

FCC TEST REPORT

Test report
On Behalf of
Shenzhen GMK Technology Co., Ltd
For
NucBox3
Model No.: KB3

FCC ID: 2AXUD-KB3

Prepared for: Shenzhen GMK Technology Co., Ltd

3/F, #5Bldg, HuaLian Industrial Park, XinShi Community, Dalang St, Longhua Dist,

518109, Shenzhen, China

Prepared By: Shenzhen Tongzhou Testing Co.,Ltd

1th Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang

Street, Longhua, Shenzhen, China

Date of Test: Nov.26, 2021~ Dec.20, 2021

Date of Report: Dec.20, 2021
Report Number: TZ211102749-E1

The test report apply only to the specific sample(s) tested under stated test conditions
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen GMK Technology Co., Ltd					
Address:	3/F, #5Bldg, HuaLian Industrial Park, XinShi Community, Dalang St,					
	Longhua Dist, 518109, Shenzhen, China					
	Shenzhen GMK Technology Co., Ltd					
Address ·	3/F, #5Bldg, HuaLian Industrial Park, XinShi Community, Dalang St, Longhua Dist, 518109, Shenzhen, China					
Product description						
Trade Mark:	GMKtec,GMKTEC					
Product name:	NucBox3					
Model and/or type reference :	KB3					
Standards:	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013					
liability for damages resulting from placement and context. Date of Test	: Nov.26, 2021~ Dec.20, 2021 : Dec.20, 2021					
Testing Engine	eer : Anna Hu (Anna Hu)					
Technical Man	,) — 7					

(Andy Zhang)

Authorized Signatory:

Page 2 of 42

Revision History

Revision	Issue Date	Revisions	Revised By
00	Dec.20, 2021	Initial Issue	Andy Zhang

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1. DESCRIPTION OF DEVICE (EUT) 1.2 EUT CONFIGURATION 1.3. EXTERNAL I/O CABLE	
1.4. DESCRIPTION OF TEST FACILITY	7
1.7. DESCRIPTION OF TEST MODES	8
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION	
2.2. EUT EXERCISE	
2.4. Test Sample	
3. SYSTEM TEST CONFIGURATION	
3.1. JUSTIFICATION	
3.2. EUT EXERCISE SOFTWARE	
3.3. SPECIAL ACCESSORIES	
3.4. BLOCK DIAGRAM/SCHEMATICS	10
3.5. EQUIPMENT MODIFICATIONS	
3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	
5. TEST RESULT	
5.1. On TIME AND DUTY CYCLE	12
5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	
5.3. POWER SPECTRAL DENSITY MEASUREMENT	
5.4. 6 dB Spectrum Bandwidth Measurement	
5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST	
5.7. POWER LINE CONDUCTED EMISSIONS	
5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS	
5.9. ANTENNA REQUIREMENTS	40
6. LIST OF MEASURING EQUIPMENTS	41
7. TEST SETUP PHOTOGRAPHS OF EUT	42
8. EXTERIOR PHOTOGRAPHS OF THE EUT	42
9 INTERIOR PHOTOGRAPHS OF THE FUT	42

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : NucBox3

Model Number : KB3 Model Declaration : N/A Test Model : KB3

Power Supply : DC 12V by adapter Hardware version : MX-GB08_V300

Software version : Windows 11

Sample ID : TZ211102749-2#&TZ211102749-4#

Bluetooth

Bluetooth Version : V4.2

79 Channels for Bluetooth BR/EDR(DSS) Channel Number

40 Channels for BLE (DTS)

GFSK, π/4-DQPSK, 8-DPSK for Bluetooth BR/EDR (DSS) Modulation Technology

GFSK for BLE (DTS)

Bluetooth BR/EDR (DSS): 1/2/3Mbps **Data Rates**

BLE (DTS): 1Mbps

Internal Antenna 1: Antenna Type And Gain

4.42dBi

WiFi

WLAN : Supported IEEE 802.11a/b/g/n/ac

> IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz

IEEE 802.11n HT20:2412-2462MHz / 5180-5240MHz IEEE 802.11n HT40: 2422-2452MHz / 5190-5230MHz

WLAN FCC Operation

WLAN Modulation

Technology

Frequency

IEEE 802.11a: 5180-5240MHz

IEEE 802.11ac VHT20: 5180-5240MHz IEEE 802.11ac VHT40: 5190-5230MHz IEEE 802.11ac VHT80: 5210MHz

IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)

IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) : IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)

Antenna 1:

4.42dBi(Max.), for TX/RX (WLAN 2.4G Band) 2.74dBi(Max.), for TX/RX (WLAN 5.2G Band)

Antenna Type And Gain

Antenna 2:

4.18dBi(Max.), for TX/RX (WLAN 2.4G Band) 4.99dBi(Max.), for TX/RX (WLAN 5.2G Band)

802.11n/ac support 2T2R.[Antenna 1 and Antenna 2]

Note1: Antenna position refer to EUT Photos

1.2 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

□supplied by the lab ☑ supplied by the manufacturer

Manufacturer	Description	Model	Serial Number	Certificate
JHD	N/A	JHD-AP036U-120300BA-A	N/A	N/A

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
HDMI Port	1	N/A
earphone port	1	N/A
USB 3.0 Port	4	N/A
LAN Port	1	N/A
DC Port	1	N/A
MICRO SD Port	1	N/A

1.4. Description of Test Facility

FCC

Designation Number: CN1275

Test Firm Registration Number: 167722

Shenzhen Tongzhou Testing Co.,Ltd has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA

Certificate Number: 5463.01

Shenzhen Tongzhou Testing Co.,Ltd has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

IC

ISED#: 22033

CAB identifier: CN0099

Shenzhen Tongzhou Testing Co.,Ltd has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Tongzhou Testing Co.,Ltd's quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.08dB	(1)
Radiation Uncertainty	:	30MHz~1000MHz	±4.42dB	(1)
		1GHz~40GHz	±4.06dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±2.23dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

AC power line conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(Middle Channel, Chain 1).

Report No.: TZ211102749-E1

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(Middle Channel, Chain 1).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11b Mode: 1 Mbps, DSSS. IEEE 802.11g Mode: 6 Mbps, OFDM. IEEE 802.11n Mode HT20: MCS0, OFDM. IEEE 802.11n Mode HT40: MCS0, OFDM.

Antenna & Bandwidth

Antenna	Antenna 1		Antenna 2		Simultaneously
Bandwidth Mode	20MHz	40MHz	20MHz	40MHz	/
IEEE 802.11b	\square		\square		
IEEE 802.11g	Ø				
IEEE 802.11n	\square	\square	\square	\square	☑

Channel List & Frequency

IEEE 802.11b/g/n HT20

12 002:11b/g/1111120							
Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)			
	1	2412	7	2442			
	2	2417	8	2447			
2412~2462MHz	3	2422	9	2452			
2412~240210172	4	2427	10	2457			
	5	2432	11	2462			
	6	2437					

IEEE 802.11n HT40

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	•		7	2442
	-		8	2447
2422~2452MHz	3	2422	9	2452
2422~243210172	4	2427		
	5	2432		
	6	2437		

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen Tongzhou Testing Co.,Ltd

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB 558074 D01 DTS Meas Guidance v05r02 and KDB 662911 D01 Multiple Transmitter Output v02r01 are required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement:

Sample ID	Description
TZ211102749–2#	WLAN Engineer sample – continuous transmit
TZ211102749-4#	Normal sample – Intermittent transmit

3. SYSTEM TEST CONFIGURATION

Report No.: TZ211102749-E1

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (DRTU version 11.1823.0-07788) provided by application.

3.3. Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
1	PC	ASUS	X454L	15105-0038A100	1	1	1

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen Tongzhou Testing Co.,Ltd has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C						
FCC Rules	Description of Test	Sample ID	Result			
/	Duty Cycle	TZ211102749–2#	Compliant			
§15.247(b)	Maximum Conducted Output Power	TZ211102749–2#	Compliant			
§15.247(e)	Power Spectral Density	TZ211102749–2#	Compliant			
§15.247(a)(2)	§15.247(a)(2) 6dB Bandwidth		Compliant			
/	Occupied Bandwidth	TZ211102749–2#	Note 1			
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	TZ211102749–2#& TZ211102749–4#	Compliant			
§15.205	Emissions at Restricted Band	TZ211102749–2#	Compliant			
§15.207(a)	Conducted Emissions	TZ211102749-4#	Compliant			
§15.203	Antenna Requirements	N/A	Compliant			
§15.247(i)§2.1091	RF Exposure	TZ211102749–2#	Compliant			

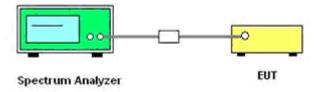
Note 1: for report purpose only.

Remark: The measurement uncertainty is not included in the test result.

5.1. On Time and Duty Cycle

5.1.1. Standard Applicable

None; for reporting purpose only.


5.1.2. Measuring Instruments and Setting

Please refer to equipment's list in this report. The following table is the setting of the spectrum analyzer.

5.1.3. Test Procedures

- 1. Set the centre frequency of the spectrum analyzer to the transmitting frequency;
- 2. Set the span=0MHz, RBW=10MHz, VBW=10MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.

5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

Pass

Remark:

1. Please refer to Appendix G of Appendix Test Data for WLAN(2.4G);

5.2. Maximum Conducted Output Power Measurement

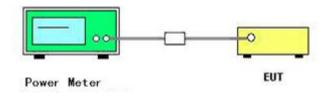
5.2.1. Standard Applicable

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.

5.2.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the power meter.


5.2.3. Test Procedures

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2 the maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

According to KDB558074 D01 DTS Measurement Guidance Section 9.2 Maximum average conducted output power, 9.2.3.1 Method AVGPM (Measurement using an RF average power meter)

- (a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
- 1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
- 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.
- (c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Test Result of Maximum Conducted Output Power

Pass

Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each

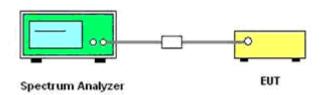
Report No.: TZ211102749-E1

- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. Please refer to Appendix C of Appendix Test Data for WLAN(2.4G);

5.3. Power Spectral Density Measurement

5.3.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


5.3.2. Measuring Instruments and Setting

Please refer to equipment's list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures

- 1. The transmitter was connected directly to a Spectrum Analyzer.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = $3 \text{ KHz} \sim 100 \text{ KHz}$.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = power averaging (rms)
- 7. Sweep points = 30000
- 8. Trace mode = max hold.
- 9. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 10. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Power Spectral Density

Pass

Remark:

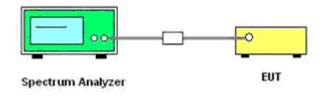
- 1. Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11 n HT40;
- 4. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain;
 - Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$, where antenna gains given by G1, G2, ..., GN dBi, N_{ANT} is the antennas total Number.
- 5. Please refer to Appendix D of Appendix Test Data for WLAN(2.4G);

5.4. 6 dB Spectrum Bandwidth Measurement

5.4.1. Standard Applicable

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2. Measuring Instruments and Setting


Please refer to equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6.Test Result of 6dB Spectrum Bandwidth

Pass

Remark:

- 1. Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. Please refer to following plots;
- 5. Please refer to Appendix A of Appendix Test Data for WLAN(2.4G);

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.Android 10-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

Report No.: TZ211102749-E1

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.5 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

Report No.: TZ211102749-E1

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Setup:

3) Sequence of testing 1 GHz to 18 GHz

3) Sequence of testing 1 GHz to 16 GH

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

Report No.: TZ211102749-E1

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

4) Sequence of testing above to Gra

Setup:

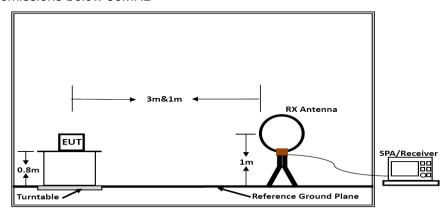
--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

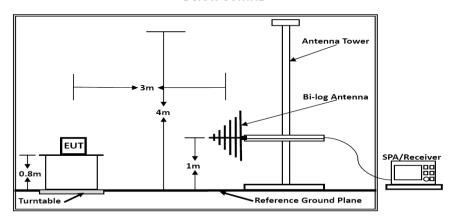
Report No.: TZ211102749-E1

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

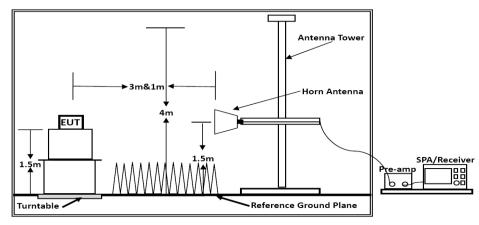
Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.


- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


5.5.4. Test Setup Layout

Report No.: TZ211102749-E1


For radiated emissions below 30MHz

Below 30MHz

Below 1GHz

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Temperature	24℃	Humidity	55.2%
Test Engineer	Anna Hu	Configurations	IEEE 802.11b/g/n20/n40

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

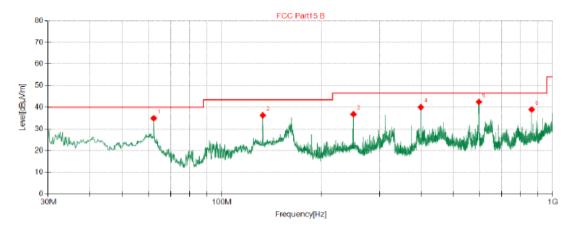
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

5.5.7. Results of Radiated Emissions (30MHz~1GHz)


Temperature	24 °C	Humidity	55.2%
Test Engineer	Anna Hu	Configurations	IEEE 802.11b/g/n20/n40

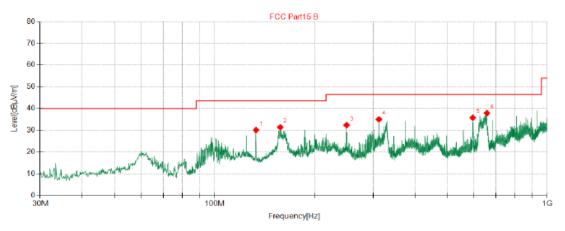
The Worst Test result for 802.11b mode(Middle Channel, Chain 1).

Report No.: TZ211102749-E1

Vertical



QP Detector


Susp	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	62.25	50.56	-15.56	35.00	40.00	5.00	100	36	Vertical		
2	133.0	54.93	-18.56	36.37	43.50	7.13	100	258	Vertical		
3	250.0	50.63	-13.77	36.86	46.50	9.64	100	120	Vertical		
4	399.5	50.13	-10.05	40.08	46.50	6.42	200	341	Vertical		
5	598.6	48.39	-5.91	42.48	46.50	4.02	100	161	Vertical		
6	864.0	41.48	-2.47	39.01	46.50	7.49	100	328	Vertical		

Note:

- 1). Pre-scan all modes and recorded the worst case results in this report
- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3). Margin=Limit-Result Level

QP Detector

Susp	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	133.1	49.34	-19.21	30.13	43.50	13.37	300	2	Horizontal		
2	157.4	50.22	-18.79	31.43	43.50	12.07	100	358	Horizontal		
3	249.3	46.24	-13.89	32.35	46.50	14.15	100	150	Horizontal		
4	311.7	47.51	-12.48	35.03	46.50	11.47	100	224	Horizontal		
5	596.9	41.49	-5.67	35.82	46.50	10.68	300	139	Horizontal		
6	658.4	42.77	-4.87	37.90	46.50	8.60	300	272	Horizontal		

Note:

- 1). Pre-scan all modes and recorded the worst case results in this report
- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).3). Margin=Limit-Result Level

5.5.8. Results for Radiated Emissions (1GHz~25GHz)

Temperature	Temperature 24°C		55.2%	
Test Engineer	Anna Hu	Configurations	IEEE 802.11b/g/n20/n40	

IEEEE 802.11b

Antenna 2

Channel 1 / 2412 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4824.00	77.09	29.10	46.02	1.53	61.70	74.00	12.30	Peak	Horizontal
4824.00	61.82	29.10	46.02	1.53	46.43	54.00	7.57	Average	Horizontal
4824.00	76.07	29.10	46.02	1.53	60.68	74.00	13.32	Peak	Vertical
4824.00	59.38	29.10	46.02	1.53	43.99	54.00	10.01	Average	Vertical

Channel 6 / 2437 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4874.00	74.75	29.19	46.01	1.54	59.47	74.00	14.53	Peak	Horizontal
4874.00	62.61	29.19	46.01	1.54	47.33	54.00	6.67	Average	Horizontal
4874.00	76.26	29.19	46.01	1.54	60.98	74.00	13.02	Peak	Vertical
4874.00	63.27	29.19	46.01	1.54	47.99	54.00	6.01	Average	Vertical

Channel 11 / 2462 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4924.00	77.06	29.27	46.01	1.55	61.87	74.00	12.13	Peak	Horizontal
4924.00	58.89	29.27	46.01	1.55	43.70	54.00	10.30	Average	Horizontal
4924.00	76.54	29.27	46.01	1.55	61.35	74.00	12.65	Peak	Vertical
4924.00	60.38	29.27	46.01	1.55	45.19	54.00	8.81	Average	Vertical

Antenna 2 Channel 1 / 2412 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4824.00	75.30	29.10	46.02	1.53	59.91	74.00	14.09	Peak	Horizontal
4824.00	62.34	29.10	46.02	1.53	46.95	54.00	7.05	Average	Horizontal
4824.00	74.20	29.10	46.02	1.53	58.81	74.00	15.19	Peak	Vertical
4824.00	57.66	29.10	46.02	1.53	42.27	54.00	11.73	Average	Vertical

Channel 6 / 2437 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4874.00	76.51	29.19	46.01	1.54	61.23	74.00	12.77	Peak	Horizontal
4874.00	60.64	29.19	46.01	1.54	45.36	54.00	8.64	Average	Horizontal
4874.00	77.17	29.19	46.01	1.54	61.89	74.00	12.11	Peak	Vertical
4874.00	61.22	29.19	46.01	1.54	45.94	54.00	8.06	Average	Vertical

Channel 11 / 2462 MHz

Charlici 117 2-02 Will									
Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4924.00	76.57	29.27	46.01	1.55	61.38	74.00	12.62	Peak	Horizontal
4924.00	58.36	29.27	46.01	1.55	43.17	54.00	10.83	Average	Horizontal
4924.00	76.24	29.27	46.01	1.55	61.05	74.00	12.95	Peak	Vertical
4924.00	57.64	29.27	46.01	1.55	42.45	54.00	11.55	Average	Vertical

IEEE 802.11n HT20

Report No.: TZ211102749-E1

Combined Antenna 1 and Antenna 2

Channel 1 / 2412 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4824.00	73.88	29.1	46.02	1.53	58.49	74.00	15.51	Peak	Horizontal
4824.00	58.52	29.1	46.02	1.53	43.13	54.00	10.87	Average	Horizontal
4824.00	76.81	29.1	46.02	1.53	61.42	74.00	12.58	Peak	Vertical
4824.00	60.23	29.1	46.02	1.53	44.84	54.00	9.16	Average	Vertical

Channel 6 / 2437 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4874.00	73.45	29.19	46.01	1.54	58.17	74.00	15.83	Peak	Horizontal
4874.00	59.76	29.19	46.01	1.54	44.48	54.00	9.52	Average	Horizontal
4874.00	75.09	29.19	46.01	1.54	59.81	74.00	14.19	Peak	Vertical
4874.00	61.79	29.19	46.01	1.54	46.51	54.00	7.49	Average	Vertical

Channel 11 / 2462 MHz

Charlier 11/2402 WHZ									
Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4924.00	76.56	29.27	46.01	1.55	61.37	74.00	12.63	Peak	Horizontal
4924.00	63.04	29.27	46.01	1.55	47.85	54.00	6.15	Average	Horizontal
4924.00	74.48	29.27	46.01	1.55	59.29	74.00	14.71	Peak	Vertical
4924.00	62.36	29.27	46.01	1.55	47.17	54.00	6.83	Average	Vertical

IEEE 802.11n HT40

Combined Antenna 0 and Antenna 1

Channel 3 / 2422 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4844.00	73.74	29.13	46.02	1.53	58.38	74.00	15.62	Peak	Horizontal
4844.00	60.65	29.13	46.02	1.53	45.29	54.00	8.71	Average	Horizontal
4844.00	74.19	29.13	46.02	1.53	58.83	74.00	15.17	Peak	Vertical
4844.00	61.57	29.13	46.02	1.53	46.21	54.00	7.79	Average	Vertical

Channel 6 / 2437 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4874.00	75.16	29.19	46.01	1.54	59.88	74.00	14.12	Peak	Horizontal
4874.00	58.72	29.19	46.01	1.54	43.44	54.00	10.56	Average	Horizontal
4874.00	76.57	29.19	46.01	1.54	61.29	74.00	12.71	Peak	Vertical
4874.00	61.28	29.19	46.01	1.54	46.00	54.00	8.00	Average	Vertical

Channel 9 / 2452 MHz

Freq.	Reading	Ant.	Pre.	Cab.	Measured	Limit	Margin		
MHz	dBuV	Fac.	Fac.	Loss	dBuV/m	dBuV/m	dB	Remark	Pol.
		dB/m	dB	dB					
4904.00	74.61	29.24	46.01	1.54	59.38	74.00	14.62	Peak	Horizontal
4904.00	61.71	29.24	46.01	1.54	46.48	54.00	7.52	Average	Horizontal
4904.00	74.69	29.24	46.01	1.54	59.46	74.00	14.54	Peak	Vertical
4904.00	62.42	29.24	46.01	1.54	47.19	54.00	6.81	Average	Vertical

Notes:

- 1. Measuring frequencies from 9 KHz 10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9 KHz ~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40
- 5. Pre-scan at Antenna 1 and Antenna 2 for IEEE 802.11b and IEEE 802.11g mode, pre-scan at Antenna 1, Antenna 2 and Combined Antenna 1 and Antenna 2 for IEEE 802.11n mode, recorded worst case
- 6. Measured = Reading + Ant. Fac Pre. Fac. + Cab. Loss; Margin = Limit Measured

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.6.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 KHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

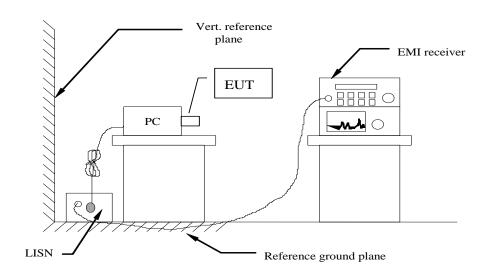
5.6.6. Test Results of Conducted Spurious Emissions

Pass

Remark:

- Measured RF conducted spurious emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss:
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 8.0Mbps at IEEE 802.11ax20;
- 4. "---"means that the fundamental frequency not for 15.209 limits requirement.
- 5. Not recorded emission values from 9 KHz to 30 MHz as emission level at least 20 dBc lower than limit:
- 6. Please refer to Appendix E and F of Appendix Test Data for WLAN(2.4G)

5.7. Power line conducted emissions


5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

5.7.2 Block Diagram of Test Setup

5.7.3 Test Results

Temperature	24.4℃	Humidity	55.2%
Test Engineer	Anna Hu	Configurations	IEEE 802.11b/g/n20/n40

The Worst Test result for 802.11b mode(Middle Channel, Chain 1). Neutral

Report No.: TZ211102749-E1

'							
Level [dBµV]							
70							;;
60	i i i i	. i i i i	·	· i i i			<u> </u>
50							
40 \		 		- 			; ;
~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u></u>				[-]-]-]-]-		!
30WW-	man to the last	Marketaka	de westerning				
20	mum ti	ورود هې د خود خود	The Paris of the P		Valed de la con	The Part of the Pa	1 - 1
10	·			-	-	phopological and a second	
0	}		·		} <u></u> }-		
-10 150k 30	00k 400k 600	k 800k 1M	2M	3M 4M 5	M 6M 8M 10	M 20	OM 30M
1308 30	30K 400K 000	K OUUK IIVI	Frequency		IN ON ON TO	VI 20	JINI JUNI
Frequency	Level	Transd	Limit	Margin	Detecto	r Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.172500	37.20	10.2	65	27.6	QP	N	GND
0.528000	38.00	9.9	56	18.0	QP	N	GND
1.045500	19.80	9.8	56	36.2	QP	N	GND
2.112000	15.80	9.7	56	40.2	QP	N	GND
5.140500	13.50	9.8	60	46.5	QP	N	GND
22.344000	13.70	10.2	60	46.3	QP	N	GND
Frequency	Level	Transd	Limit	Margin	Detecto	r Line	PE
Frequency MHz	dBuV	dB	dBµV	dB	Detecto	I LINE	FE
11112	αυμν	αD	αυμν	aв			
0.231000	20.50	10.5	52	31.9	AV	N	GND
0.528000	29.50	9.9	46	16.5	AV	N	GND
1.144500	14.00	9.8	46	32.0	AV	N	GND
2.121000	9.80	9.7	46	36.2	AV	N	GND
8.110500	6.10	9.8	50	43.9	AV	N	GND

Note:

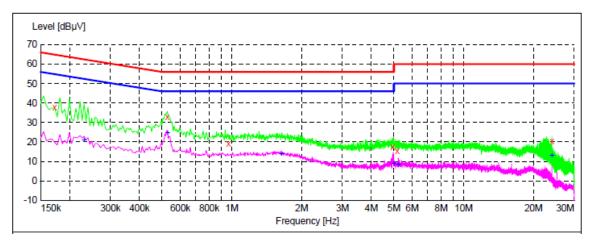
1). Pre-scan all modes and recorded the worst case results in this report

10.1

50

40.4 AV

Ν


GND

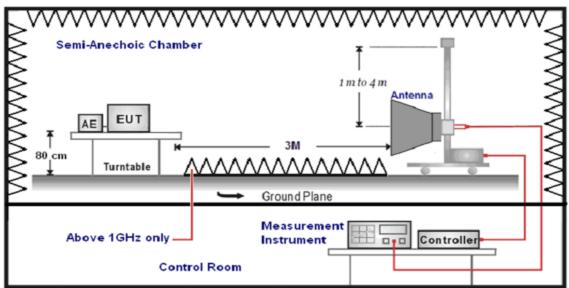
2). Emission level (dBuV) = 20 log Emission level (uV).

24.004500 9.60

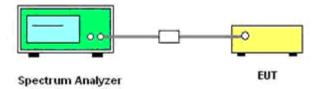
3). Margin=Limit-Level

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.172500 0.528000 0.969000 4.942500 5.176500	37.70 33.00 19.20 17.60 15.50	10.2 9.9 9.8 9.8 9.8	65 56 56 56	27.1 23.0 36.8 38.4 44.5	QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND
24.009000 Frequency MHz	20.20 Level dBuV	10.1 Transd	60 Limit dBuV	39.8 Margin dB	QP Detector	L1 Line	GND PE
0.231000 0.528000 1.639500	20.70 24.70 13.90	10.5 9.9 9.7	52 46 46	31.7 21.3 32.1	AV AV AV	L1 L1 L1	GND GND GND
4.996500 5.230500 24.013500	8.90 8.20 13.10	9.8 9.8 10.1	46 50 50	37.1 41.8 36.9	AV AV AV	L1 L1 L1	GND GND GND

- 1). Pre-scan all modes and recorded the worst case results in this report
- 2). Emission level (dBuV) = 20 log Emission level (uV).3). Margin=Limit-Level


5.8. Band-edge measurements for radiated emissions

5.8.1 Standard Applicable


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2 Test Setup Layout

⊠For Radiated

☐ For Conducted

5.8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

Radiated Method:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.

3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Conducted Method:

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both ŘBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for AV detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8. Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the result ant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.77 = EIRP + 95.23

Where

E = electric field strength in dBµV/m,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used
- 12. Per KDB662911 D01 section b) In cases where a combination of conducted measurements and cabinet radiated measurements are permitted to demonstrate compliance with absolute radiated out-of-band and spurious limits (e.g., KDB Publications 558074 for DTS and 789033 for U-NII), the conducted measurements must be combined with directional gain to compute the radiated levels of the out-of-band and spurious emissions as described in this section.
- 13. Compare the resultant electric field strength level to the applicable regulatory limit.
- 14. Perform radiated spurious emission test duress until all measured frequencies were complete.

5.8.5 Test Results

Report No.: TZ211102749-E1

Temperature	24℃	Humidity	55.2%
Test Engineer	Anna Hu	Configurations	IEEE 802.11b/g/n20/ax20

Antenna 1

					IEEE	802.11b				
Item	Freq	Read	Antenna	PRM	Cable	Result	Limit	Over	Datastar	Dolovization
(Mark)	(MHz)	Level	Factor	Factor	Loss	Level	Line	Limit	Detector	Polarization
,	,	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	2390.00	56.30	29.99	30.21	8.35	64.43	74	-9.57	Peak	Horizontal
1	2390.00	37.43	29.99	30.21	8.35	45.56	54	-8.44	AV ^[1]	Horizontal
2	2390.00	55.36	29.99	30.21	8.35	63.49	74	-10.51	Peak	Vertical
2	2390.00	40.25	29.99	30.21	8.35	48.38	54	-5.62	AV ^[1]	Vertical
3	2483.50	54.61	30.25	30.25	8.5	63.11	74	-10.89	Peak	Horizontal
3	2483.50	29.55	30.25	30.25	8.5	38.05	54	-15.95	AV ^[1]	Horizontal
4	2483.50	51.55	30.25	30.25	8.5	60.05	74	-13.95	Peak	Vertical
4	2483.50	25.37	30.25	30.25	8.5	33.87	54	-20.13	AV ^[1]	Vertical
5	2484.42	58.69	30.25	30.25	8.5	67.19	74	-6.81	Peak	Horizontal
5	2486.13	36.50	30.25	30.25	8.5	45.00	54	-9.00	AV ^[1]	Horizontal
6	2495.05	49.47	30.25	30.25	8.5	57.97	74	-16.03	Peak	Vertical
6	2496.58	35.06	30.25	30.25	8.5	43.56	54	-10.44	AV ^[1]	Vertical

	IEEE 802.11g													
Item (Mark)	Freq (MHz)	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization				
(IVIAIK)	(1011 12)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)						
1	2390.00	57.37	29.99	30.21	8.35	65.50	74	-8.50	Peak	Horizontal				
1	2390.00	40.24	29.99	30.21	8.35	48.37	54	-5.63	AV ^[1]	Horizontal				
2	2390.00	55.50	29.99	30.21	8.35	63.63	74	-10.37	Peak	Vertical				
2	2390.00	39.62	29.99	30.21	8.35	47.75	54	-6.25	AV ^[1]	Vertical				
3	2483.50	56.85	30.25	30.25	8.5	65.35	74	-8.65	Peak	Horizontal				
3	2483.50	25.74	30.25	30.25	8.5	34.24	54	-19.76	AV ^[1]	Horizontal				
4	2483.50	51.54	30.25	30.25	8.5	60.04	74	-13.96	Peak	Vertical				
4	2483.50	26.51	30.25	30.25	8.5	35.01	54	-18.99	AV ^[1]	Vertical				
5	2487.71	59.02	30.25	30.25	8.5	67.52	74	-6.48	Peak	Horizontal				
5	2487.88	37.31	30.25	30.25	8.5	45.81	54	-8.19	AV ^[1]	Horizontal				
6	2497.98	49.79	30.25	30.25	8.5	58.29	74	-15.71	Peak	Vertical				
6	2497.13	35.56	30.25	30.25	8.5	44.06	54	-9.94	AV ^[1]	Vertical				

Antenna 2

					IEEE	802.11b				
Item	Freq	Read	Antenna	PRM	Cable	Result	Limit	Over	5	D
(Mark)	(MHz)	Level	Factor	Factor	Loss	Level	Line	Limit	Detector	Polarization
(Mark)	(1711 12)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	2390.00	55.80	29.99	30.21	8.35	63.93	74	-10.07	Peak	Horizontal
1	2390.00	35.63	29.99	30.21	8.35	43.76	54	-10.24	AV ^[1]	Horizontal
2	2390.00	59.31	29.99	30.21	8.35	67.44	74	-6.56	Peak	Vertical
2	2390.00	40.87	29.99	30.21	8.35	49.00	54	-5.00	AV ^[1]	Vertical
3	2483.50	54.69	30.25	30.25	8.5	63.19	74	-10.81	Peak	Horizontal
3	2483.50	28.02	30.25	30.25	8.5	36.52	54	-17.48	AV ^[1]	Horizontal
4	2483.50	51.71	30.25	30.25	8.5	60.21	74	-13.79	Peak	Vertical
4	2483.50	27.66	30.25	30.25	8.5	36.16	54	-17.84	AV ^[1]	Vertical
5	2489.48	56.39	30.25	30.25	8.5	64.89	74	-9.11	Peak	Horizontal
5	2488.80	34.50	30.25	30.25	8.5	43.00	54	-11.00	AV ^[1]	Horizontal
6	2498.40	47.81	30.25	30.25	8.5	56.31	74	-17.69	Peak	Vertical
6	2495.03	38.83	30.25	30.25	8.5	47.33	54	-6.67	AV ^[1]	Vertical

	IEEE 802.11g													
Item (Mark)	Freq	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization				
(Mark)	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)						
1	2390.00	55.33	29.99	30.21	8.35	63.46	74	-10.54	Peak	Horizontal				
1	2390.00	37.46	29.99	30.21	8.35	45.59	54	-8.41	AV ^[1]	Horizontal				
2	2390.00	59.00	29.99	30.21	8.35	67.13	74	-6.87	Peak	Vertical				
2	2390.00	38.49	29.99	30.21	8.35	46.62	54	-7.38	AV ^[1]	Vertical				
3	2483.50	53.38	30.25	30.25	8.5	61.88	74	-12.12	Peak	Horizontal				
3	2483.50	25.54	30.25	30.25	8.5	34.04	54	-19.96	AV ^[1]	Horizontal				
4	2483.50	51.92	30.25	30.25	8.5	60.42	74	-13.58	Peak	Vertical				
4	2483.50	27.42	30.25	30.25	8.5	35.92	54	-18.08	AV ^[1]	Vertical				
5	2485.48	58.24	30.25	30.25	8.5	66.74	74	-7.26	Peak	Horizontal				
5	2481.65	36.30	30.25	30.25	8.5	44.80	54	-9.20	AV ^[1]	Horizontal				
6	2499.88	50.12	30.25	30.25	8.5	58.62	74	-15.38	Peak	Vertical				
6	2499.81	37.81	30.25	30.25	8.5	46.31	54	-7.69	AV ^[1]	Vertical				

Antenna 1 and 2

					EEE 80	2.11n HT20				
Item	Freq	Read	Antenna	PRM	Cable	Result	Limit	Over		
(Mark)	(MHz)	Level	Factor	Factor	Loss	Level	Line	Limit	Detector	Polarization
(IVIAIK)	(1011 12)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	2390.00	56.84	29.99	30.21	8.35	64.97	74	-9.03	Peak	Horizontal
1	2390.00	39.83	29.99	30.21	8.35	47.96	54	-6.04	AV ^[1]	Horizontal
2	2390.00	58.77	29.99	30.21	8.35	66.90	74	-7.10	Peak	Vertical
2	2390.00	41.10	29.99	30.21	8.35	49.23	54	-4.77	AV ^[1]	Vertical
3	2483.50	57.77	30.25	30.25	8.5	66.27	74	-7.73	Peak	Horizontal
3	2483.50	29.82	30.25	30.25	8.5	38.32	54	-15.68	AV ^[1]	Horizontal
4	2483.50	52.86	30.25	30.25	8.5	61.36	74	-12.64	Peak	Vertical
4	2483.50	30.79	30.25	30.25	8.5	39.29	54	-14.71	AV ^[1]	Vertical
5	2489.75	60.93	30.25	30.25	8.5	69.43	74	-4.57	Peak	Horizontal
5	2488.59	37.93	30.25	30.25	8.5	46.43	54	-7.57	AV ^[1]	Horizontal
6	2495.26	51.77	30.25	30.25	8.5	60.27	74	-13.73	Peak	Vertical
6	2496.02	41.35	30.25	30.25	8.5	49.85	54	-4.15	AV ^[1]	Vertical

	IEEE 802.11n HT40													
Item (Mark)	Freq (MHz)	Read Level (dBµV)	Antenna Factor (dB/m)	PRM Factor (dB)	Cable Loss (dB)	Result Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Detector	Polarization				
1	2390.00	59.36	29.99	30.21	8.35	67.49	74	-6.51	Peak	Horizontal				
1	2390.00	41.62	29.99	30.21	8.35	49.75	54	-4.25	AV ^[1]	Horizontal				
2	2390.00	61.48	29.99	30.21	8.35	69.61	74	-4.39	Peak	Vertical				
2	2390.00	37.93	29.99	30.21	8.35	46.06	54	-7.94	AV ^[1]	Vertical				
3	2483.50	59.05	30.25	30.25	8.5	67.55	74	-6.45	Peak	Horizontal				
3	2483.50	31.54	30.25	30.25	8.5	40.04	54	-13.96	AV ^[1]	Horizontal				
4	2483.50	54.29	30.25	30.25	8.5	62.79	74	-11.21	Peak	Vertical				
4	2483.50	26.84	30.25	30.25	8.5	35.34	54	-18.66	AV ^[1]	Vertical				
5	2485.09	59.10	30.25	30.25	8.5	67.60	74	-6.40	Peak	Horizontal				
5	2482.37	38.04	30.25	30.25	8.5	46.54	54	-7.46	AV ^[1]	Horizontal				
6	2495.11	52.58	30.25	30.25	8.5	61.08	74	-12.92	Peak	Vertical				
6	2499.64	41.75	30.25	30.25	8.5	50.25	54	-3.75	AV ^[1]	Vertical				

REMARKS:

- 1. Result Level = Read Level + Antenna Factor + Cable loss PRM Factor.
- 2. The other emission levels were very low against the limit.
- 3. Over Limit=Emission Level Limit.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=IIF(DC>98%,10Hz,1/B)/Sweep time=Auto/Detector=Peak;

5.9. Antenna Requirements

5.9.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2. Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting refer to section 1.1 of this report, and the antenna is a Internal antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
1	MXA Signal Analyzer	Keysight	N9020A	MY52091623	2021/1/4	2022/1/3
2	Power Sensor	Agilent	U2021XA	MY5365004	2021/1/4	2022/1/3
3	Power Meter	Agilent	U2531A	TW53323507	2021/1/4	2022/1/3
4	Loop Antenna	schwarzbeck	FMZB1519 B	00023	2019/11/16	2022/11/15
5	Wideband Antenna	schwarzbeck	VULB 9163	958	2019/11/16	2022/11/15
6	Horn Antenna	schwarzbeck	9120D-114 1	1574	2019/11/16	2022/11/15
7	EMI Test Receiver	R&S	ESCI	100849/003	2021/1/4	2022/1/3
8	Controller	MF	MF7802	N/A	N/A	N/A
9	Amplifier	schwarzbeck	BBV 9743	209	2021/1/4	2022/1/3
10	Amplifier	Tonscend	TSAMP-05 18SE		2021/1/4	2022/1/3
11	RF Cable(below 1GHz)	HUBER+SUHN ER	RG214	N/A	2021/1/4	2022/1/3
12	RF Cable(above 1GHz)	HUBER+SUHN ER	RG214	N/A	2021/1/4	2022/1/3
13	Artificial Mains	ROHDE & SCHWARZ	ENV 216	101333-IP	2021/1/4	2022/1/3
14	EMI Test Software	ROHDE & SCHWARZ	ESK1	V1.71	N/A	N/A
15	RE test software	Tonscend	JS32-RE	V2.0.2.0	N/A	N/A
16	Test Software	Tonscend	JS1120-3	V2.5.77.0418	N/A	N/A
17	Horn Antenna	A-INFO	LB-180400- KF	J211020657	2020/10/12	2022/10/11
18	Amplifier	CDSA	PAP-1840	17021	2021/10/10	2022/10/09

7. TEST SETUP PHOTOGRAPHS OF EUT

Report No.: TZ211102749-E1

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.
THE END OF REPORT