## **MPE Calculation Method**

Predication of MPE limit at a given distance Equation from page 19 of OET Bulletin 65, Edition 97-01

$$S = \frac{EIRP}{4\pi R^2}$$

where:

S = power density (in appropriate units, e.g. mW/cm<sup>2</sup>)

EIRP = equivalent (or effective) isotropically radiated power (in appropriate units, e.g., mW)

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r = 20cm, as well as the gain of the used antenna is 2dBi, the RF power density can be obtained. So, the worst result is below:

Max Output Power =  $\underline{7.989}$  dBm, Ant gain  $\underline{2}$ dBi EIRP=PG= (7.989+2.0) dBm=9.989 dBm= $10^{(9.989/10)}$  mW=9.975mW

So, 
$$S = \frac{EIRP}{4\pi R^2} = \frac{9.975}{4\pi \times 20^2} = \frac{0.002}{1000} = \frac{0.002}{10000} = \frac{0.002}{10000} = \frac{0.002}{10000} = \frac{0.$$

Conclusion: Pass.