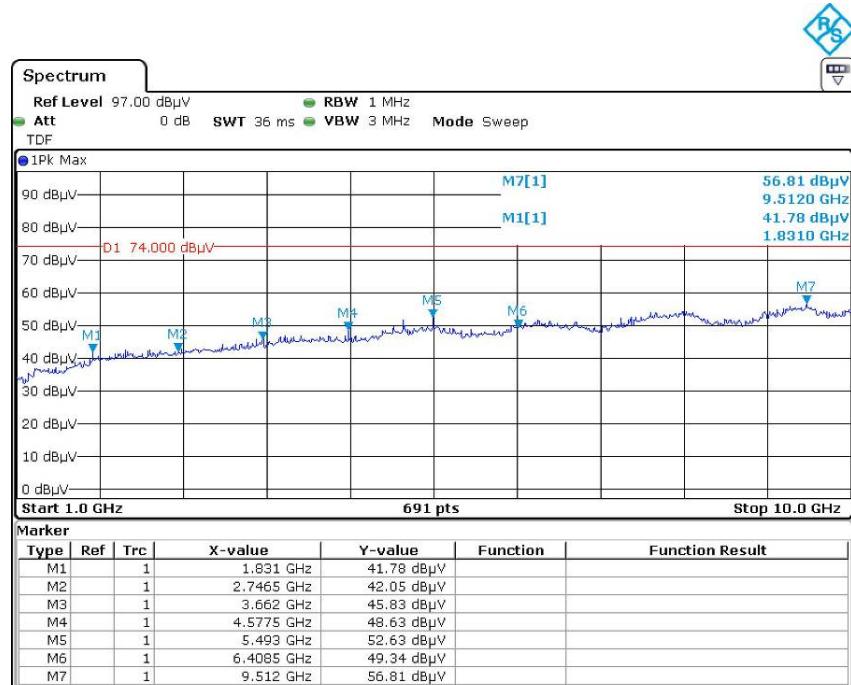
Note: for fundamental, the PK value compliance with the QP limit.

1 GHz -10 GHz:

Frequency (MHz)	Receiver		Turntable Degree	Rx Antenna		Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	FCC Part 15.249&15.209	
	Reading (dB μ V)	PK/QP/Ave.		Height (m)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)
Low Channel(915.5 MHz)									
1831.00	49.51	PK	127	1.4	V	-1.55	47.96	74	26.04
1831.00	45.79	Ave.	127	1.4	V	-1.55	44.24	54	9.76
2746.50	43.74	PK	288	1.7	V	1.19	44.93	74	29.07
2746.50	29.86	Ave.	288	1.7	V	1.19	31.05	54	22.95
3662.00	48.22	PK	301	1.1	V	3.06	51.28	74	22.72
3662.00	43.91	Ave.	301	1.1	V	3.06	46.97	54	7.03
4577.50	40.02	PK	175	2.4	V	7.10	47.12	74	26.88
4577.50	38.65	Ave.	175	2.4	V	7.10	45.75	54	8.25
5493.00	47.53	PK	323	1.4	V	10.68	58.21	74	15.79
5493.00	40.69	Ave.	323	1.4	V	10.68	51.37	54	2.63
6408.50	42.94	PK	197	1.4	V	13.53	56.47	74	17.53
6408.50	32.09	Ave.	197	1.4	V	13.53	45.62	54	8.38
Middle Channel(921.5 MHz)									
1843.00	49.37	PK	242	1.5	V	-1.55	47.82	74	26.18
1843.00	45.27	Ave.	242	1.5	V	-1.55	43.72	54	10.28
2764.50	44.23	PK	232	2.3	V	1.42	45.65	74	28.35
2764.50	33.86	Ave.	232	2.3	V	1.42	35.28	54	18.72
3686.00	48.9	PK	260	1.8	V	3.16	52.06	74	21.94
3686.00	44.34	Ave.	260	1.8	V	3.16	47.50	54	6.50
4607.50	48.8	PK	203	2.4	V	7.10	55.90	74	18.10
4607.50	43.01	Ave.	203	2.4	V	7.10	50.11	54	3.89
5529.00	45.01	PK	286	2.3	V	10.68	55.69	74	18.31
5529.00	34.97	Ave.	286	2.3	V	10.68	45.65	54	8.35
6450.50	43.57	PK	188	1.8	V	12.39	55.96	74	18.04
6450.50	28.17	Ave.	188	1.8	V	12.39	40.56	54	13.44
High Channel(927.5 MHz)									
1855.00	49.99	PK	127	2.2	V	-1.16	48.83	74	25.17
1855.00	46.19	Ave.	127	2.2	V	-1.16	45.03	54	8.97
2782.50	44.27	PK	224	1.0	V	1.42	45.69	74	28.31
2782.50	31.39	Ave.	224	1.0	V	1.42	32.81	54	21.19
3710.00	50.46	PK	225	1.8	V	3.16	53.62	74	20.38
3710.00	46.43	Ave.	245	2.1	V	3.16	49.59	54	4.41
4637.50	46.39	PK	169	1.1	V	7.10	53.49	74	20.51
4637.50	39.17	Ave.	169	1.1	V	7.10	46.27	54	7.73
5565.00	44.06	PK	21	1.0	V	10.21	54.27	74	19.73
5565.00	32.07	Ave.	21	1.0	V	10.21	42.28	54	11.72
6492.50	44.81	PK	121	1.9	V	12.39	57.20	74	16.80
6492.50	34.36	Ave.	121	1.9	V	12.39	46.75	54	7.25

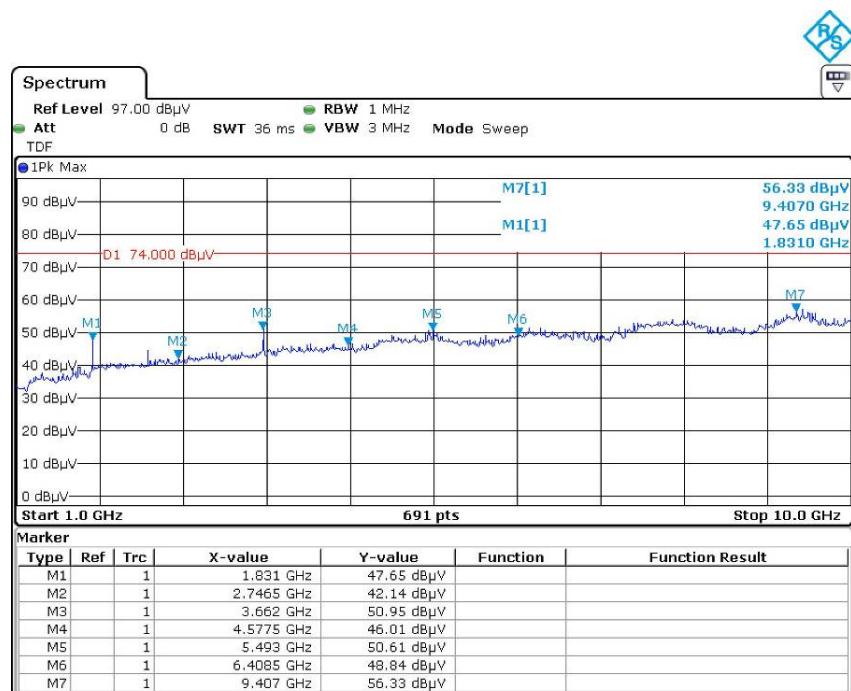
Note:

Corrected Amplitude = Corrected Factor + Reading


Corrected Factor=Antenna factor (RX) +cable loss – amplifier factor

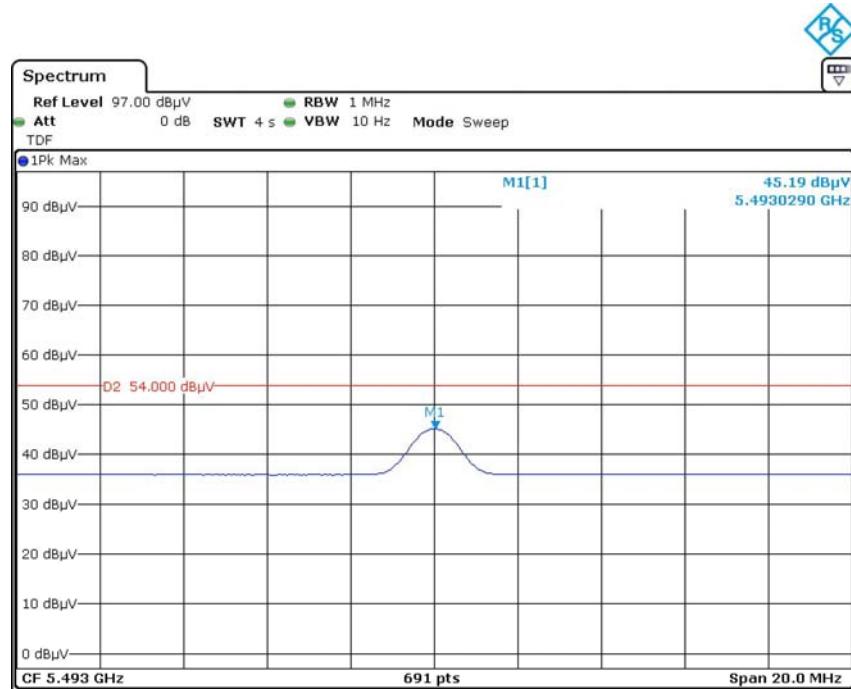
Margin = Limit- Corr. Amplitude

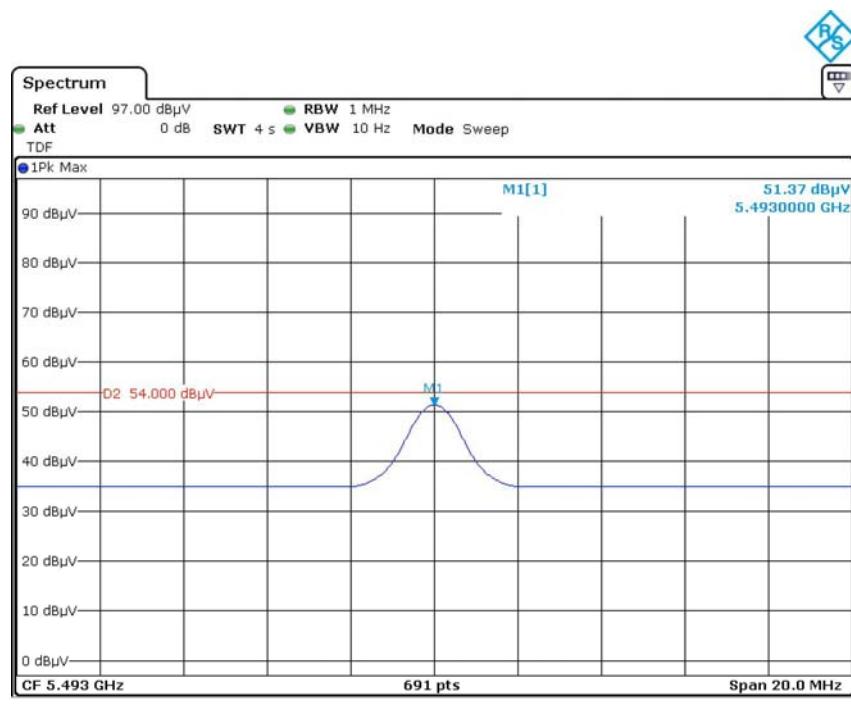
The emission more than20dB below the limit was not required to be recorded.


Pre-scan with low channel Peak

Horizontal

Date: 1.JUN.2021 13:01:50


Vertical


Date: 1.JUN.2021 13:12:33

Average value for the peak point at pre-scan

Horizontal

Vertical

FCC§15.215(c) - 20dB EMISSION BANDWIDTH

Applicable Standard

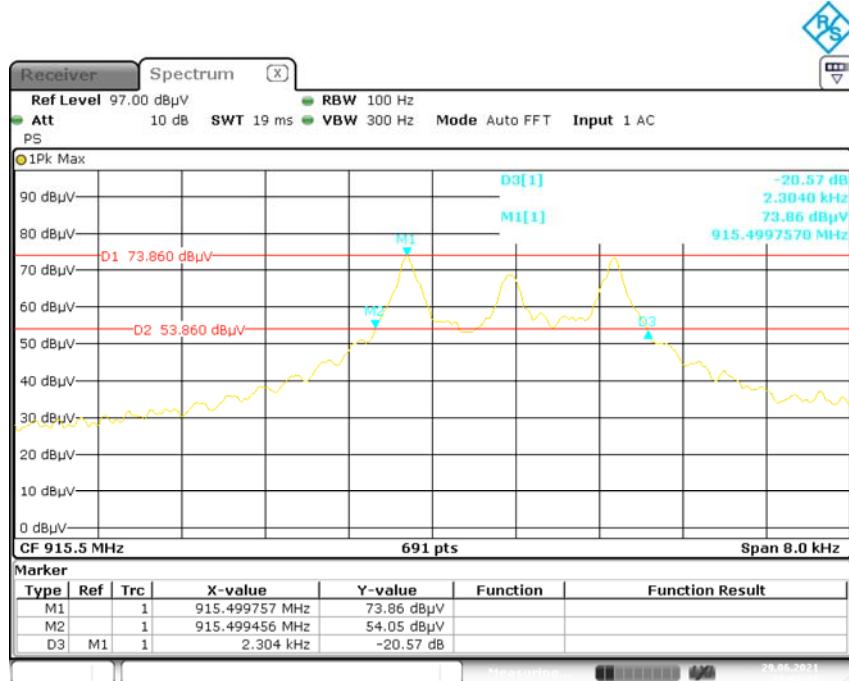
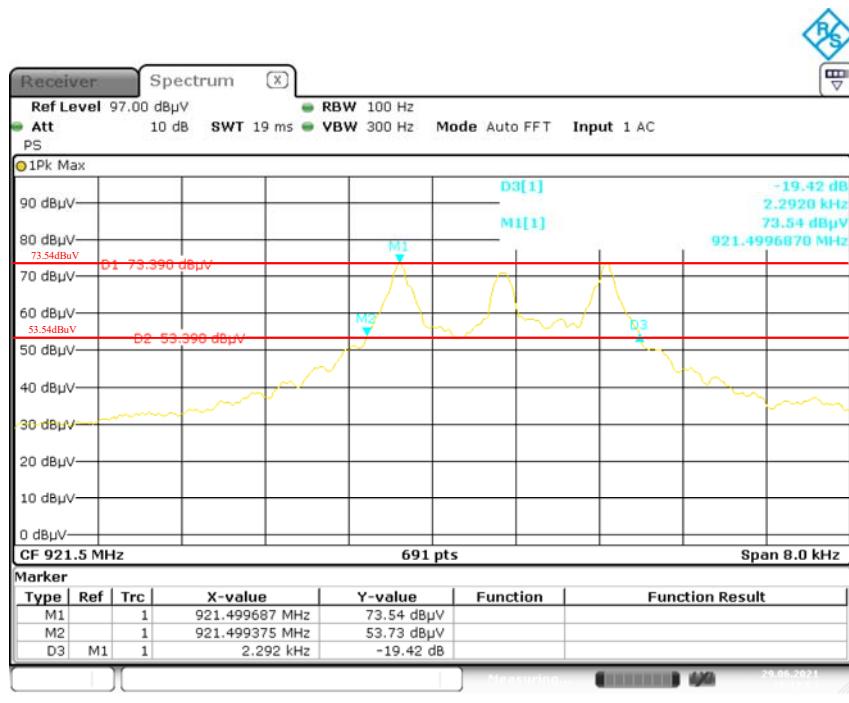
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

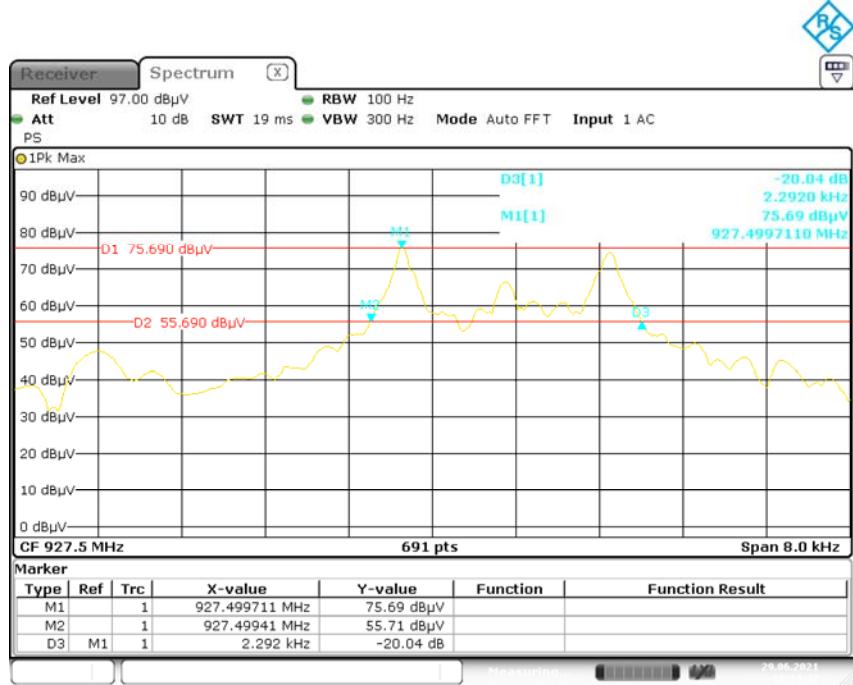
Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that indicated 20dB bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions



Temperature:	21 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa


The testing was performed by Andy Yu on 2021-06-29.

Test Mode: Transmitting

Please refer to the following table and plots.

Channel	Frequency (MHz)	20dB Bandwidth (kHz)
Low	915.5	2.304
Middle	921.5	2.292
High	927.5	2.292

Low Channel**Middle Channel**

High Channel******* END OF REPORT *******