

EMC Test Report***Application for Grant of Equipment Authorization*****FCC Part 15 Subpart B****Model: FareGate**

FCC ID: 2AXRQWFAG

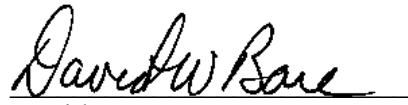
APPLICANT: STraffic America, LLC
1593 Springhill Road, Suite 125
Vienna, VA 22182, USATEST SITE(S): National Technical Systems
41039 Boyce Road
Fremont, CA. 94538-2435

PROJECT NUMBER: PR124988-00

REPORT DATE: January 7, 2021

FINAL TEST DATES: October 15 and November 16, 2020

TOTAL NUMBER OF PAGES: 45


Testing Cert #0214.26

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare
Chief Engineer

TECHNICAL REVIEWER:

David W. Bare
Chief Engineer

FINAL REPORT PREPARER:

David Guidotti
Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard
Quality Assurance Representative

National Technical Systems

Project number PR124988-00

Report Date: January 7, 2021

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	January 7, 2021	Initial release	

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	6
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
DEVIATIONS FROM THE STANDARDS	7
INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS	8
CONDUCTED EMISSIONS (MAINS PORT)	8
RADIATED EMISSIONS	8
MEASUREMENT UNCERTAINTIES.....	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL.....	9
ADDITIONAL EUT DETAILS	9
HIGHEST EUT INTERNAL FREQUENCY SOURCE	9
ENCLOSURE.....	10
MODIFICATIONS.....	10
SUPPORT EQUIPMENT	10
EUT INTERFACE PORTS	10
EUT OPERATION.....	10
EMISSIONS TESTING	11
RADIATED AND CONDUCTED EMISSIONS.....	11
RADIATED EMISSIONS CONSIDERATIONS	11
CONDUCTED EMISSIONS CONSIDERATIONS	11
EMISSIONS MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	12
LINE IMPEDANCE STABILIZATION NETWORK (LISN).....	12
IMPEDANCE STABILIZATION NETWORK (ISN)	12
FILTERS/ATTENUATORS	12
ANTENNAS.....	13
ANTENNA MAST AND EQUIPMENT TURNTABLE	13
INSTRUMENT CALIBRATION.....	13
EMISSIONS TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS (MAINS)	14
CONDUCTED EMISSIONS (TELECOMMUNICATION PORTS)	14
RADIATED EMISSIONS	14
General	14
Preliminary Scan	15
Final Maximization.....	15
SAMPLE CALCULATIONS	16
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	16
SAMPLE CALCULATIONS - RADIATED EMISSIONS.....	16
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	17
APPENDIX B TEST DATA	18
APPENDIX C PRODUCT LABELING REQUIREMENTS	42
APPENDIX D USER MANUAL REGULATORY STATEMENTS	43

APPENDIX E BASIC AND REFERENCE STANDARDS	44
SUBPART B OF PART 15 OF FCC RULES FOR DIGITAL DEVICES.	44
END OF REPORT	45

SCOPE

Governments and standards organizations around the world have published requirements regarding the electromagnetic compatibility (EMC) of electronic equipment. Testing has been performed on the STraffic America, LLC model FareGate, pursuant to the following standards.

Standard	Title	Standard Date
FCC Part 15, Subpart B	Radio Frequency Devices	October 2019 as Amended

All measurements and evaluations have been in accordance with these specifications, test procedures, and measurement guidelines as outlined in National Technical Systems test procedures, and in accordance with the standards referenced therein (refer to Appendix E). National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The objective of STraffic America, LLC is to verify compliance with FCC requirements for digital devices. A Certification authorization is sought by STraffic America, LLC.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample(s) of STraffic America, LLC model FareGate complied with the requirements of:

Standard/Regulation	Equipment Type/Class	Standard Date
Subpart B of Part 15 of the FCC Rules (CFR title 47)	Class A	2019 as amended

As specified in Section 15.101 of FCC Part 15, unintentional radiators shall be authorized prior to the initiation of marketing. Based on the description of the EUT, the following criteria per Section 15.101 of FCC Part 15 were applied to the EUT:

Type of device	Equipment authorization required
Class A digital devices, peripherals & external switching power supplies	SDoC or Certification

The test results recorded herein are based on a single type test of the STraffic America, LLC model FareGate and therefore apply only to the tested sample(s). The sample was selected and prepared by David Pedersen of Kiosk Information Systems, Inc.

Testing was performed only on models SA-20WBa0 and SA-20WE0d. These models were considered representative of the entire series. The models in the series are SA-20WBa0, SA-20WBb0, SA-20WRbd, SA-20WRac, SA-20HRb4, SA-20HRA3, SA-20HR2d, SA-20HR1c, SA-20WE0c, SA-20WE0d, SA-20SB10, SA-20SB20, SA-20SR24, SA-20SR13, SA-20SE03 and SA-20SE04

Maintenance of compliance is the responsibility of the company. Any modification of the product that could result in increased emissions or susceptibility should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different enclosure, different line filter or power supply, harnessing and/or interface cable changes, etc.).

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS

The following emissions tests were performed on the STraffic America, LLC model FareGate. The measurements were extracted from the data recorded during testing and represent the highest-amplitude emissions relative to the specification limits. The complete test data is provided in the appendices of this report.

CONDUCTED EMISSIONS (MAINS PORT)

Frequency Range Operating Voltage	Standard/Section	Requirement	Measurement Margin	Status
0.15-30 MHz, 120 V, 60 Hz	FCC § 15.107(a) (Class B)	0.15-0.5 MHz: 66-56 dB μ V QP 56-46 dB μ V Av 0.5-5.0 MHz: 56 dB μ V QP 46 dB μ V Av 5.0-30.0 MHz: 60 dB μ V QP 50 dB μ V Av	44.3 dB μ V @ 0.49 MHz -1.8 dB	Complied

RADIATED EMISSIONS

Frequency Range	Standard/Section	Requirement	Measurement Margin	Status
30-1000 MHz	FCC §15.109(b) Class A	30-88 MHz 39 dB μ V/m 88-216 MHz 43.5 dB μ V/m 216-960 MHz 46.4 dB μ V/m 960-1000 MHz 49.5 dB μ V/m (10 m limit)	36.2 dB μ V/m @ 30.02MHz -2.9 dB	Complied
1-10 GHz	FCC §15.109(b) Class A	49.5 dB μ V/m Av 69.5 dB μ V/m Pk (10 m limit)	44.1 dB μ V/m @ 3198.1 MHz -15.9 dB (Note 1)	Complied
Note 1 For testing Class A devices to FCC Part 15 Subpart B using the test methods of ANSI C63.4-2014, readings are compared to a 3-meter limit derived from the 10-meter limit using the $20 \times \log(D1/D2)$ formula, i.e. adding 10.5 dB to the stated 10-meter limits of 49.5 dB μ V/m (Average) and 69.5 dB μ V/m (Peak).				

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of $k=2$, which gives a level of confidence of approximately 95%. The levels were found to be below levels of CISPR and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Conducted Emissions	dB μ V or dB μ A	150 kHz – 30 MHz	\pm 2.2 dB
Radiated Electric Field	dB μ V/m	30-1000 MHz 1000-40,000 MHz	\pm 3.6 dB \pm 6.0 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The STTraffic America, LLC model FareGate is a retractable barrier system which is designed to allow access after fare payment. Since the EUT would normally be mounted on the floor during operation, the EUT was treated as floor-standing equipment during testing to simulate the end-user environment. An installation requires two faregates; therefore one “master” and one “slave” unit were used for the evaluation. The electrical rating of the EUT is 120 Volts, 60 Hz, 8 A.

The samples were received on October 12, 2020 and tested on October 15 and November 16, 2020. The EUT consisted of the following component(s):

Company	Product Name	Description	Serial Number	FCC ID
STTraffic America, LLC	SA-20WBa0	Turnstile	20GA-206-0003	2AXRQWFAG
STTraffic America, LLC	SA-20WE0d	Turnstile	20GI-206-0004	2AXRQWFAG

At the time this report has been issued, the status of the EUT is pre-production.

ADDITIONAL EUT DETAILS

The faregates utilize three Certified RFID radio modules (PPT); FCC ID: LVCTR4.

HIGHEST EUT INTERNAL FREQUENCY SOURCE

The highest internal frequency source (F_x) of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. The highest internal frequency source determines the frequency range of test for radiated emissions.

The highest internal frequency source of the EUT was declared to be 2000 MHz.

Based on the declared highest internal frequency source, the upper frequency range of measurement for the current project were:

FCC Part 15, Subpart B

Highest Internal Frequency Source (MHz)	Upper Frequency Range of Measurement (MHz)	Applicability
Below 1.705	30	
1.705 – 108	1000	
108 – 500	2000	
500 – 1000	5000	
Above 1000	5th harmonic of the highest internal source or 40 GHz, whichever is lower	X

ENCLOSURE

The EUT enclosure measures approximately 28 cm wide by 180 cm deep by 100 cm high. It is primarily constructed of sheet metal.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at National Technical Systems.

SUPPORT EQUIPMENT

No support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Description	Cable(s) Shielded or Unshielded	Length(m)
Master Unit low voltage power cable	Slave Unit CN1 board port	Multiwire	Unshielded	3.0
Master Unit low voltage power cable	Slave Unit X1 and X2 board ports	Multiwire	Unshielded	3.0
Master Unit DVI input	Slave Unit DVI output	Multiwire	Shielded	2.0
Master Unit Ethernet (x3) Cisco hub	Slave Unit Ethernet (x3)	RJ-45	Shielded	3.0
Slave Unit Heater AC power input	Master Unit AC #1 Output	3Wire	Unshielded	3.0
Power Supply #1	AC Mains	3Wire	Unshielded	1.5
Power Supply #2	AC Mains	3Wire	Unshielded	1.5

EUT OPERATION

During testing, the EUT was configured to transmit a 13.56 MHz modulated signal continuously. The EUT gates were configured to open and close continuously during and after the test.

EMISSIONS TESTING

RADIATED AND CONDUCTED EMISSIONS

Final test measurements were taken at the National Technical Systems Anechoic Chambers listed below. The test sites contain separate areas for radiated and conducted emissions testing. The sites conform to the requirements of *ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz* and *CISPR 16-1-4:2017 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances*. They are registered with the VCCI and are on file with the FCC and Industry Canada.

Site	Registration Numbers			Location
	VCCI	FCC	Canada	
Chamber 7	Member 1211 Facility Registration A-0169	US1031	US0027	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site above 30 MHz and with an open field site below 30 MHz. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

RADIATED EMISSIONS CONSIDERATIONS

Radiated emissions measurements were made with the EUT powered from a supply voltage within the expected tolerances of each nominal operating voltage/frequency for each geographical regions covered by the scope of the standards referenced in this report.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions tests are performed in conformance with ANSI C63.4 and Subpart B of Part 15 of FCC Rules for Digital Devices.

Mains port measurements are made with the EUT connected to the public power network through nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

EMISSIONS MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1:2015 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7 GHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

Measurements for radiated and conducted emissions are converted to the field strength at an antenna or voltage developed at the LISN (or ISN) measurement port, which is then compared directly with the appropriate specification limit under software control of the test receivers and spectrum analyzers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically. The software used for measurements is NTS EMI Test Software (rev 2.10).

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted emission measurements utilize a 50 μ H Line Impedance Stabilization Network (LISN) as the measurement point. The LISN used may also contain an additional 250 μ H inductor. This network provides for calibrated radio-frequency noise measurements by the design of the internal low-pass and high-pass filters on the EUT and measurement ports, respectively.

IMPEDANCE STABILIZATION NETWORK (ISN)

Telecommunication port conducted emission measurements utilize an Impedance Stabilization Network with a 150-ohm termination impedance and specific longitudinal conversion loss as the voltage monitoring point. This network provides for calibrated radio-frequency noise measurements by the design of the internal circuitry on the EUT and measurement ports, respectively. For current measurements, a current probe with a uniform frequency response and less than 1-ohm insertion impedance is used.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high-amplitude transient events.

ANTENNAS

A bilog antenna or combination of biconical and log periodic antennas are used to cover the range from 30 MHz to 1000 MHz. Narrowband tuned dipole antennas may be used over the entire 30 to 1000 MHz frequency range for precision measurements of field strength. Above 1000 MHz, horn antennas are used. The antenna calibration factors are included in site factors that are programmed into the test receivers or data collection software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4 and CISPR 32 specify that the test height above ground for table-mounted devices shall be 80 centimeters. Floor-mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material up to 12-mm thick if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

EMISSIONS TEST PROCEDURES

EUT AND CABLE PLACEMENT

The standards require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst-case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4 and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS (MAINS)

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

CONDUCTED EMISSIONS (TELECOMMUNICATION PORTS)

Conducted emissions voltages are measured at a point 80 cm from the EUT. If conducted emission currents are measured, the current probe is located 70 cm from the EUT. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

RADIATED EMISSIONS

General

FCC Part 15 references the test methods of ANSI C63.4-2014 (American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz) for emissions measurements. Radiated emissions measurements are performed in two phases, preliminary scan and final maximization.

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one or more of these with the antenna polarized vertically and one or more of these are performed with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied as necessary to determine the highest emission relative to the limit.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

Final measurements in the frequency range of 30-1000 MHz are made using a quasi-peak detector and compared to the quasi-peak limit. Final measurements above 1 GHz are made using average and peak detectors and compared to the average and peak limits respectively.

The diameter of the test volume demonstrated during the test site validation of Chamber 7 was 2.5 m, while the maximum width of the boundary of the EUT, local AE, and associated cabling within the test volume was 2.5 m.

When testing above 1 GHz, the receive antenna is restricted to a maximum height of 2.5 m. Maximum emissions are found within this restricted range because emission levels decrease over distance and as the antenna is raised above 2.5 m, the distance from the EUT increases. As a result of the increased measurement distance, at antenna heights above 2.5 m, lower emission levels are measured as compared to emissions levels measured at antenna heights at 2.5 m and below. Final measurements are captured at 3 meters test distance except in cases where a closer test distance is required due to noise-floor considerations of the test-and-measurement equipment.

For measurements above 1 GHz every effort is made to ensure the EUT remains within the cone of radiation of the measurement antenna (i.e. 3 dB beam-width of the antenna). This may include rotating the product and/or angling the measurement antenna. A horn antenna having the beam width W at the measurement distance 3 m shown in the table below was used for the measurement. Since the height of the EUT from the turntable was 1.5 m, the antenna height was fixed to 1 m.

Frequency (GHz)	E Plane	H Plane	Θ_{3dB}	3dB beam width W (m) at 3m
1.0	110	90	90	6.0
2.0	50	59	50	2.8
3.0	40	62	40	2.2
4.0	42	63	42	2.3
5.0	54	42	42	2.3
6.0	48	39	39	2.1

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_f - S = M$$

where:

R_f = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20 * \text{LOG10} (D_m / D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_f + F_d$$

and

$$M = R_c - L_s$$

where:

R_f = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

Appendix A Test Equipment Calibration Data

Radiated Emissions, .03 - 1,000 MHz, 15-Oct-20

Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Rhode & Schwarz	Loop Antenna	HFH2-Z2	WC062457	1/23/2020	1/23/2022
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	WC064492	7/1/2020	7/1/2021
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	WC064573	12/3/2019	12/3/2021
Com-Power	Preamplifier, 1-1000 MHz	PAM-103	WC064733	7/31/2020	7/31/2021

Conducted Emissions - AC Power Ports, 16-Oct-20

Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
EMCO	LISN, 10 kHz-100 MHz	3825/2	WC064399	8/2/2020	8/2/2021
EMCO	LISN, 10 kHz-100 MHz	3825/2	WC064407	7/4/2020	7/4/2021
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	WC064492	7/1/2020	7/1/2021
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	WC072358	7/6/2020	7/5/2021

Radiated Emissions, 1000 - 10,000 MHz, 16-Oct-20

Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Hewlett Packard	Spectrum Analyzer (Purple)	8564E	WC055660	8/25/2020	8/25/2021
EMCO	Horn Antenna	3115	WC062584	6/5/2019	6/5/2021
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	WC064416	8/26/2020	8/26/2021

Conducted Emissions - AC Power Ports, 16-Nov-20

Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
EMCO	LISN, 10 kHz-100 MHz	3825/2	WC064399	8/2/2020	8/2/2021
EMCO	LISN, 10 kHz-100 MHz	3825/2	WC064407	7/4/2020	7/4/2021
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	WC064445	7/6/2020	7/6/2021
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	WC064455	2/11/2020	2/11/2021

National Technical Systems

Project number PR124988-00

Report Date: January 7, 2021

Appendix B Test Data

TL124988-00-RA Pages 19 – 41

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Product	Faregate	T-Log Number:	TL124988-00-RA
System Configuration:	2 units	Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Emissions Standard(s):	FCC Part 15	Class:	-
Immunity Standard(s):	-	Environment:	Stations

EMC Test Data

For The

STraffic America,LLC

Product

Faregate

Date of Last Test: 12/8/2020

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Conducted Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/16/2020
Test Engineer: Rafael Varelas
Test Location: Fremont Chamber #7

Config. Used: 1
Config Change: None
EUT Voltage: 120V/60Hz

General Test Configuration

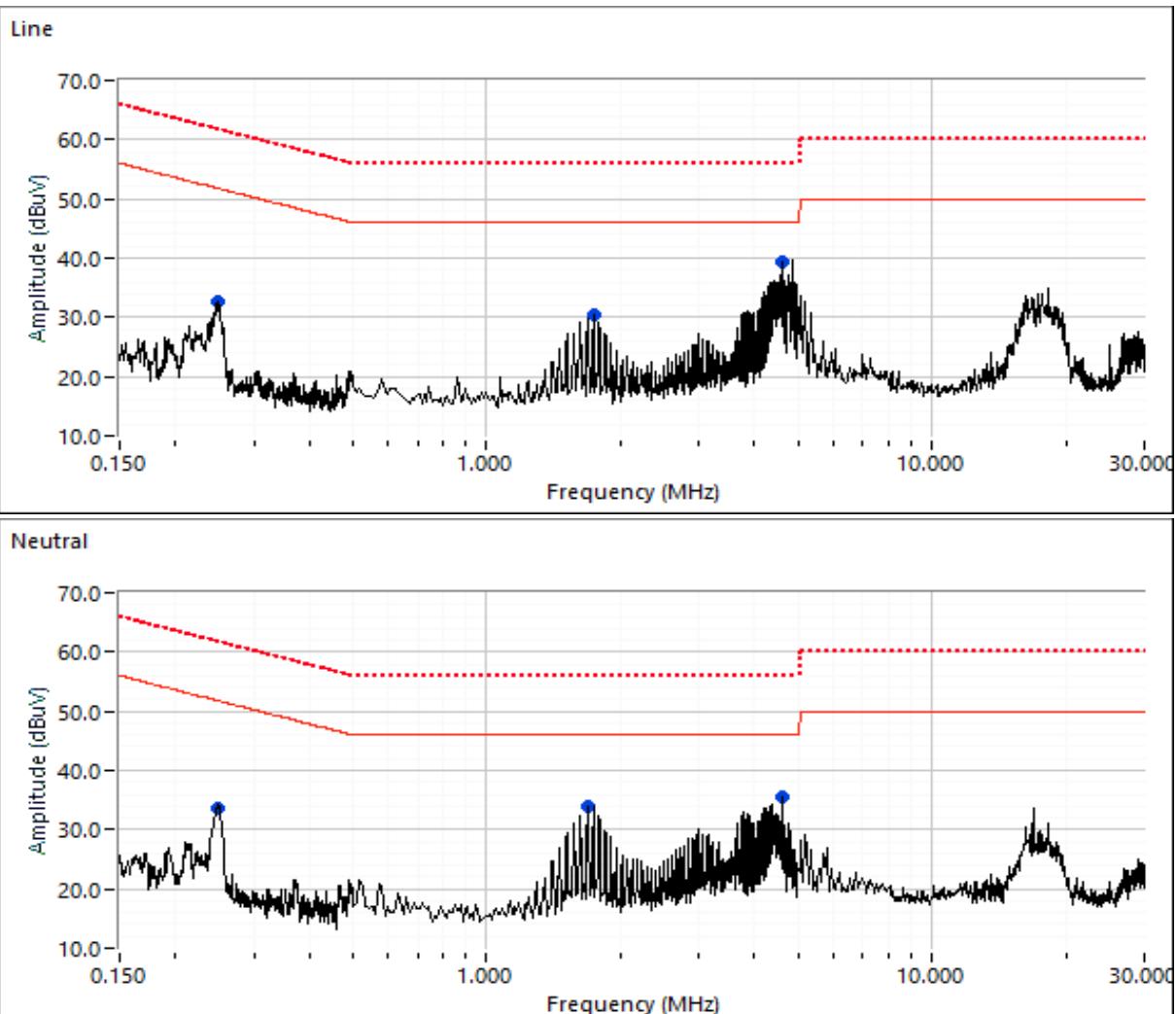
For floor-standing equipment, the EUT was located above a ground plane inside the semi-anechoic chamber, 80 cm from the LISN. A second LISN was used for any local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment were routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

Ambient Conditions: Temperature: 24.6 °C
Rel. Humidity: 47 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1 - PS1	CE, AC Power, 120V/60Hz	FCC 15.107	Pass	32.6 dB μ V @ 1.68 MHz (-13.4 dB)
2 - PS2	CE, AC Power, 120V/60Hz	FCC 15.107	Pass	44.3 dB μ V @ 0.49 MHz (-1.8 dB)

Modifications Made During Testing


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

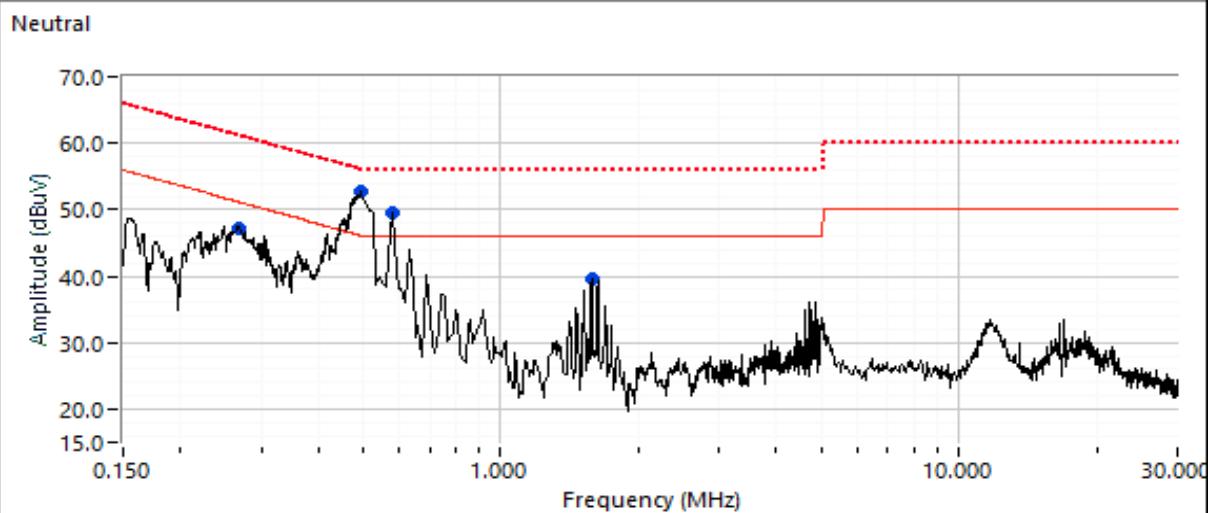
Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz, PS1

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)



Frequency MHz	Level dB μ V	AC Line	FCC 15.207 Limit	Margin	Detector QP/Ave	Comments
0.248	33.5	Neutral	51.7	-18.2	Peak	
1.681	33.9	Neutral	46.0	-12.1	Peak	
4.627	35.5	Neutral	46.0	-10.5	Peak	
0.249	32.6	Line	51.7	-19.1	Peak	
1.736	30.3	Line	46.0	-15.7	Peak	
4.628	39.3	Line	46.0	-6.7	Peak	

Final quasi-peak and average readings

Frequency MHz	Level dB μ V	AC Line	FCC 15.207 Limit	Margin	Detector QP/Ave	Comments
1.681	32.6	Neutral	46.0	-13.4	AVG	AVG (0.10s)
4.628	29.5	Line	46.0	-16.5	AVG	AVG (0.10s)
1.736	28.8	Line	46.0	-17.2	AVG	AVG (0.10s)
4.628	35.6	Line	56.0	-20.4	QP	QP (1.00s)
4.627	24.2	Neutral	46.0	-21.8	AVG	AVG (0.10s)
1.681	32.9	Neutral	56.0	-23.1	QP	QP (1.00s)
0.248	27.0	Neutral	51.8	-24.8	AVG	AVG (0.10s)
4.627	31.0	Neutral	56.0	-25.0	QP	QP (1.00s)
0.249	25.2	Line	51.8	-26.6	AVG	AVG (0.10s)
1.736	29.2	Line	56.0	-26.8	QP	QP (1.00s)
0.248	32.1	Neutral	61.8	-29.7	QP	QP (1.00s)
0.249	29.9	Line	61.8	-31.9	QP	QP (1.00s)

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz, PS2

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

Frequency MHz	Level dB μ V	AC Line	FCC 15.207		Detector QP/Ave	Comments
			Limit	Margin		
0.246	49.9	Line	51.9	-2.0	Peak	
0.493	53.7	Line	46.1	7.6	Peak	
0.582	49.8	Line	46.0	3.8	Peak	
1.580	40.3	Line	46.0	-5.7	Peak	
0.268	47.2	Neutral	51.2	-4.0	Peak	
0.499	52.6	Neutral	46.1	6.5	Peak	
0.582	49.6	Neutral	46.0	3.6	Peak	
1.578	39.6	Neutral	46.0	-6.4	Peak	

Final quasi-peak and average readings

Frequency MHz	Level dB μ V	AC Line	FCC 15.207		Detector QP/Ave	Comments
			Limit	Margin		
0.493	44.3	Line	46.1	-1.8	AVG	AVG (0.10s)
0.581	43.8	Line	46.0	-2.2	AVG	AVG (0.10s)
0.499	43.8	Neutral	46.0	-2.2	AVG	AVG (0.10s)
0.581	42.9	Neutral	46.0	-3.1	AVG	AVG (0.10s)
0.493	52.7	Line	56.1	-3.4	QP	QP (1.00s)
0.499	52.0	Neutral	56.0	-4.0	QP	QP (1.00s)
1.580	38.6	Line	46.0	-7.4	AVG	AVG (0.10s)
1.578	37.6	Neutral	46.0	-8.4	AVG	AVG (0.10s)
0.581	45.7	Line	56.0	-10.3	QP	QP (1.00s)
0.581	45.1	Neutral	56.0	-10.9	QP	QP (1.00s)
0.246	39.0	Line	51.9	-12.9	AVG	AVG (0.10s)
0.268	37.7	Neutral	51.2	-13.5	AVG	AVG (0.10s)
0.246	47.7	Line	61.9	-14.2	QP	QP (1.00s)
0.268	46.6	Neutral	61.2	-14.6	QP	QP (1.00s)
1.580	39.8	Line	56.0	-16.2	QP	QP (1.00s)
1.578	38.8	Neutral	56.0	-17.2	QP	QP (1.00s)

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Radiated Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/15/2020

Config. Used: 1

Test Engineer: Rafael Varelas

Config Change: None

Test Location: Fremont Chamber #7

EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment were routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

Radiated emissions tests above 1 GHz to FCC Part 15 were performed with floor absorbers in place in accordance with the test methods of ANSI C63.4 and CISPR 16-1-4.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

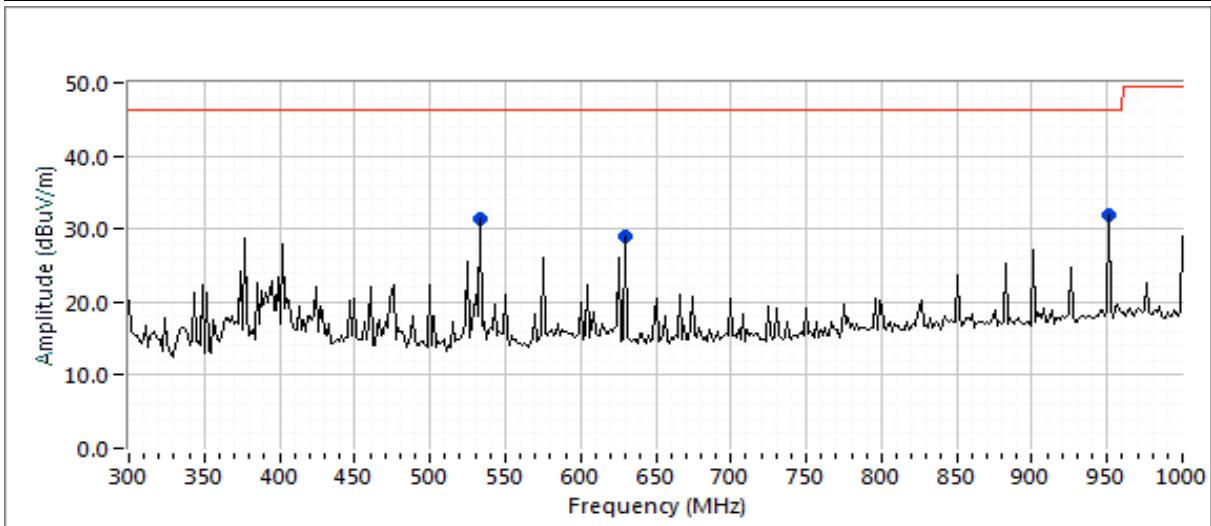
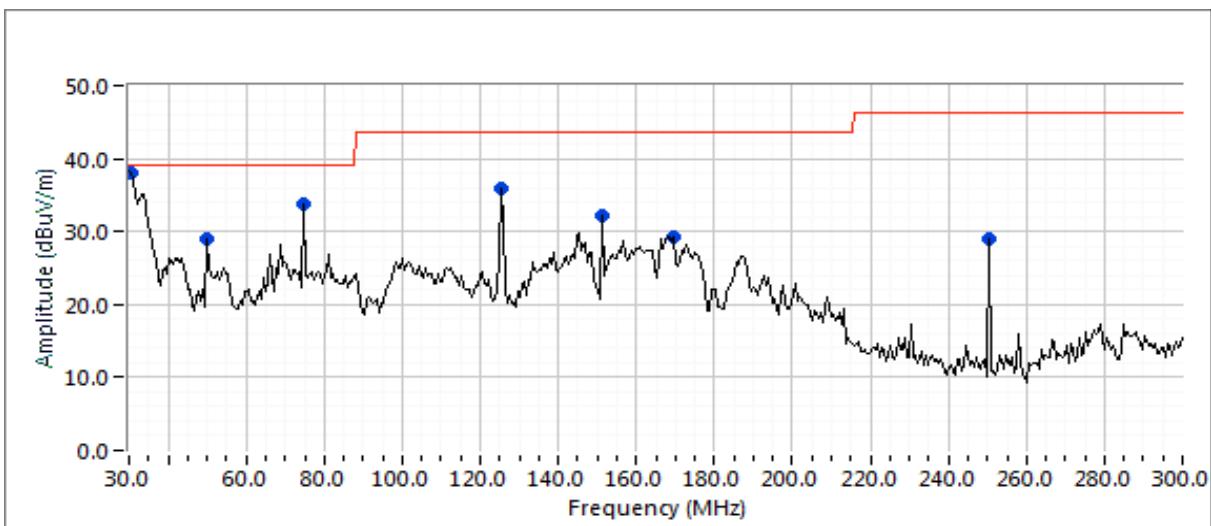
Ambient Conditions: Temperature: 24.5 °C
Rel. Humidity: 46 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz, Preliminary	FCC Class A	Eval	Refer to individual runs
2	Radiated Emissions 30 - 1000 MHz, Maximized	FCC Class A	Pass	36.2 dB μ V/m @ 30.02 MHz (-2.9 dB)
3	Radiated Emissions 1 GHz - 10 GHz Maximized	FCC Class A	Pass	44.1 dB μ V/m @ 3198.1 MHz (-15.9 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing



Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

Test Parameters for Preliminary Scan(s)			
Frequency Range (MHz)	Prescan Distance (meters)	Limit Distance (meters)	Extrapolation Factor (dB, applied to data)
30 - 1000	5	10	-6.0

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC Class A		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
30.022	38.1	V	39.1	-1.0	Peak	324	1.0	
50.371	29.0	V	39.1	-10.1	Peak	203	1.0	
75.010	33.8	V	39.1	-5.3	Peak	142	1.0	
125.009	35.9	V	43.5	-7.6	Peak	178	1.5	
151.094	32.3	V	43.5	-11.2	Peak	166	1.0	
168.937	29.2	V	43.5	-14.3	Peak	360	1.5	
250.008	29.1	V	46.4	-17.3	Peak	323	2.5	
532.990	31.3	H	46.4	-15.1	Peak	343	1.0	
629.513	29.0	V	46.4	-17.4	Peak	350	2.5	
949.993	32.0	H	46.4	-14.4	Peak	230	2.5	

Preliminary quasi-peak readings (no manipulation of EUT interface cables)

Frequency	Level	Pol	FCC Class A		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
75.010	32.9	V	39.1	-6.2	QP	146	1.0	QP (1.00s)
151.094	32.0	V	43.5	-11.5	QP	168	1.0	QP (1.00s)
125.009	34.6	V	43.5	-8.9	QP	186	1.0	QP (1.00s)
50.371	26.7	V	39.1	-12.4	QP	193	1.0	QP (1.00s)
30.022	36.2	V	39.1	-2.9	QP	260	1.0	QP (1.00s)
168.937	26.3	V	43.5	-17.2	QP	360	1.0	QP (1.00s)

EMC Test Data

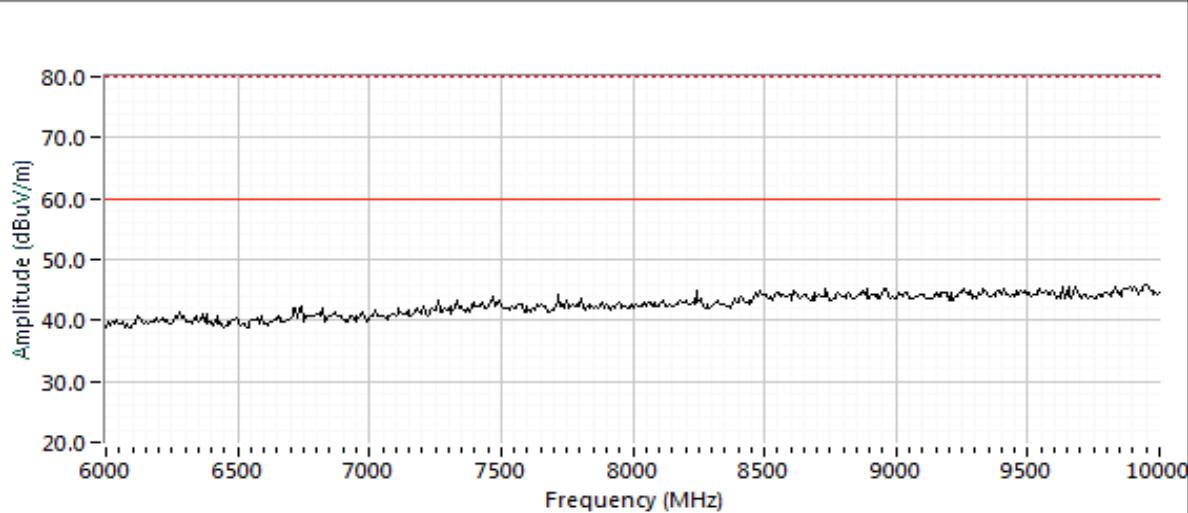
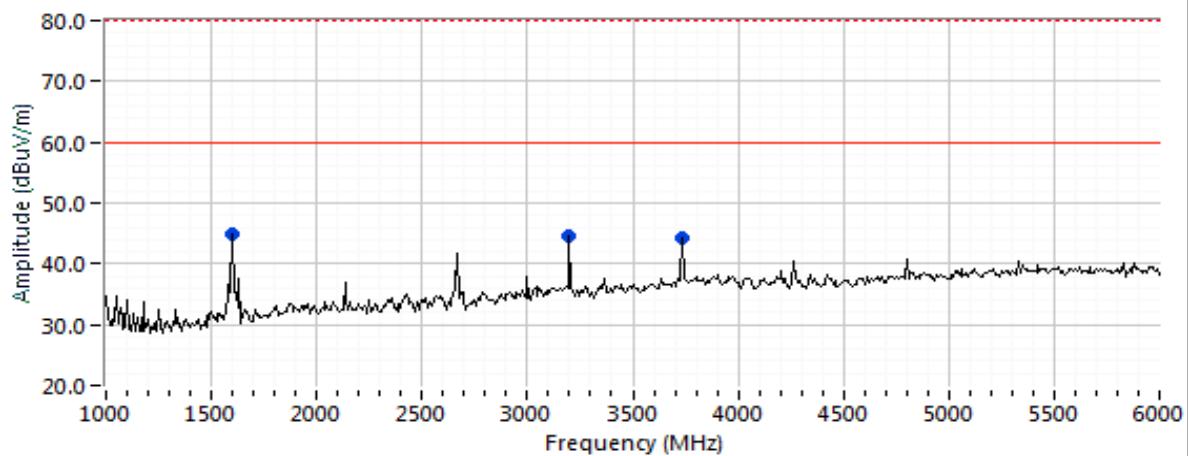
Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare
		Class:	-

Run #2: Maximized Readings From Run #1

Test Parameters for Maximized Reading(s)			
Frequency Range (MHz)	Test Distance (meters)	Limit Distance (meters)	Extrapolation Factor (dB, applied to data)
30 - 1000	5	10	-6.0

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency MHz	Level dB μ V/m	Pol v/h	FCC Class A		Detector	Azimuth degrees	Height meters	Comments
30.022	36.2	V	39.1	-2.9	QP	260	1.0	QP (1.00s)
75.010	32.9	V	39.1	-6.2	QP	146	1.0	QP (1.00s)
125.009	34.6	V	43.5	-8.9	QP	186	1.0	QP (1.00s)
151.094	32.0	V	43.5	-11.5	QP	168	1.0	QP (1.00s)
50.371	26.7	V	39.1	-12.4	QP	193	1.0	QP (1.00s)
168.937	26.3	V	43.5	-17.2	QP	360	1.0	QP (1.00s)

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Run #3: Maximized Readings, 1000 - 10000 MHz

Test Parameters for Preliminary Scan(s)			
Frequency Range (MHz)	Prescan Distance (meters)	Limit Distance (meters)	Extrapolation Factor (dB, applied to data)
1000 - 10000	3	3	0.0

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare
		Class:	-

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

*FCC Class A limit (when applicable) converted to 3m limit (by adding 10.5 dB to 10m limit)

Frequency	Level	Pol	FCC Class A		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1599.110	45.0	H	60.0	-15.0	Peak	164	1.9	
3198.170	44.6	H	60.0	-15.4	Peak	11	1.0	
3731.170	44.2	V	60.0	-15.8	Peak	200	1.3	

Final peak and average readings (vs. FCC limits)

All final readings collected at 3 meters test distance, unless otherwise noted

*FCC Class A limit (when applicable) converted to 3m limit (by adding 10.5 dB to 10m limit)

Frequency	Level	Pol	FCC Class A		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3198.080	44.1	H	60.0	-15.9	AVG	10	1.0	RB 1 MHz;VB 10 Hz;Peak
1598.980	43.6	H	60.0	-16.4	AVG	159	1.3	RB 1 MHz;VB 10 Hz;Peak
3731.080	43.6	V	60.0	-16.4	AVG	200	1.3	RB 1 MHz;VB 10 Hz;Peak
1599.200	50.4	H	80.0	-29.6	PK	159	1.3	RB 1 MHz;VB 3 MHz;Peak
3731.100	49.7	V	80.0	-30.3	PK	200	1.3	RB 1 MHz;VB 3 MHz;Peak
3198.060	49.1	H	80.0	-30.9	PK	10	1.0	RB 1 MHz;VB 3 MHz;Peak

Note 1: For FCC testing above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz can not exceed the average limit by more than 20 dB.

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Radiated Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/15/2020
Test Engineer: Rafael Varelas
Test Location: Fremont Chamber #7

Config. Used: 1
Config Change: None
EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if used) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 24.5 °C
Rel. Humidity: 46 %

Summary of Results

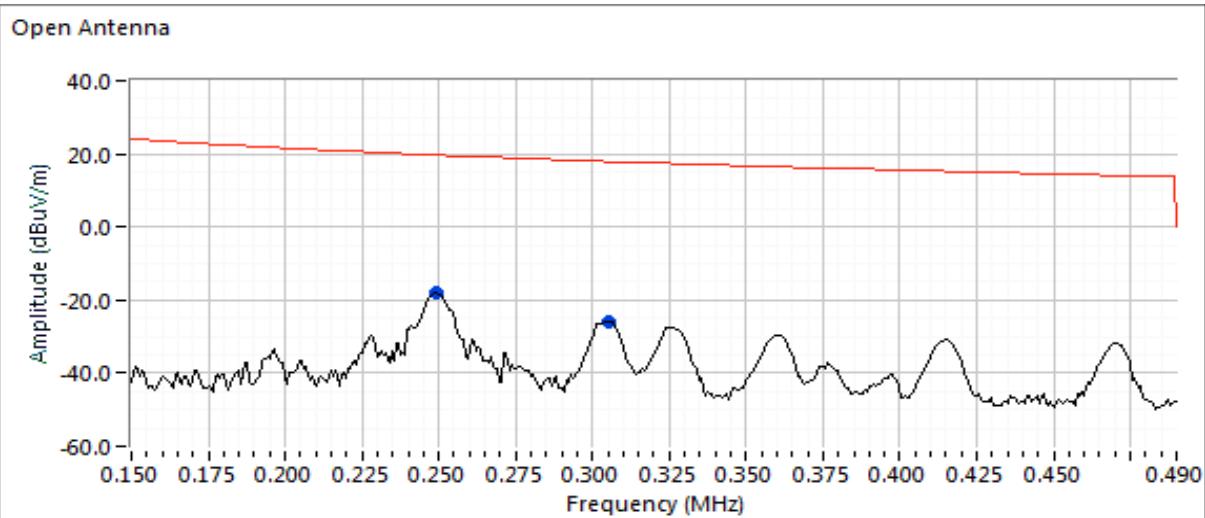
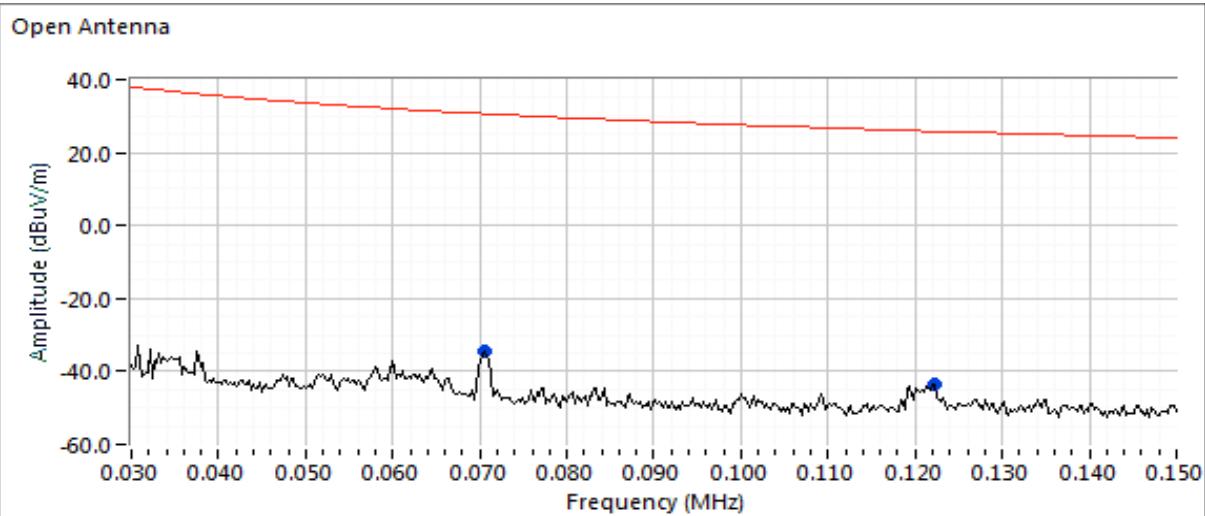
Run #	Test Performed	Limit	Result	Margin
1	30 kHz - 30 MHz	FCC 15.209	Pass	19.9 dB μ V/m @ 30.00 MHz (-9.6 dB)

Modifications Made During Testing

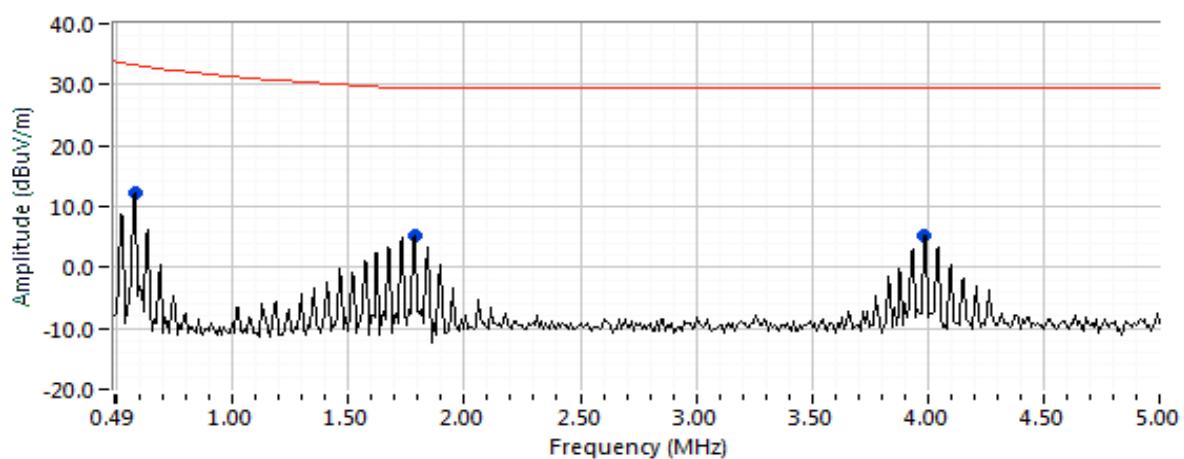
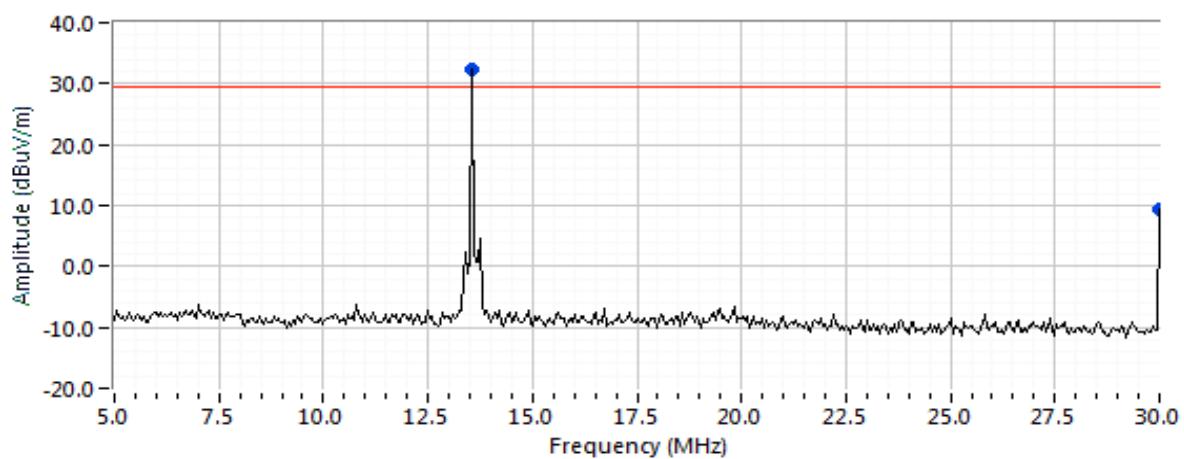
No modifications were made to the EUT during testing

Deviations From The Standard

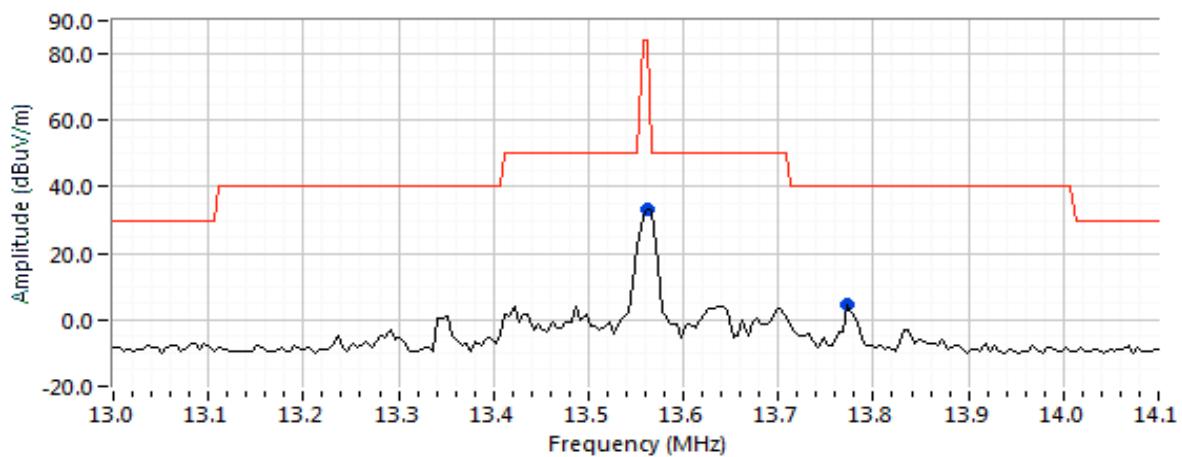
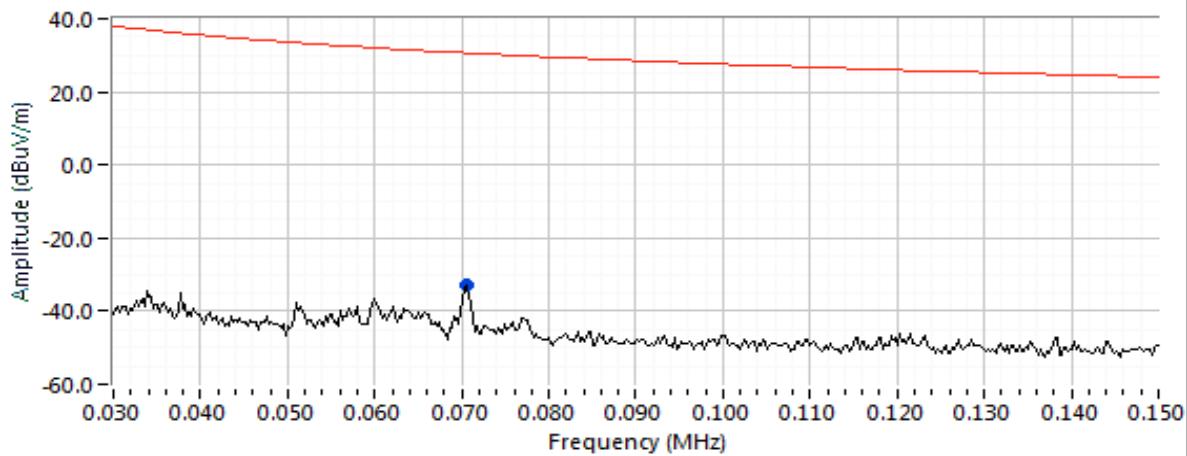
No deviations were made from the requirements of the standard.

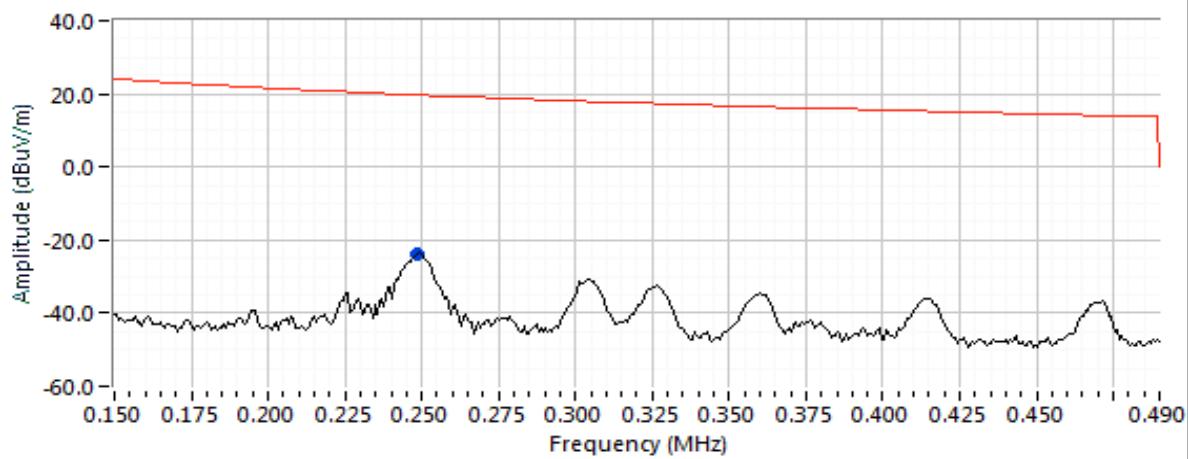
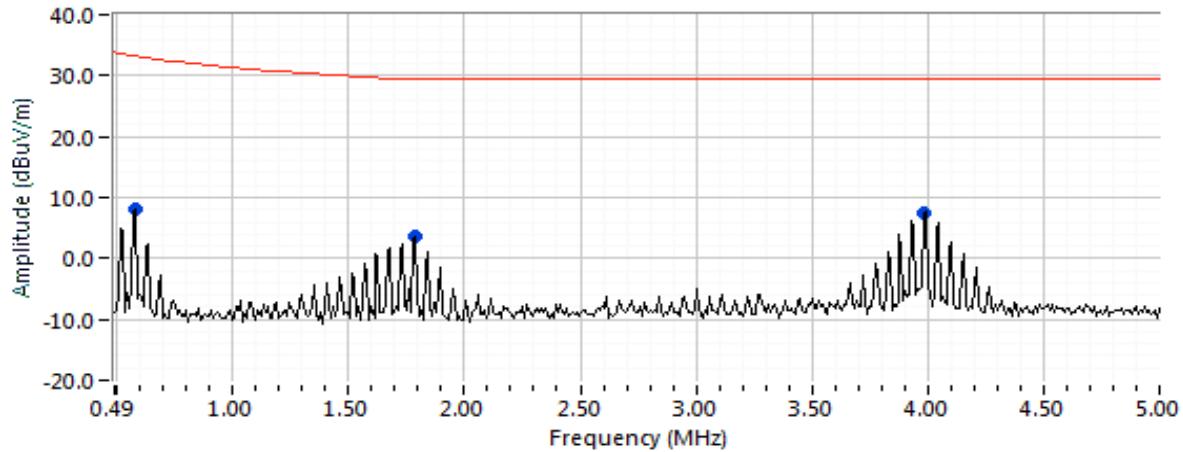


EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-



Run #1: Radiated Emissions, 30 kHz - 30 MHz, FCC 15.209

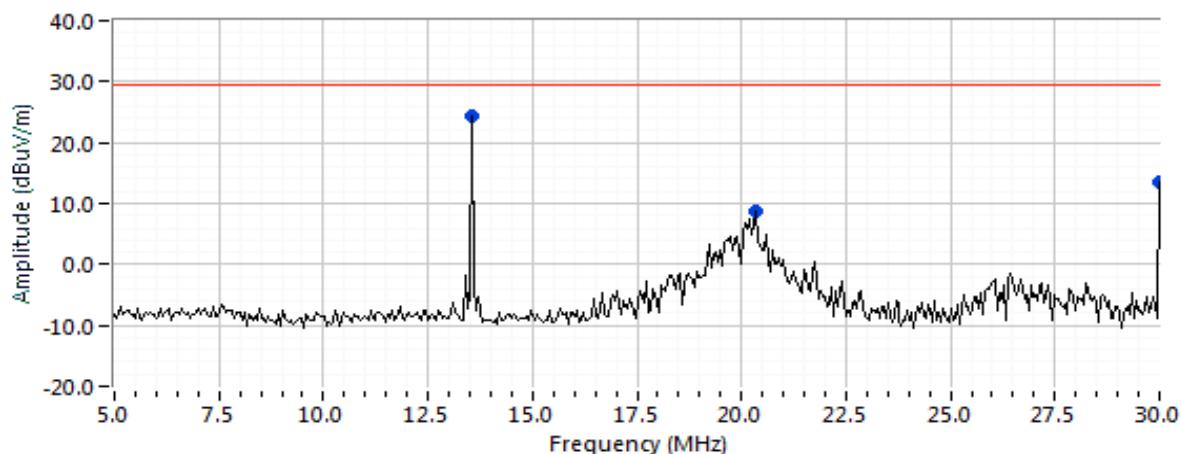
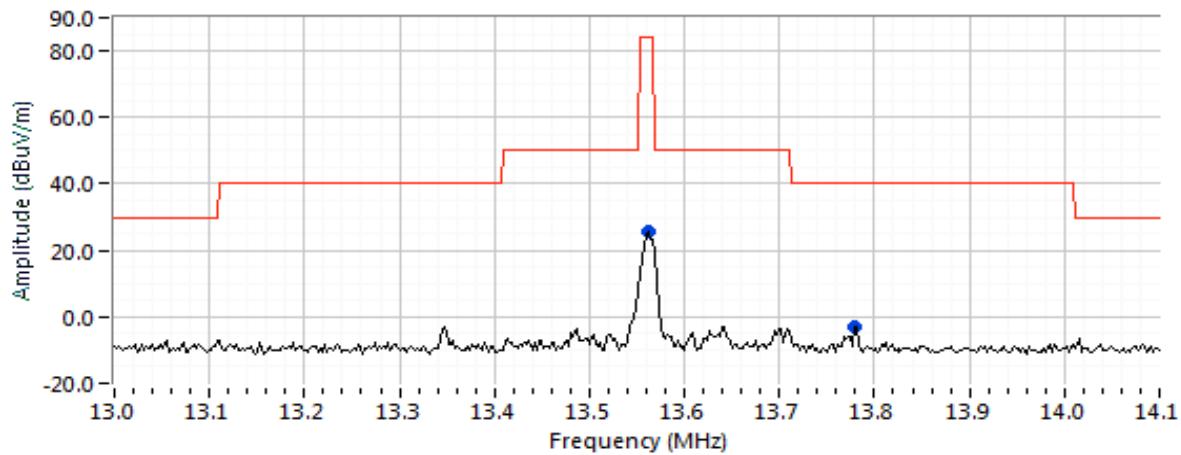
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
0.009 - 0.490 MHz	3	300	-80.0
0.490 - 1.705 MHz	3	30	-40.0
1.705 - 30.0 MHz	3	30	-40.0



Note - the extrapolation factor is based on $40\log(\text{test distance}/\text{limit distance})$ as permitted by FCC 15.31



Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

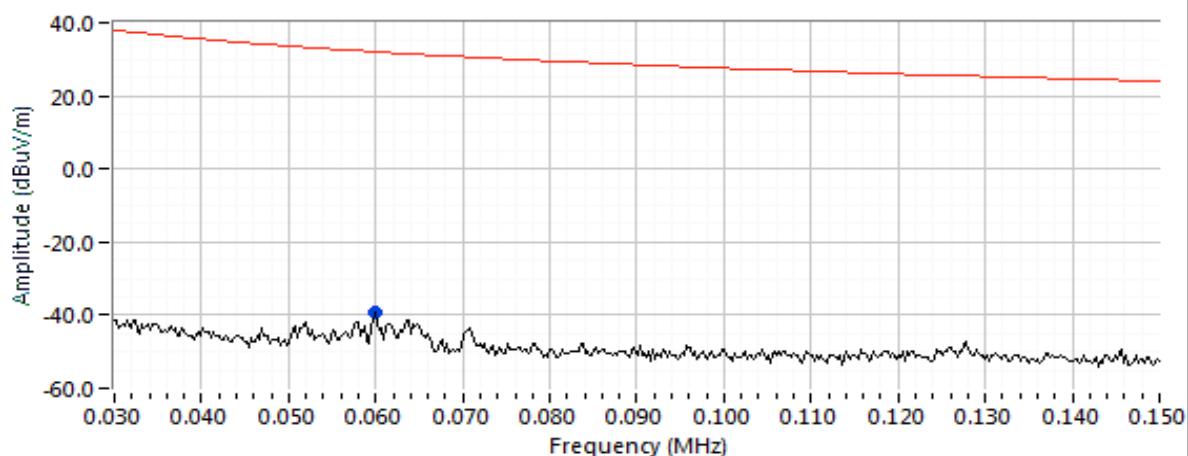
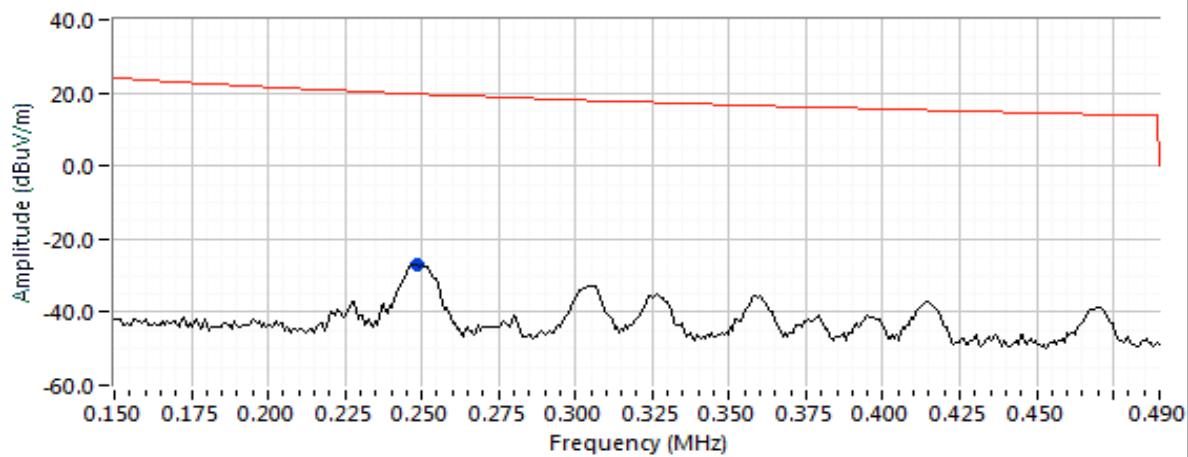
Open Antenna

Open Antenna



Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare
		Class:	-

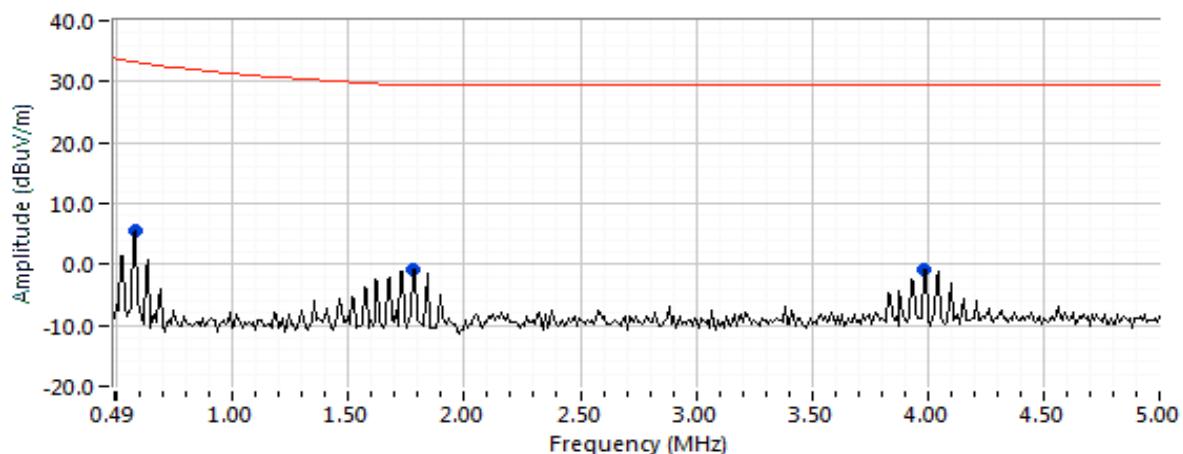
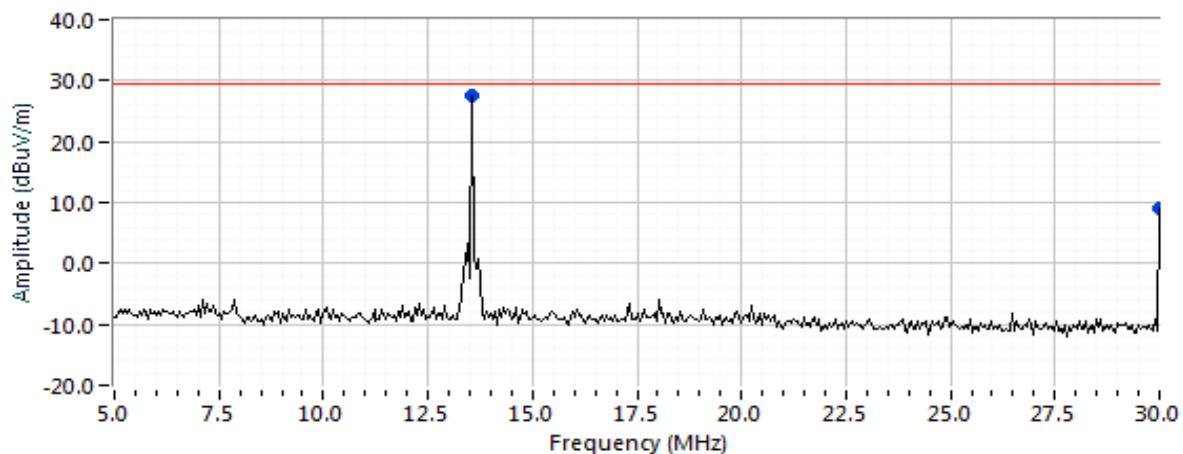
Open Antenna - Fundamental Mask

Closed Antenna



Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

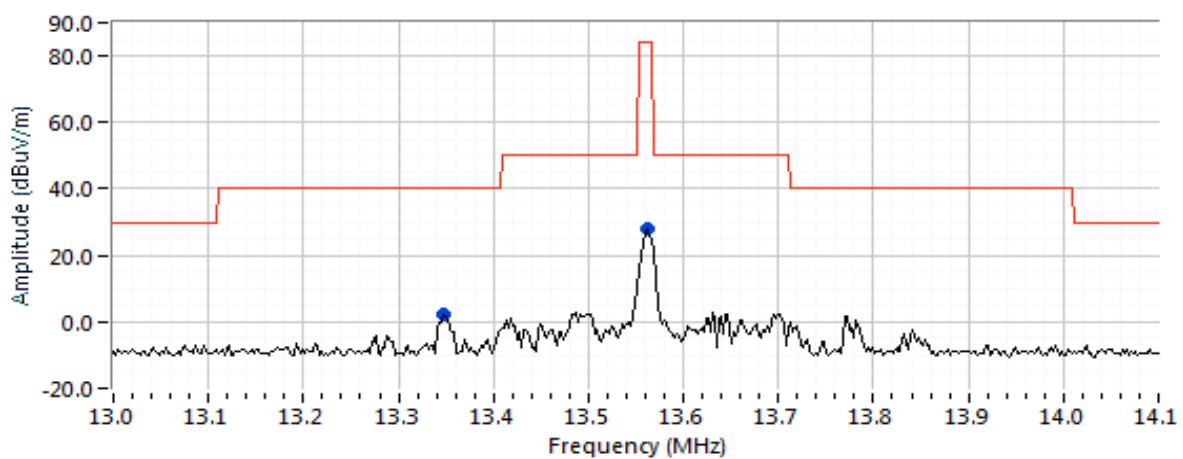
Closed Antenna

Closed Antenna



Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare
		Class:	-

Closed Antenna

Closed Antenna - Fundamental Mask


Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Perpendicular Antenna**Perpendicular Antenna**

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
		Project Manager:	Christine Krebill
Contact:	Dave Pedersen	Project Engineer:	David Bare
Standard:	FCC Part 15	Class:	-

Perpendicular Antenna

Perpendicular Antenna

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare

Perpendicular Antenna - Fundamental Mask

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare
		Class:	-

Preliminary readings

Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
0.071	-34.6	O	30.6	-65.2	Peak	287	1.3	
0.122	-43.6	O	25.8	-69.4	Peak	236	1.3	
0.248	-18.2	O	19.7	-37.9	Peak	290	1.3	
0.305	-25.7	O	17.9	-43.6	Peak	289	1.3	
0.578	12.2	O	33.2	-21.0	Peak	298	1.3	
1.789	5.3	O	29.5	-24.2	Peak	284	1.3	
3.989	5.1	O	29.5	-24.4	Peak	275	1.3	
13.560	32.4	O	84.0	-51.6	Peak	256	1.3	Fundamental
30.000	9.4	O	29.5	-20.1	Peak	256	1.3	
13.562	33.2	O	84.0	-50.8	Peak	80	1.3	Fundamental Mask
13.773	4.8	O	40.5	-35.7	Peak	270	1.3	Fundamental Mask
0.071	-32.9	C	30.6	-63.5	Peak	0	1.3	
0.249	-23.6	C	19.7	-43.3	Peak	232	1.3	
0.580	8.0	C	33.2	-25.2	Peak	349	1.3	
1.791	3.5	C	29.5	-26.0	Peak	340	1.3	
3.989	7.6	C	29.5	-21.9	Peak	210	1.3	
13.561	24.4	C	84.0	-59.6	Peak	188	1.3	Fundamental
20.305	8.6	C	29.5	-20.9	Peak	227	1.3	
30.000	13.5	C	29.5	-16.0	Peak	324	1.3	
13.562	25.9	C	84.0	-58.1	Peak	44	1.3	Fundamental Mask
13.778	-2.9	C	40.5	-43.4	Peak	222	1.3	Fundamental Mask
0.060	-39.3	P	32.0	-71.3	Peak	62	1.3	
0.249	-26.8	P	19.7	-46.5	Peak	271	1.3	
0.580	5.6	P	33.2	-27.6	Peak	298	1.3	
1.782	-0.7	P	29.5	-30.2	Peak	289	1.3	
3.988	-0.7	P	29.5	-30.2	Peak	289	1.3	
13.567	27.6	P	84.0	-56.4	Peak	65	1.3	Fundamental
30.000	9.0	P	29.5	-20.5	Peak	230	1.3	
13.562	28.1	P	84.0	-55.9	Peak	232	1.3	Fundamental Mask
13.348	2.3	P	40.5	-38.2	Peak	220	1.3	Fundamental Mask

Note 1: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, with a peak limit 20dB above the average limit.

Note 2: O = Open Antenna, C = Closed Antenna, P = Perpendicular Antenna Orientation

EMC Test Data

Client:	STraffic America,LLC	PR Number:	PR124988-00
Model:	Faregate	T-Log Number:	TL124988-00-RA
Contact:	Dave Pedersen	Project Manager:	Christine Krebill
Standard:	FCC Part 15	Project Engineer:	David Bare
		Class:	-

Maximized readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
30.000	19.9	C	29.5	-9.6	QP	324	1.3	QP (1.00s)
30.000	17.3	O	29.5	-12.2	QP	256	1.3	QP (1.00s)
0.578	13.1	O	33.2	-20.1	QP	298	1.3	QP (1.00s)
3.989	7.6	C	29.5	-21.9	QP	210	1.3	QP (1.00s)
0.248	-21.7	O	19.7	-41.4	AVG	290	1.3	AVG (0.10s)

Note 1: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, with a peak limit 20dB above the average limit.

Note 2: O = Open Antenna, C = Closed Antenna, P = Perpendicular Antenna Orientation

Appendix C Product Labeling Requirements

The following information has been provided to clarify notification, equipment labeling requirements and information that must be included in the operator's manual. These requirements may be found in the standards/regulations listed in the scope of this report.

Label Location

The required label(s) must be in a *conspicuous location* on the product, which is defined as any location readily visible to the user of the device without the use of tools.

Label Attachment

The label(s) must be *permanently attached* to the product, which is defined as attached such that it can normally be expected to remain fastened to the equipment during the equipment's expected useful life. A paper gum label will generally not meet this condition.

United States Class A Label

This device complies with Part 15 of FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

If the device is too small or for such use that it is not practicable to place the US label statement on it, the statement shall be placed in a prominent location in the instruction manual or pamphlet supplied in paper form with the product. If not it shall be placed on the container in which the device is marketed or on a paper insert or removable tag on the product.

For FCC, a unique identifier shall appear on the product label. The importer or manufacturer shall maintain adequate identification records to facilitate positive identification of each product sold.

For a product incorporating a Certified module, the label shall also include the text "Contains FCC ID:" followed by the FCC ID of the module(s).

Appendix D User Manual Regulatory Statements

Where special accessories, such as shielded cables, are required in order to meet the emission limits, appropriate instructions regarding the need to use such accessories must be contained on the first page of text concerned with the installation of the device in the operator's manual.

A requirement by FCC regulations, and recommended for all regulatory markets, is a cautionary statement to the end user that changes or modifications to the device not expressly approved by you, the manufacturer, could void their right to operate the equipment.

United States Class A Manual Statement

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Note: Additional information about corrective measures may also be provided to the user at the company's option.

The FCC has indicated that the radio interference statement be bound in the same manner as the operator's manual. Thus, a loose-leaf insert page in a bound or center-spine and stapled manual would not meet this condition.

Appendix E Basic and Reference Standards

Subpart B of Part 15 of FCC Rules for digital devices.

FCC Part 15 Subpart B references the use of ANSI C63.4–2014: “*Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz*” for the purposes of evaluating the radiated and conducted emissions from digital devices.

End of Report

This page is intentionally blank and
marks the last page of this test report.