

FCC TEST REPORT

FCC ID: 2AXWG-AI-8-BOX

On Behalf of

Roadefend Intelligence Technology (Shanghai) Co., Ltd.
Proactive AI Safety System

Model No.:AI-8-BOX, AI-8-BOXB, AI-8-BOXP, AI-8-BOXPH

Prepared for : Roadefend Intelligence Technology (Shanghai) Co., Ltd.
Address : Room 01, level3, block B3, lane221, Huangxing Road Yangpu
District, Shanghai, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.
Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,
Shenzhen, Guangdong, China

Report Number : A2207239-C01-R16
Date of Receipt : August 10, 2022
Date of Test : August 11, 2022-August 23, 2022
Date of Report : August 26, 2022
Version Number : V0

TABLE OF CONTENTS

<u>Description</u>	<u>Page</u>
1. Summary of Standards And Results -----	5
1.1. Description of Standards and Results -----	5
2. General Information -----	6
2.1. Description of Device (EUT) -----	6
2.2. Accessories of Device (EUT) -----	7
2.3. Tested Supporting System Details-----	7
2.4. Block Diagram of connection between EUT and simulators -----	7
2.5. Test Mode Description-----	7
2.6. Test Conditions-----	8
2.7. Test Facility-----	8
2.8. Measurement Uncertainty-----	8
2.9. Test Equipment List -----	9
3. Spurious Emission-----	10
3.1. Test Limits -----	10
3.2. Test Procedure -----	10
3.3. Test Setup -----	11
3.4. Test Results -----	12
4. Power Line Conducted Emission -----	19
4.1. Test Limits -----	19
4.2. Test Procedure -----	19
4.3. Test Setup -----	19
4.4. Test Results -----	19
5. Conducted Maximum Output Power -----	20
5.1. Test limits -----	20
5.2. Test Procedure -----	20
5.3. Test Setup -----	20
5.4. Test Results -----	20
6. Peak Power Spectral Density-----	21
6.1. Test limits -----	21
6.2. Test Procedure -----	21
6.3. Test Setup -----	21
6.4. Test Results -----	21
7. Bandwidth -----	24
7.1. Test limits -----	24
7.2. Test Procedure -----	24
7.3. Test Setup -----	24
7.4. Test Results -----	24
8. Band Edge Check -----	28
8.1. Test limits -----	28
8.2. Test Procedure -----	28
8.3. Test Setup -----	28
8.4. Test Results -----	28
9. Antenna Requirement-----	31
9.1. Standard Requirement -----	31
9.2. Antenna Connected Construction -----	31
9.3. Results -----	31
10. Test setup photo-----	32
10.1. Photo of Radiated Emission test-----	32
10.2. Photo of Conducted Emission test -----	33

TEST REPORT DECLARATION

Applicant : Roadefend Intelligence Technology (Shanghai) Co., Ltd.
Address : Room 01, level3, block B3, lane221, Huangxing Road Yangpu District, Shanghai, China
Manufacturer : Roadefend Intelligence Technology (Shanghai) Co., Ltd.
Address : Room 01, level3, block B3, lane221, Huangxing Road Yangpu District, Shanghai, China
EUT Description : Proactive AI Safety System

(A) Model No. AI-8-BOX, AI-8-BOXB, AI-8-BOXP, AI-8-BOXPH

(B) Trademark
径卫视觉

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....: Lucas Pang
Project Engineer

Approved by (name + signature).....: Jack Xu
Project Manager

Date of issue.....: August 26, 2022

Revision History

Revision	Issue Date	Revisions	Revised By
V0	August 26, 2022	Initial released Issue	Lucas Pang

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

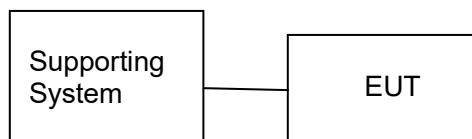
Test Item	Test Requirement	Standards Paragraph	Result
Conducted Emission	FCC PART 15	15.207	N/A
6dB Bandwidth	FCC PART 15	15.247 (a)(2)	P
Output Power	FCC PART 15	15.247 (b)(3)	P
Radiated Spurious Emission	FCC PART 15	15.247 (c)	P
Conducted Spurious & Band Edge Emission	FCC PART 15	15.247 (d)	P
Power Spectral Density	FCC PART 15	15.247 (e)	P
Radiated Band Edge Emission	FCC PART 15	15.205	P
Antenna Requirement	FCC PART 15	15.203	P

Note: 1. P is an abbreviation for Pass.
2. F is an abbreviation for Fail.
3. N/A is an abbreviation for Not Applicable.
4. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	: Proactive AI Safety System
Model Number	: AI-8-BOX, AI-8-BOXB, AI-8-BOXP, AI-8-BOXPH
Diff	: There is no difference except the name of the model. All tests are made with the AI-8-BOX model.
Trademark	: 径卫视觉
Power supply	: DC 9~36V from battery
Radio Technology	: Bluetooth V5.0 BLE
Operation frequency	: 2402-2480MHz
Channel No.	: 40 Channels
Channel spacing	: 2MHz
Rate	: 1Mbps
Modulation type	: GFSK
Antenna Type	: External antenna, Maximum Gain is 0.93dBi Antenna information is provided by applicant.
Software version	: V1.0
Hardware version	: V1.2
Connector cable loss	: N/A
Intend use environment	: Residential, commercial and light industrial environment


2.2. Accessories of Device (EUT)

Accessories : /
 Manufacturer : /
 Model : /
 Ratings : /

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDoC
1	Battery*2	Valta	12V	--	--

2.4. Block Diagram of connection between EUT and simulators

2.5. Test Mode Description

Tested mode, channel, and data rate information		
Mode	Channel	Frequency (MHz)
GFSK (1M)	Low :CH1	2402
	Middle: CH20	2440
	High: CH40	2480

2.6. Test Conditions

Items	Required	Actual
Temperature range:	15-35 °C	24 °C
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	980kPa

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd
 Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,
 Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission
 Registration Number: 293961

July 25, 2017 Certificated by IC
 Registration Number: CN0085

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	2.13 dB(Polarize: V)
	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber (30MHz to 1GHz)	3.77dB(Polarize: V)
	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber (1GHz to 25GHz)	4.13dB(Polarize: H)
	4.16dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2 °C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9. Test Equipment List

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2022.08.22	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-10 2082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000 -40-880	/	100631	2022.08.22	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

Software Information			
Test Item	Software Name	Manufacturer	Version
RE	EZ-EMC	EZ	Alpha-3A1
CE	EZ-EMC	EZ	Alpha-3A1
RF-CE	MTS 8310	MW	V2.0.0.0

3. SPURIOUS EMISSION

3.1. Test Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

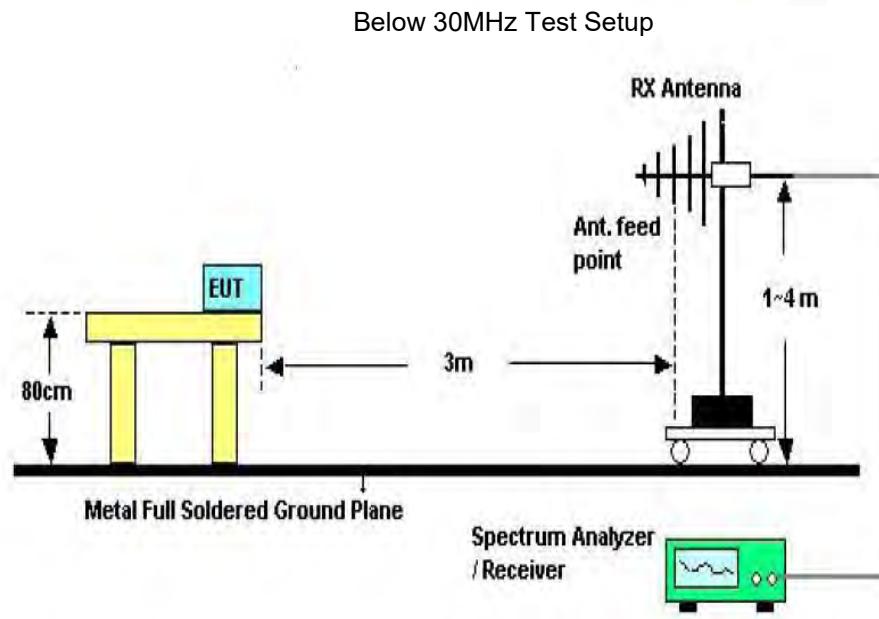
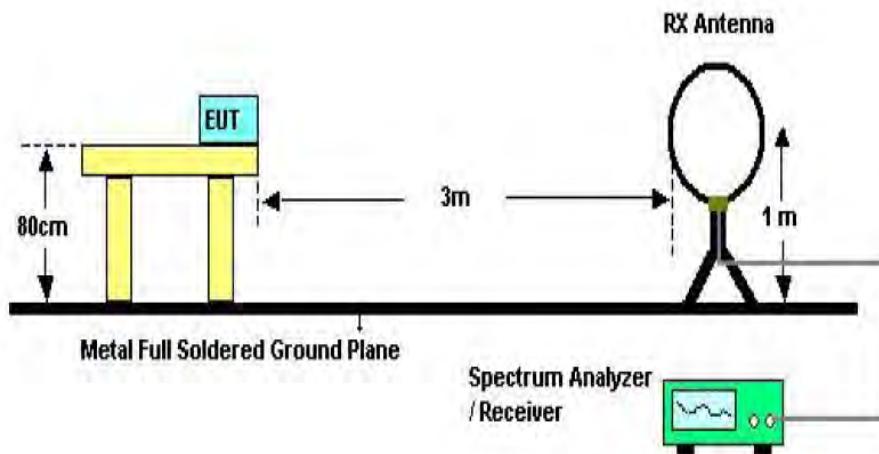
Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

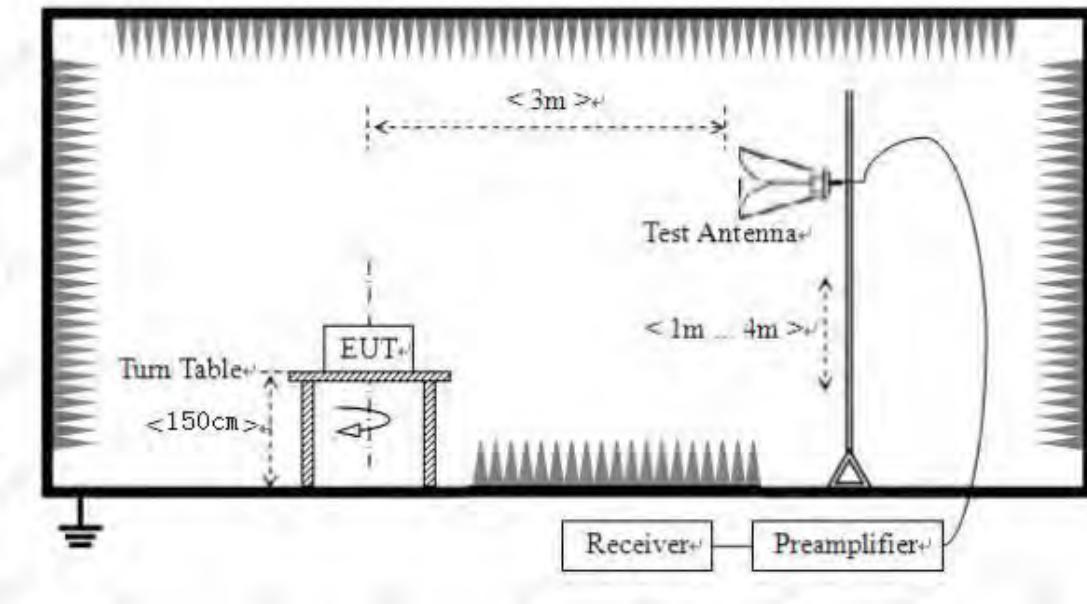
NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uV/m)

3.2. Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation



The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.


The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Quasi Peak Detector mode premeasured

If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.

For the actual test configuration, please see the test setup photo.

3.3. Test Setup

Above 1GHz Test Setup

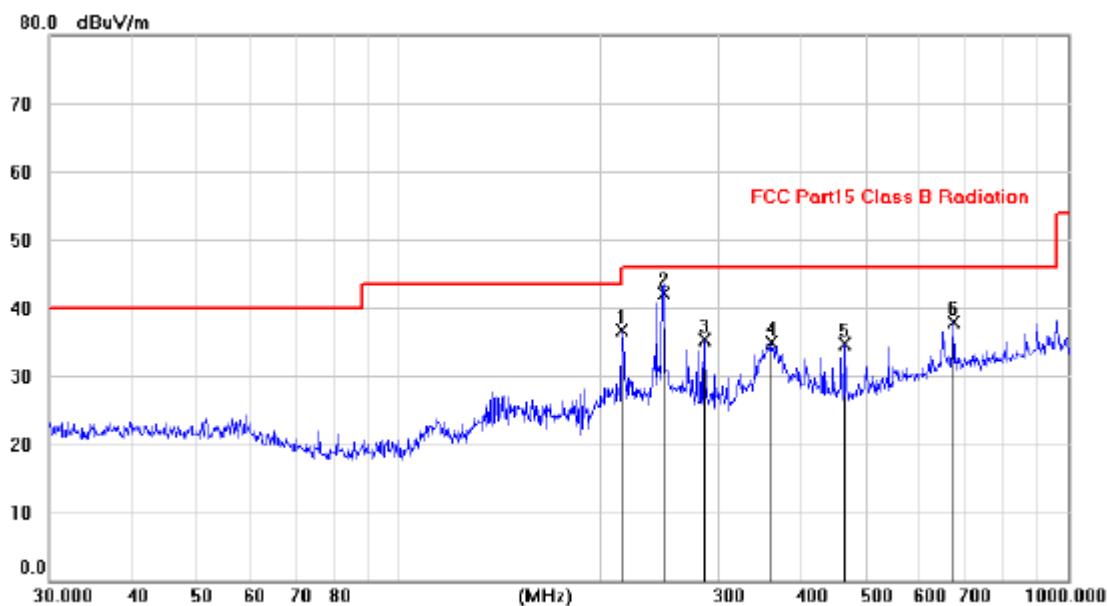
3.4. Test Results

Test Condition

Continual Transmitting in maximum power.

9KHz~150KHz	RBW200Hz	VBW1KHz
150KHz~30MHz	RBW9KHz	VBW 30KHz
30MHz~1GHz	RBW120KHz	VBW 300KHz
Above1GHz	RBW1MHz	VBW 3MHz

We have scanned the 10th harmonic from 9 kHz to the EUT.

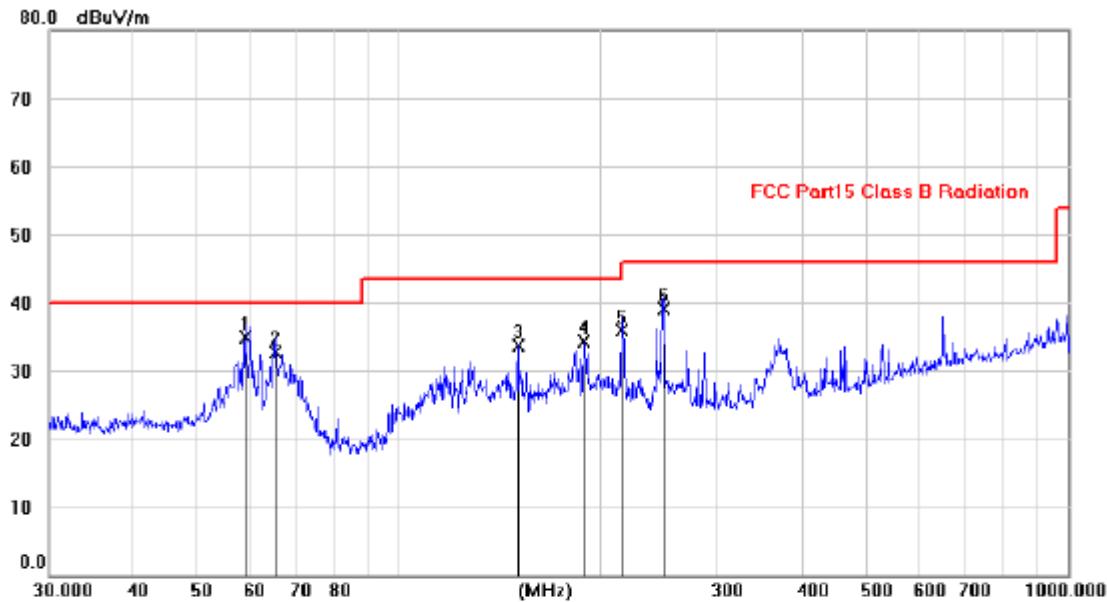

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Only show the test data of the worst Channel in this report.

Antenna polarity: Horizontal



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Margin	Antenna Height	Table Degree								
									MHz	dBuV	dB	dBuV/m	dB	Detector	cm	degree	Comment
1		215.9987	25.20	11.47	36.67	43.50	-6.83	peak									
2	*	248.6972	29.40	12.74	42.14	46.00	-3.86	QP									
3		286.2119	21.58	13.76	35.34	46.00	-10.66	peak									
4		359.2280	19.57	15.41	34.98	46.00	-11.02	peak									
5		465.1099	16.95	17.71	34.66	46.00	-11.34	peak									
6		675.0502	16.56	21.39	37.95	46.00	-8.05	peak									

Note: 1. *:Maximum data; x:Over limit; !:over margin.

2. Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Vertical

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Antenna Height	Table Degree
			Level	Factor	ment	dBuV/m	dB		
		MHz	dBuV	dB					
1	*	58.8873	21.62	13.27	34.89	40.00	-5.11	QP	
2		65.3814	20.63	12.14	32.77	40.00	-7.23	QP	
3		150.5730	18.71	15.06	33.77	43.50	-9.73	peak	
4		189.0081	22.67	11.59	34.26	43.50	-9.24	peak	
5		215.9987	24.51	11.47	35.98	43.50	-7.52	QP	
6		248.6391	26.28	12.74	39.02	46.00	-6.98	QP	

Note: 1. *:Maximum data; x:Over limit; !:over margin.

2. Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

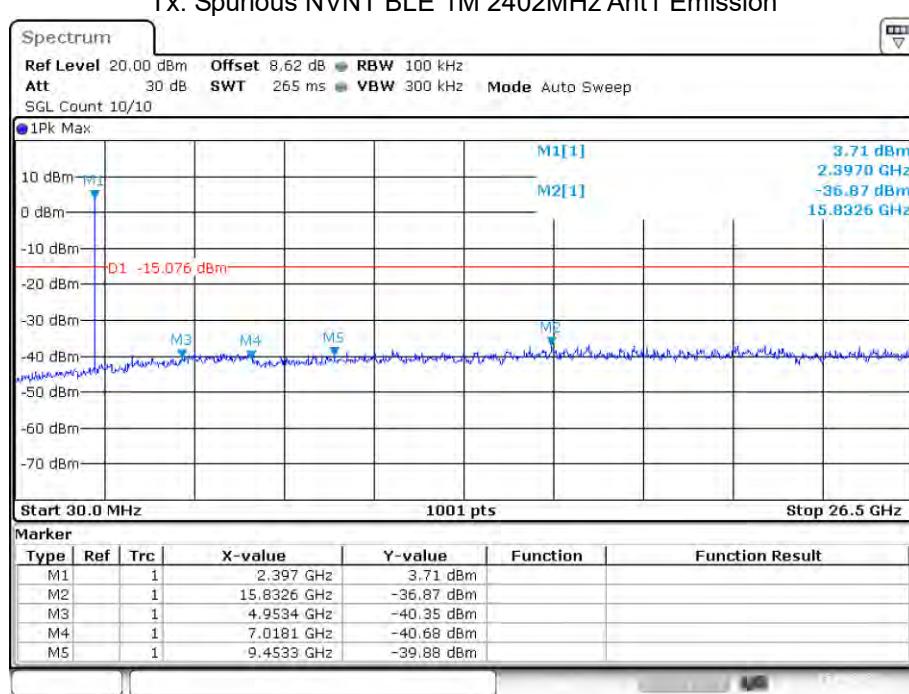
Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz.

From 1G-25GHz

Test Mode: TX Low									
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	46.87	V	33.95	10.18	34.26	56.74	74	-17.26	PK
4804	35.10	V	33.95	10.18	34.26	44.97	54	-9.03	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
4804	47.59	H	33.95	10.18	34.26	57.46	74	-16.54	PK
4804	34.74	H	33.95	10.18	34.26	44.61	54	-9.39	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
Test Mode: TX Mid									
4880	49.38	V	33.95	10.20	34.26	59.27	74	-14.73	PK
4880	34.52	V	33.95	10.20	34.26	44.41	54	-9.59	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
4880	48.22	H	33.95	10.20	34.26	58.11	74	-15.89	PK
4880	32.86	H	33.95	10.20	34.26	42.75	54	-11.25	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
Test Mode: TX High									
4960	46.03	V	33.98	10.22	34.25	55.98	74	-18.02	PK
4960	33.23	V	33.98	10.22	34.25	43.18	54	-10.82	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/
4960	47.60	H	33.98	10.22	34.25	57.55	74	-16.45	PK
4960	32.37	H	33.98	10.22	34.25	42.32	54	-11.68	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/

Note:

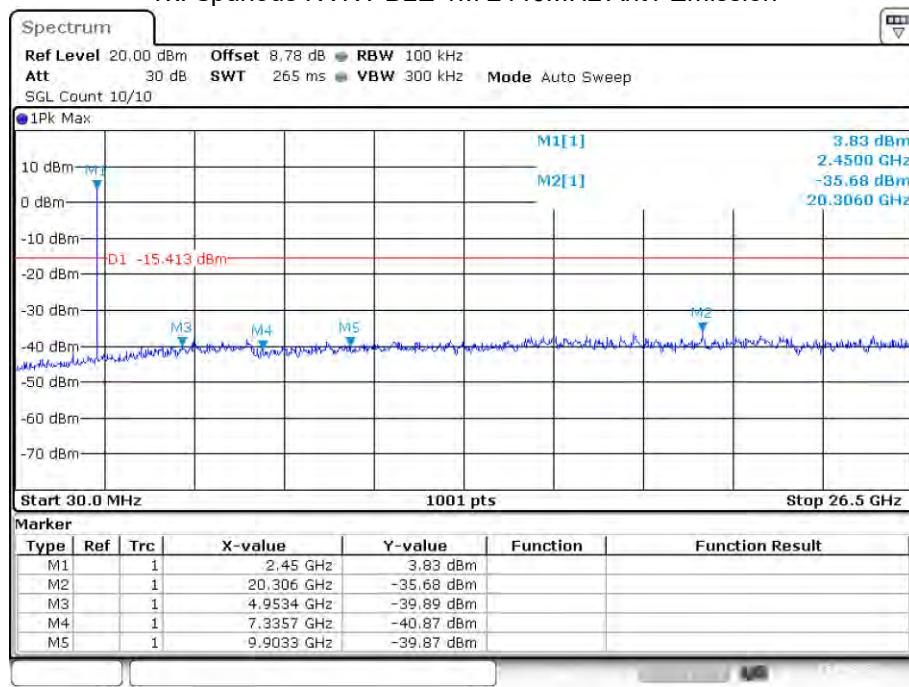
1, Result = Read level + Antenna factor + cable loss-Amp factor


2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

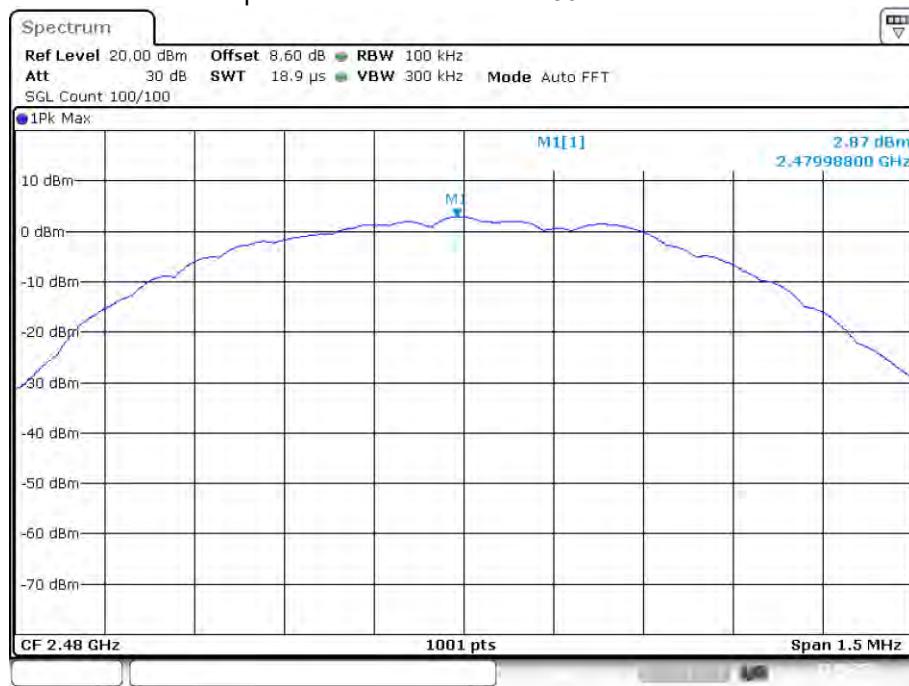
Conducted RF Spurious Emission

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

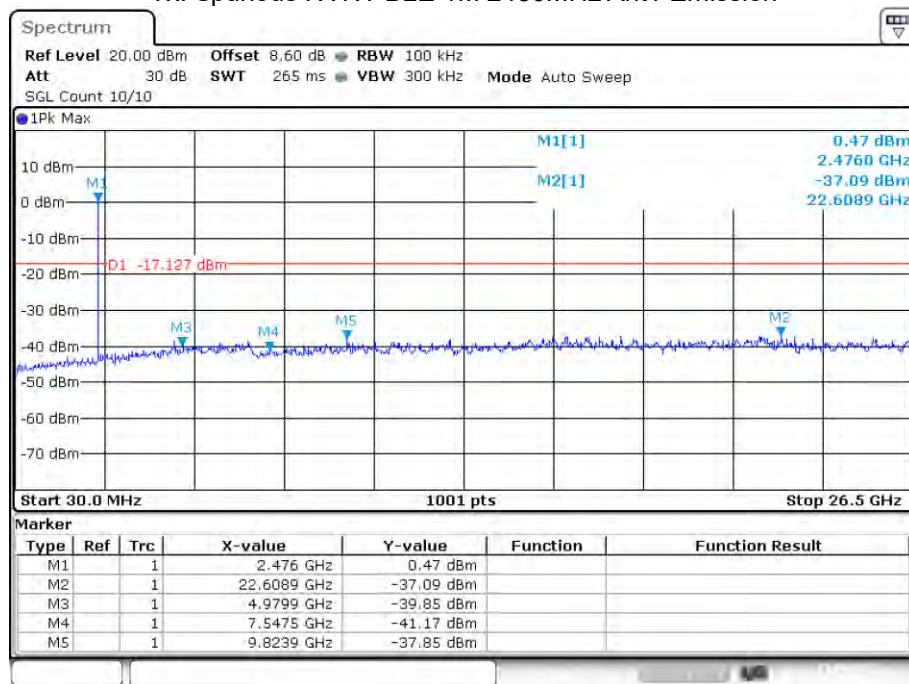
Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission



Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Ref


Date: 15.AUG.2022 09:12:54

Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Emission


Date: 15.AUG.2022 09:13:12

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Date: 15.AUG.2022 09:15:20

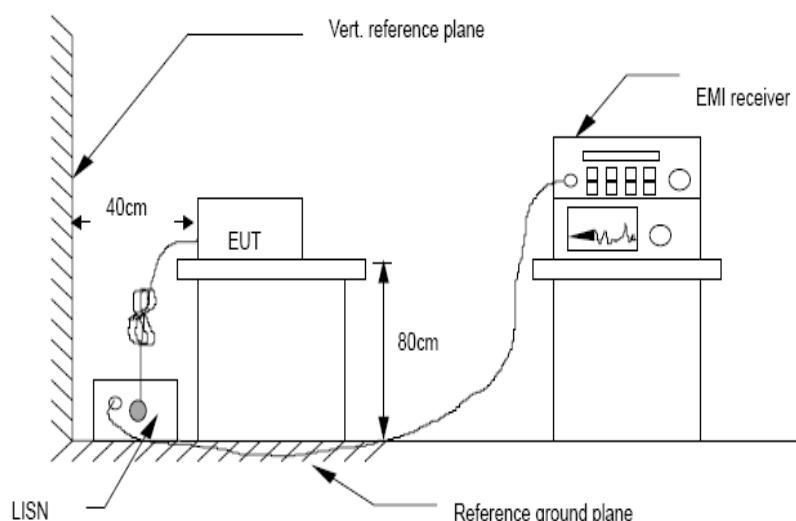
Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

Date: 15.AUG.2022 09:15:38

4. POWER LINE CONDUCTED EMISSION

4.1. Test Limits

Frequency	Limits dB(μ V)	
MHz	Quasi-peak Level	Average Level
0.15 -0.50	66 -56*	56 - 46*
0.50 -5.00	56	46
5.00 -30.00	60	50


Notes: 1. *Decreasing linearly with logarithm of frequency.
 2. The lower limit shall apply at the transition frequencies.
 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10:2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9 kHz.

4.3. Test Setup

4.4. Test Results

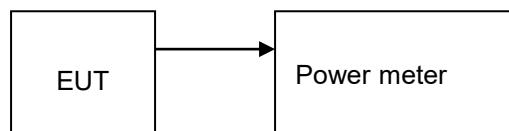
The product is powered by battery, and the test is not applicable.

5. CONDUCTED MAXIMUM OUTPUT POWER

5.1. Test limits

Please refer section RSS-247 & 15.247.

5.2. Test Procedure


Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

5.2.1 Place the EUT on the table and set it in transmitting mode.

5.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3. Test Setup

5.4. Test Results

GFSK(1M)

Channel	Frequency (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)	Result
CH1	2402	5.556	3.594	30	Pass
CH20	2440	5.302	3.390	30	Pass
CH40	2480	3.73	2.360	30	Pass

6. PEAK POWER SPECTRAL DENSITY

6.1. Test limits

6.1.1 Please refer section RSS-247 & 15.247.

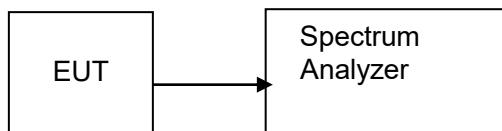
6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

6.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

6.2.1 Place the EUT on the table and set it in transmitting mode.


6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

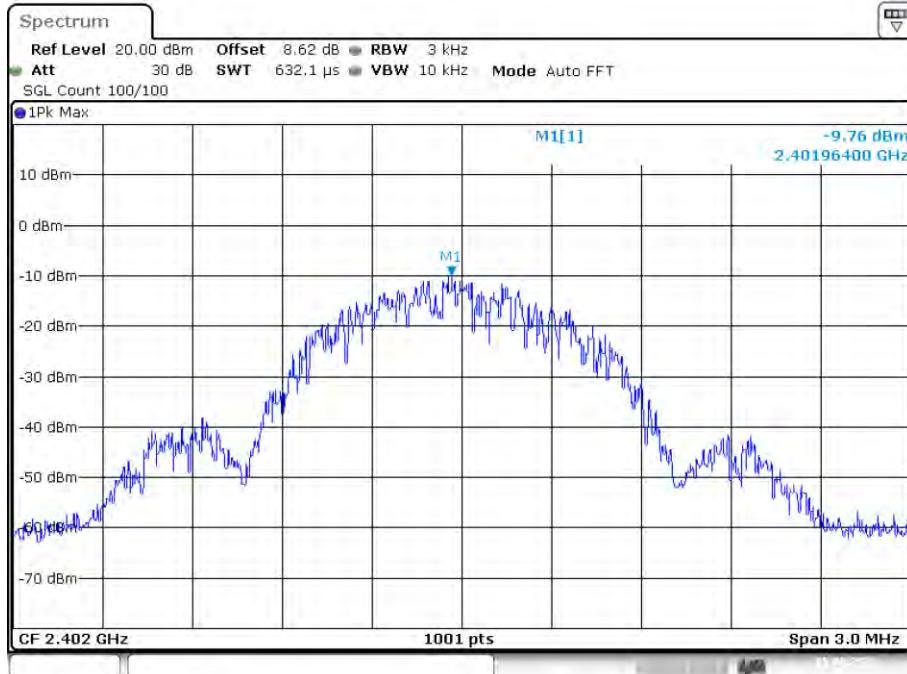
6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: $3\text{ kHz} \leq \text{RBW} \leq 100\text{ kHz}$), VBW = 10kHz(Set the $\text{VBW} \geq 3 \times \text{RBW}$), span= $1.5 \times \text{DTS}$ bandwidth., detail see the test plot.

6.2.4 Record the max reading.

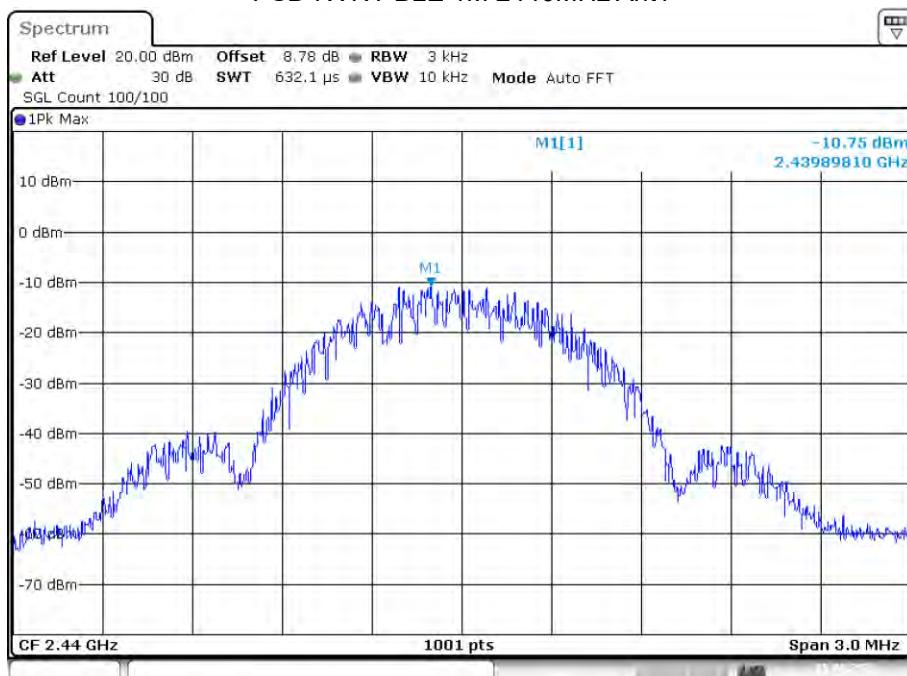
6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

6.3. Test Setup

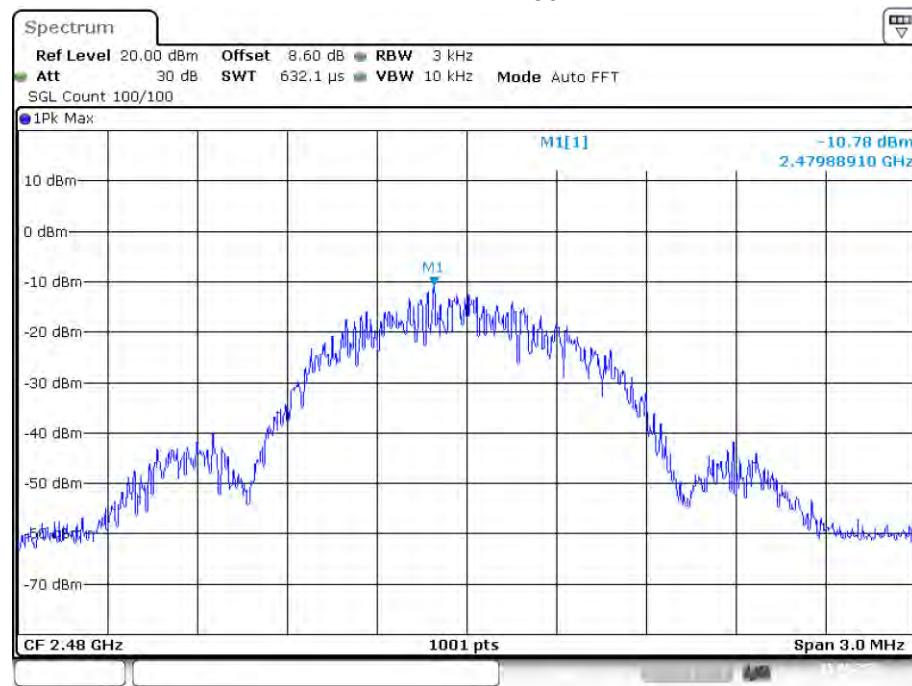
6.4. Test Results


Pass

The test results are listed in next pages.


GFSK (1M)

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-9.755	8	Pass
NVNT	BLE	2440	Ant 1	-10.753	8	Pass
NVNT	BLE	2480	Ant 1	-10.784	8	Pass


PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2440MHz Ant1

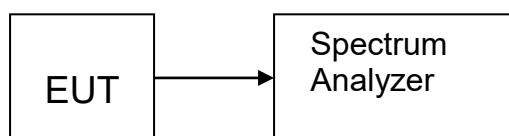
PSD NVNT BLE 1M 2480MHz Ant1

7. BANDWIDTH

7.1. Test limits

Please refer section RSS-247 & 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

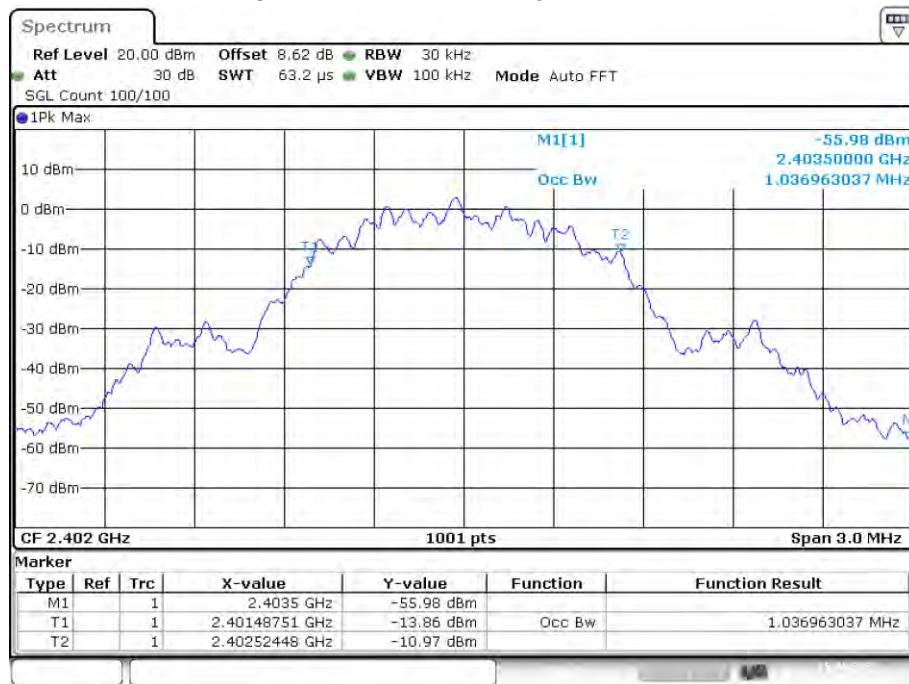

7.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

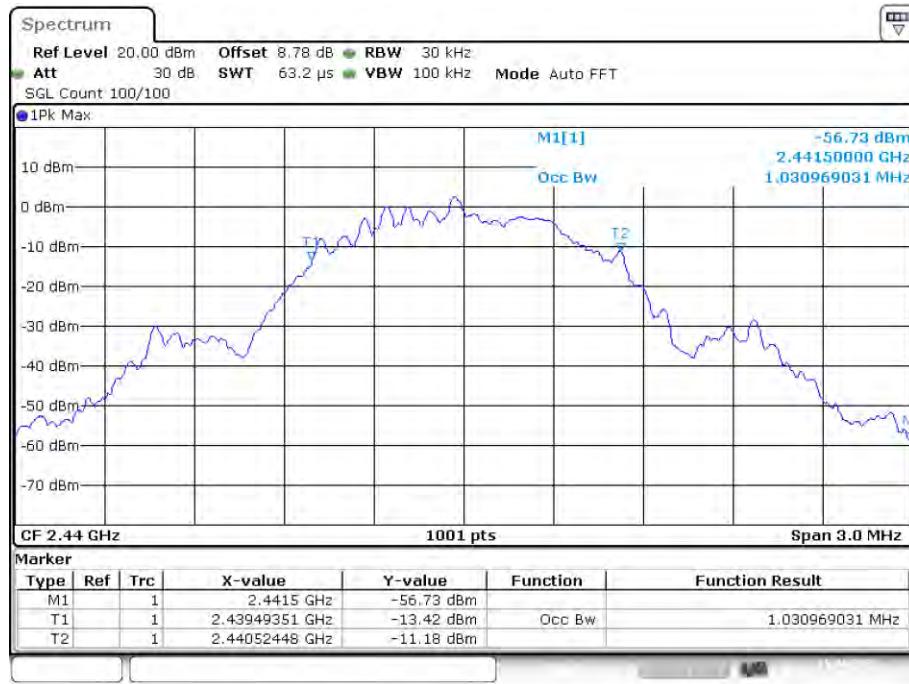
b) The test receiver set RBW = 100kHz, VBW \geq 3*RBW =300kHz, sweep time set auto, detail see the test plot.

7.3. Test Setup

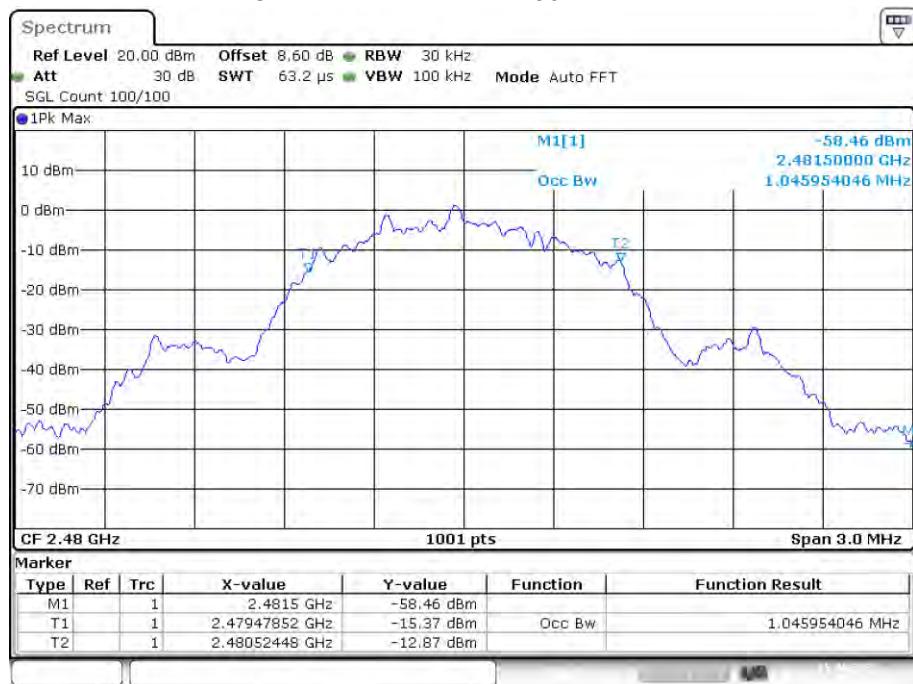


7.4. Test Results

GFSK(1M)

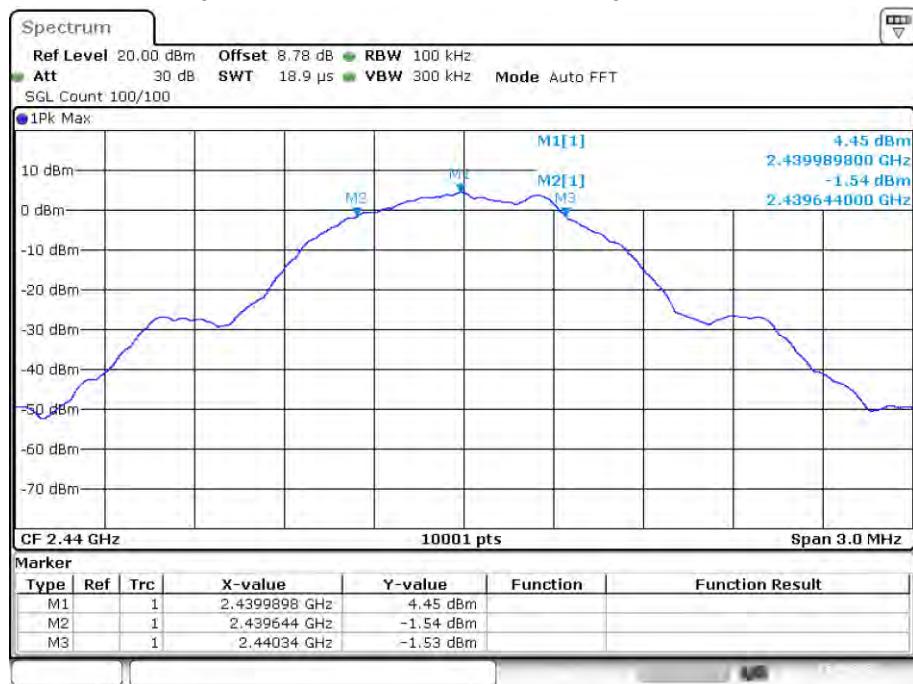

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	1.037	0.702	0.5	Pass
NVNT	BLE	2440	Ant 1	1.031	0.696	0.5	Pass
NVNT	BLE	2480	Ant 1	1.046	0.724	0.5	Pass

OBW NVNT BLE 1M 2402MHz Ant1

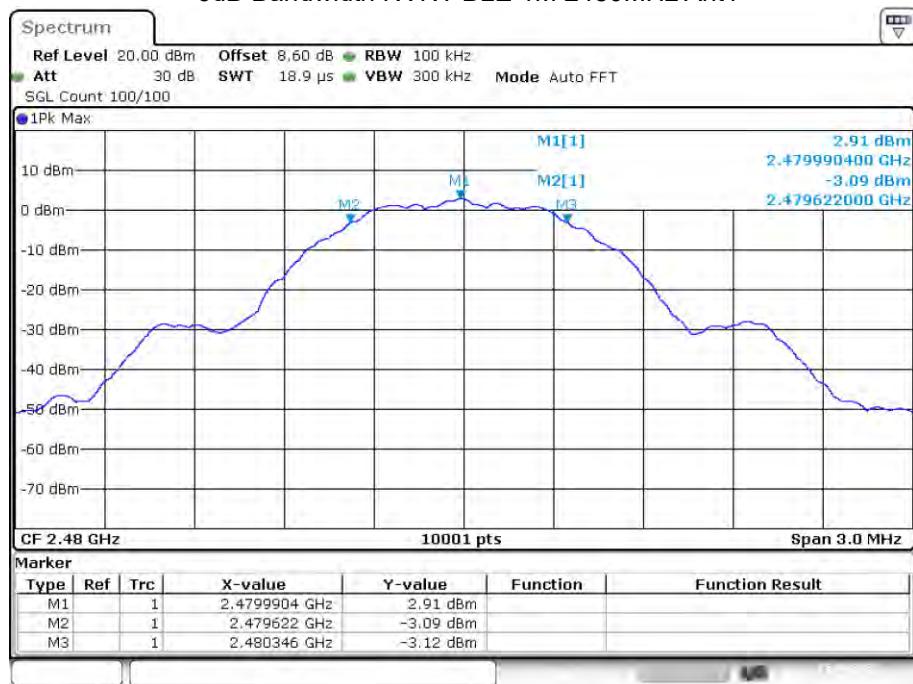

Date: 15.AUG.2022 09:10:12

OBW NVNT BLE 1M 2440MHz Ant1

Date: 15.AUG.2022 09:14:04


OBW NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1



-6dB Bandwidth NVNT BLE 1M 2440MHz Ant1

Date: 15.AUG.2022 09:12:39

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

Date: 15.AUG.2022 09:14:50

8. BAND EDGE CHECK

8.1. Test limits

Please refer section RSS-GEN&15.247.

8.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

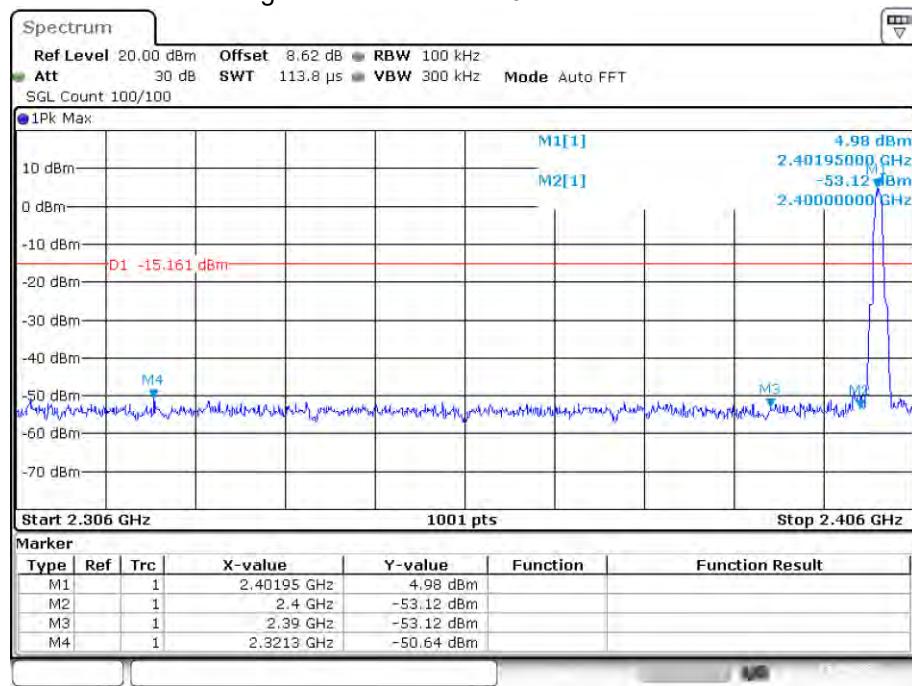
8.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission

8.2.2 Check the spurious emissions out of band.

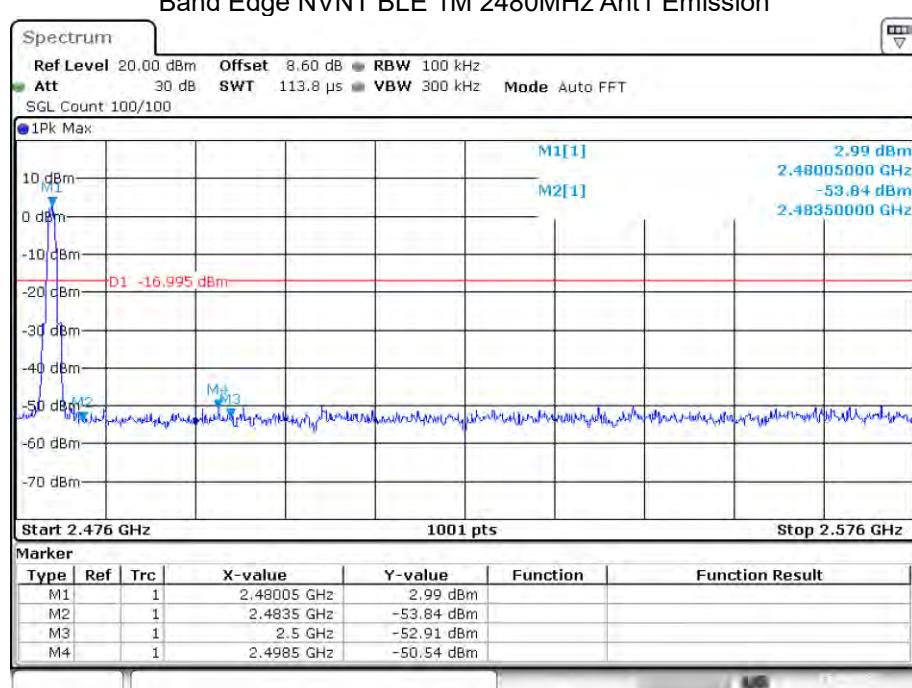
8.2.3 RBW 1MHz, VBW 3MHz, peak detector for peak value, RBW 1MHz, VBW 3MHz, RMS detector for AV value.

8.3. Test Setup

Same as 5.2.2.

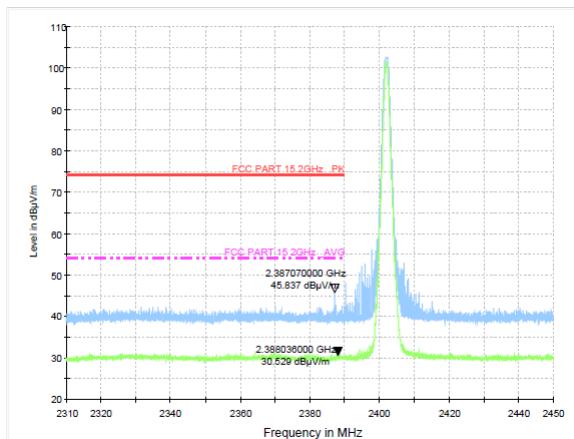

8.4. Test Results

Pass

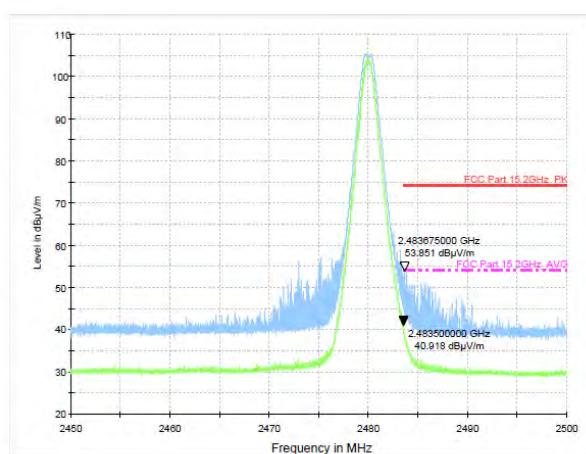

The test results are listed in next pages.

GFSK (1M)

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission



Band Edge NVNT BLE 1M 2480MHz Ant1 Emission



Radiated Method: GFSK(1M)

Test Mode: CH-L

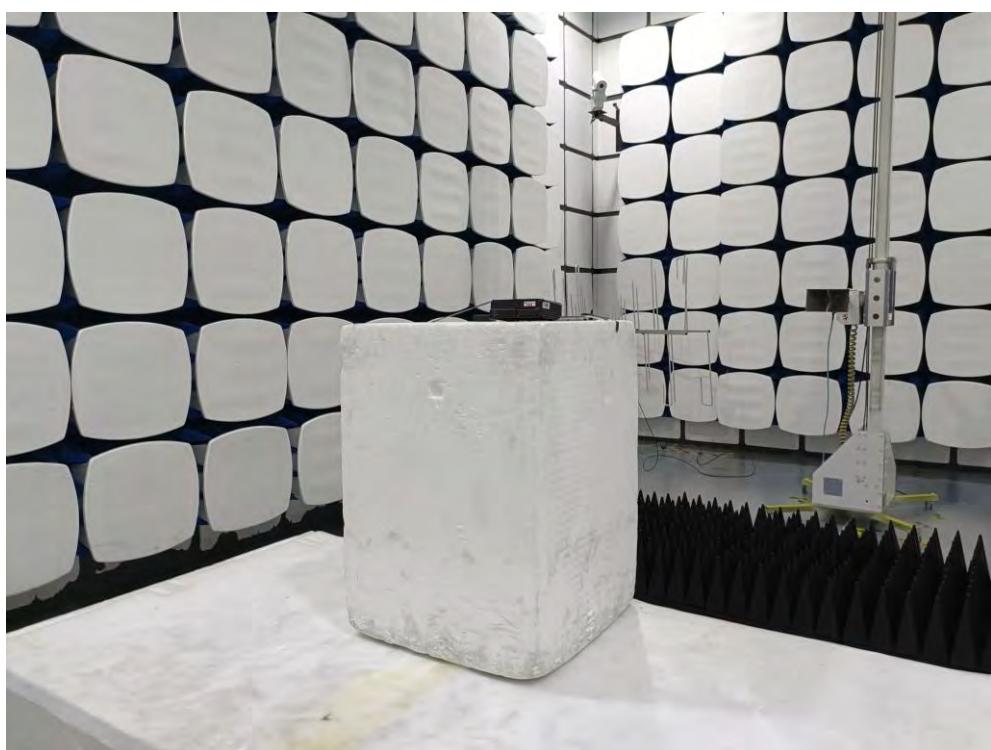
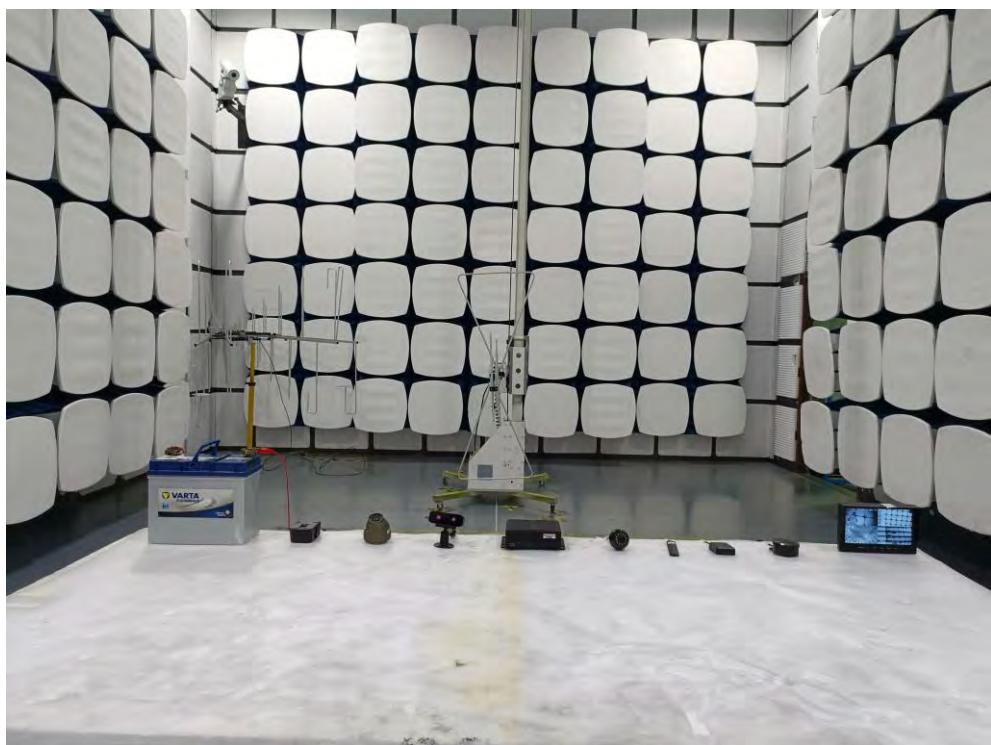
Test Mode: CH-H

9. ANTENNA REQUIREMENT

9.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction



The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.

9.3. Results

The use of an antenna that is uniquely coupled to the intended radiator shall be considered sufficient to comply with the provisions of this section.

10. TEST SETUP PHOTO

10.1. Photo of Radiated Emission test

10.2.Photo of Conducted Emission test

N/A

-----END OF REPORT-----