

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

XMF-H User Guide

D50165-IM

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

Table of Contents
1 Revision History .. 3

2 Scope ... 4

3 Network Setting .. 5

4 Firmware Upgrade for XMF-H using Web UI .. 7

5 SDK usage to build new application for XMF-H .. 10

5.1 Setup SDK Prerequisite on host machine ... 10

5.2 Build and Execute New application on XMF-H ... 10

6 Supporting Features .. 13

6.1 Library to include in C/C++ Applications ... 13

6.1.1 OTDR Library Usage .. 13

6.1.2 OCM Library Usage ... 16

6.1.3 SFP Library Usage .. 18

6.1.4 OCC Library Usage ... 20

6.1.5 Battery Management Library Usage ... 21

6.1.6 LED Control Library Usage ... 22

6.1.7 Common Interface Library Usage ... 22

6.2 Logging .. 23

6.3 Serial Application .. 24

6.3.1 OTDR COMMANDS EXAMPLES .. 24

6.3.2 OCM COMMANDS EXAMPLES ... 25

6.4 XMF-H Web UI .. 27

6.5 Freescale KL02 Flasher Application ... 29

6.6 Remote Firmware Upgrade ... 30

7. FCC Interference Statement ... 32

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

1 Revision History

Revision Date Description

1.0 October 12th, 2020 Initial Release

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

2 Scope

The scope of this XMF-H document is to describe:

• Procedure to configure network setting

• Procedure to upgrade firmware images

• Procedure to use SDK usage to build new application

• Procedure to use supporting features

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

3 Network Setting

This unit is configured in AP mode when it’s arrived. User may set it to Station Mode to add it to their

network. This section describes the step to change the network setting to Station Mode.

1. Power up the unit and allow the boot to complete.

Note: It takes approximately 35 seconds to boot up.

2. Click on the wireless access point and choose “XMF-H_{MAC_Address}” to connect to its WIFI.

3. Open Chrome browser and enter http://192.168.100.1 to access to the GUI

Login: root

Password: password [Default: 8n"iUN5BiL+i]

4. User may choose to change its password by clicking the OpenWrt link.

• Log in with credential in Step #3.

• Click System tab then click Administration tab.

• Set new password and confirm new password.

http://192.168.100.1/

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

• Click “Save and Apply” at the lower right corner to save password.

• Click “xmf-h Web Panel”, upper right corner, to return to the main GUI window.

5. Click NETWORK SETTINGS tab.

6. Click Network tab.

7. Select Station Mode.

8. Choose the “Detected WIFI network” and enter the password (network password).

9. Click CONFIGURE & RESTART.

10. Unit will take approximately 1 minute to go into a configuration and reboot.

11. Click on the wireless access point and choose the network that the unit was added to.

12. Log in to the network router to obtain the IP address by cross referencing the unit’s MAC

address. It’s should be under Connected Device.

13. The unit is now joined in the network.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

4 Firmware Upgrade for XMF-H using Web UI

This section describes how to update the XMF-H firmware through Web UI.

Prerequisites:

• Extract Pre-built-image.zip which contains XMF-H firmware file.

1. lks7688.img

Procedure:

1. Access Web UI of XMF-H by entering http://ipaddress in chrome web browser.

2. Click “Network Settings” option on left side panel on Web page.

3. Enter Username (root) and Password, then press Sign In button.

Note: If entering Password for the first time, Password will be configured on Sign In.

4. In the Web UI page, click Upgrade Firmware button, as shown below.

http://ipaddress/

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

5. Click on “Choose the file” and select the firmware image file lks7688.img.

6. Click “Upgrade & Restart” button, as shown below.

7. The firmware uploads to XMF-H. The WiFi LED will start blinking fast. Do not press the PWR

button or reset the board. Please make sure the board stays connected to its power source until

the firmware update is complete. A message confirms that the firmware is updated, click OK.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

8. After approximately 3 minutes, the WiFi LED will light solid to indicate that the firmware

update is completed. The device will automatically reboot.

9. After 30 seconds or more, the WiFi LED turns off. Now scan and connect to the WiFi AP, reload

the webpage, set a new password and sign in.

The new firmware version details will be displayed in the software information, as shown below.

10. You now have the latest firmware on your XMF-H board.

11. The unit is defaulted to AP mode. Follow the steps in Section 3 to change it to Station Mode.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

5 SDK usage to build new application for XMF-H

This section provides procedure to build new application for XMF-H using SDK. XMF-H_SDK provides

pre-compiled MIPS toolchain designed to cross compile packages.

After building the application, user needs to transfer built application or IPK file using SCP to XMF-H. This

transferred / installed applications will be retained over reboot.

Tasks you can do with the XMF-H_SDK:

• Compile additional applications, libraries for a specific release while ensuring feature

compatibility

• Compile newer versions of certain packages for a specific release

• Recompile existing packages with custom patches or different features

Follow procedure in below section to setup and compile packages using XMF-H_SDK.

5.1 SETUP SDK PREREQUISITE ON HOST MACHINE

Prerequisite:

• Linux machine (Ubuntu 16.04 LTS)

• Install following XMF-H_SDK prerequisite on Host Linux machine.

Linux_Prompt$ sudo apt install subversion g++ zlib1g-dev build-essential git python python3
Linux_Prompt$ sudo apt install libncurses5-dev gawk gettext unzip file libssl-dev wget
Linux_Prompt$ sudo apt install libelf-dev ecj fastjar java-propose-classpath

5.2 BUILD AND EXECUTE NEW APPLICATION ON XMF-H

These steps explain process to compile application on host machine using XMF-H_SDK.

1. Unzip XMF-H_SDK.zip. It contains APP and SDK directories.
APP directory contains sample applications.
SDK directory has XMF-H toolchain and necessary files from provided supports in rootfs.

2. Enter SDK directory and Extract the "SDK.tar.bz2" on Host Linux machine.
Linux_Prompt$ cd SDK
Banner file available at this location indicates Release version associated with this SDK.

Linux_Prompt$ tar -xvjf SDK.tar.bz2

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

3. Navigate to the directory "SDK".

Linux_Prompt$ cd SDK

4. To compile provided example application, Copy provided sample folders inside APP/package to
SDK package directory.

Linux_Prompt [SDK]$ cp -r ../../APP/package/* package/.

Note: SDK/package folder structure will look like:

 SDK/package

 +helloworld # Name of the package

 -Makefile # This Buildroot Makefile describes the package

 +src

 -Makefile # This GNU Makefile builds the binary

 -helloworld.c # C/C++ source code

If you create your own package for new application, create Buildroot makefile highlighted in
above directory structure by:

• Referring to Makefile for helloworld package here, or

• Following instructions in the link https://openwrt.org/docs/guide-developer/packages

5. To compile helloworld package, apply following command.
Linux_Prompt [SDK]$ make package/helloworld/compile

NOTE:

Prior to building the application again, clean the package using following command:

Linux_Prompt [SDK]$ make package/helloworld/clean

Build all applications or libraries selected using menuconfig using following command.

Linux_Prompt [SDK]$ make

Or

Linux_Prompt [SDK]$ make -j5

(You can compile faster by writing make -j5 for your build host)

6. Once it's built, navigate to “bin/ramips/packages/base” in SDK directory.
All the ipk files will be available at this location.
Linux_Prompt [SDK]$ cd bin/ramips/packages/base

Note:

Alternatively, if you DO NOT want to install individual package and just want the
executable binary, visit following location:
Linux_Prompt [SDK]$ cd staging_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/root-

https://openwrt.org/docs/guide-developer/packages

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

ramips/bin

7. Find a package file named helloworld_x.x.x-x_ramips_24kec.ipk

8. Transfer the helloworld_x.x.x-x_ramips_24kec.ipk file from the host Linux machine to the XMF-H
board using SCP.
Linux_Prompt [SDK/bin/ramips/packages/base]$ scp helloworld_x.x.x-x_ramips_24kec.ipk
root@ipaddress:

Execute following steps on XMF-H board.

9. In the system console of the XMF-H board, navigate to the location of the .ipk file and apply
command
root@xmf-h:~# opkg install helloworld_x.x.x-x_ramips_24kec.ipk

10. After the installation is complete, type helloworld and you'll see the output of binary on XMF-H
root@xmf-h:~# helloworld

11. Enter following command to remove any installed application / module.

root@xmf-h:~# opkg remove helloworld

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

6 Supporting Features

6.1 LIBRARY TO INCLUDE IN C/C++ APPLICATIONS

Interface libraries are created for OTDR, OCM, SFP, OCC operations with underlying UART / I2C

communications. If user needs to create any new C/C++ applications to communicate with these

instruments, mentioned libraries can be linked.

6.1.1 OTDR Library Usage

1. User needs to include the header file of the library into the application. For OTDR, It will be

<otdr_interface.h> file.

2. After including the header file user needs to initialize the library by calling the

OtdrInterfaceInit() function. API returns 0 on success and error code on failure.

 [Once Init is successful, multiple APIs can be called before deinit.]

3. Call the relevant API from following list in OTDR Interface Table to perform operation on OTDR

serial interface. This functions expects different arguments. otdr_interface.h describes all OTDR

functions operations, input & output parameters.

API returns 0 on success, -1 if OtdrInterfaceInit not performed / failed and relevant error code

on other failures.

4. De-initialize the library by calling the OtdrInterfaceDeInit(). API returns 0 on success and error

code on failure.

5. Link the library while compiling the application by “-lotdrinterface”.

OTDR Fast Scan Feature:

OTDR Emulator is developed in order to obtain fast response from OTDR. Limited commands are

supported currently, as mentioned in Table below. OTDR_EMU is initiated at init time.

Emulator can be started and stopped by following commands, in case required:

root@xmf-h:~# /etc/init.d/otdr_emu.sh start

root@xmf-h:~# /etc/init.d/otdr_emu.sh stop

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

OTDR Interface Table:

Sr
No.

Command API Remarks

Supported
for Fast

Scan
Feature?

1 Init - Custom API
int
OtdrInterfaceInit(T_OTDRCOMMMODE
mode);

T_OTDRCOMMMODE
Structure defined in
otdr_interface.h

Yes

2 DeInit - Custom API
int
OtdrInterfaceDeInit(T_OTDRCOMMMODE
mode);

T_OTDRCOMMMODE
Structure defined in
otdr_interface.h

Yes

3 ver int OtdrGetVer(T_VER *ver);
T_VER Structure defined
in otdr_interface.h

Yes

4 mt int OtdrGetMt(float *mt); Yes

5 otdr
int OtdrGetParameters(T_OTDRCONFIG
*params);

T_OTDRCONFIG
Structure defined in
otdr_interface.h

Yes

6 otdr pulse width x int OtdrSetPulseWidth(float pw); Yes

7
otdr measure time
x

int OtdrSetMeasureTime(float mtime); Yes

8 otdr window size x int OtdrSetWindowSize(float ws); Yes

9
otdr window offset
x

int OtdrSetWindowOffset(float wo); Yes

10 otdr span length x int OtdrSetSpanLength(float sl); Yes

11 otdr resolution x int OtdrSetResolution(float res); Yes

12
otdr event loss
thresold x

int OtdrSetEventLossThreshold(float thr); Yes

13 pd int OtdrGetPd(float pd[]); No

14 alrm int OtdrGetALRM(T_ALRM *alrm);
T_ALRM Structure
defined in
otdr_interface.h

No

15 otdr run int OtdrRun(void) Yes

16 otdr status int OtdrStatus(T_OTDRSTATUS *status);
T_OTDRSTATUS
Structure defined in
otdr_interface.h

Yes

17 otdr dump trace
int OtdrDumpTrace(T_DUMPTRACE
*dumpTrace);

T_DUMPTRACE
Structure defined in
otdr_interface.h

Yes

18 otdr dump event
int OtdrDumpEvent(T_DUMPEVENT
dumpEvent, int *event_length)

T_DUMPEVENT
Structure defined in
otdr_interface.h

Yes

19 otdr stop int OtdrStop(void) Yes

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

20 VER HW int OtdrGetHwVer(T_HWVER *verHw)
T_HWVER Structure
defined in
otdr_interface.h

No

21 ALRM x HYS y
int
OtdrSetAlrmHysteresis(T_OTDRALARMS
alarm, int hysteresis);

T_OTDRALARMS
Structure defined in
otdr_interface.h

No

22 ALRM x CLR
int OtdrClearAlarmLatch(T_OTDRALARMS
alarm);

T_OTDRALARMS
Structure defined in
otdr_interface.h

No

23 AST int OtdrGetAst(T_AST *ast)
T_AST Structure defined
in otdr_interface.h

No

24 ASTM N int OtdrSetAstmNormal(void) No

25 ASTM S int OtdrSetAstmSticky(void) No

26 ASTM int OtdrGetAstm(int *mode) No

27 RST int OtdrFactoryReset(void); No

28 BOOT int OtdrReboot(void) No

29 RTC int OtdrGetRtc(char *time, char *date); No

30 SUPPLY int OtdrGetSupply(T_SUPPLY *supply);
T_SUPPLY Structure
defined in
otdr_interface.h

No

31
OTDR
EVENT_REFL_THR x

int OtdrSetEventReflectionThreshold(float
thr);

 Yes

32 OTDR ANALYZE int OtdrAnalyze(void) Yes

33 ALRM x THR y
int
OtdrSetAlrmThreshold(T_OTDRALARMS
alarm, int threshold);

T_OTDRALARMS
Structure defined in
otdr_interface.h

No

34 RTC x y int OtdrSetRtc(char *time, char *date); No

35 otdr dump ltrace
int OtdrDumpTraceLinear(T_DUMPTRACE
*dumpTrace);

T_DUMPTRACE
Structure defined in
otdr_interface.h

Yes

36 otdr result int OtdrResult(T_OTDRRESULT *result)
T_OTDRRESULT
Structure defined in
otdr_interface.h

Yes

37 ver full int OtdrGetVerFull(T_VER_FULL *ver_full)
T_VER_FULL Structure
defined in
otdr_interface.h

No

38
OTDR Power
Operation

int OTDRPower(E_OTDRPOWERSWITCH
i_e_switch)

Structure defined in
otdr_interface.h.
typedef enum
{ OTDR_OFF = 0,
 OTDR_ON
}E_OTDRPOWERSWITCH;

Yes

39
Get OTDR Power
Status

int getOTDRStatus()
Possible values:
OTDR_DEVICE_ON,

Yes

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

OTDR_DEVICE_OFF,
OTDR_POWERING_UP,
OTDR_POWERING_OFF

If there is issue with
Device on XMFH, OFF to
ON transition will
indicate status sequence
as:
OTDR_DEVICE_OFF >
OTDR_POWERING_UP >
Post 6-7 Sec timeout >
OTDR_DEVICE_OFF

6.1.2 OCM Library Usage

1. User needs to include the header file of the library into the application. For OCM, It will be

<ocm_interface.h> file.

2. After including the header file user needs to initialize the library by calling the

OcmInterfaceInit() function. API returns 0 on success and error code on failure.

 [Once Init is successful, multiple APIs can be called before deinit.]

3. Call the relevant API from following list in OCM Interface Table to perform operation on OCM

serial interface. This functions expects different arguments. ocm_interface.h describes all OCM

functions operations, input & output parameters.

API returns 0 on success, -1 if OcmInterfaceInit not performed / failed and relevant error code

on other failures.

4. De-initialize the library by calling the OcmInterfaceDeInit(). API returns 0 on success and error

code on failure.

5. Link the library while compiling the application by “-locminterface”.

OCM Interface Table:

Sr
No.

Command API Remarks

1 Init - Custom API int OcmInterfaceInit(void)

2
DeInit - Custom
API

int OcmInterfaceDeInit(void)

3 DREV int OcmGetDREV(char *revision)

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

4 CSSP
int OcmGetCSSP(uint32_t *channalPlan,
float *startingFreq)

T_CSSP Structure defined in
ocm_interface.h

5 CSSPx
int OcmSetCSSP(uint32_t *channalPlan,
float *startingFreq)

6 CBDI int OcmGetCBDI(T_CBDI *cbdi)
T_CBDI Structure defined in
ocm_interface.h

7 CGTP1B
int OcmGetCGTP1B(T_INTEGRATE
integration, T_CGTP1B *cgtp1b)

T_CGTP1 Structure defined in
ocm_interface.h

8 FWVR int OcmGetFWVR(char *fwvr)

9 HWVR int OcmGetHWVR(char *hwvr)

10 SNUM
int OcmGetSNUM(char *idCode, char
*manufactureDate, int *buildNumber)

11 CENB1
int OcmDoCENB1(T_TOFSCAN_MODE
scanMode, uint32_t *scanSetting)

T_TOFSCAN_MODE Structure
defined in ocm_interface.h

12 CSTS0 int OcmGetCSTS0(u_int32_t *ctmStatus)

13 CSTA0 int OcmGetCSTA0(T_CSTA0 *csta1)
T_CSTA0 Structure defined in
ocm_interface.h

14 CTPR1 int OcmGetCTPR1(float *totPower)

15 CGSP1

int OcmGetCGSP1(T_SLICE_WIDTH
sliceWidth, T_SPECTRUM_FORMAT
spectrumFormat, T_EDGE_BINS edgeBins,
T_CGSP1 *cgsp1)

T_SLICE_WIDTH,
T_SPECTRUM_FORMAT,
T_EDGE_BINS & T_CGSP1
Structures defined in
ocm_interface.h

16 CFCR int OcmGetCFCR(T_CFCR *cfcr)
T_CFCR Structure defined in
ocm_interface.h

17 CDDFB int OcmGetCDDFB(T_CDDFB *cddfb)
T_CDDFB Structure defined in
ocm_interface.h

18 CGET1
int OcmGetCGET1(T_INTEGRATE
integration, T_CGET1 *cget1)

T_INTEGRATE & T_CGET1
Structure defined in
ocm_interface.h

19 CRST int OcmGetCRST(void)

20 CDMO
int OcmSetCDMO(bool
enableDemoMode)

21 GNHI1/GNLO1 int OcmSetGain(bool highGain)

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

22 CMPP1
int OcmSetCMPP1(float
minimumPeakPower)

23 CSIL1 int OcmSetCSIL1(float inserttionLoss)

24 CSPT1
int OcmSetCSPT1(float
peakDetectThreshold)

25
OCM Power
Operation

int OCMPower(E_POWERSWITCH
i_e_switch)

E_POWERSWITCH Structure
defined in ocm_interface.h

26
Get OCM Power
Status

int getOCMStatus(void)

Possible values:
OCM_DEVICE_ON,
OCM_DEVICE_OFF,
OCM_DEVICE_POWERING_UP,
OCM_DEVICE_POWERING_OFF

6.1.3 SFP Library Usage

1. User needs to include the header file of the library into the application. For SFP, It will be

<sfp_interface.h> file.

2. After including the header file user needs to initialize the library by calling the SFPInterfaceInit()

function. API returns 0 on success and error code on failure.

 [Once Init is successful, multiple APIs can be called before deinit.]

3. Call the relevant API from following list in SFP Interface Table to perform operation on SFP I2C

interface. This functions expects different arguments. sfp_interface.h describes all SFP functions

operations, input & output parameters.

API returns 0 on success, -1 if SFPInterfaceInit not performed / failed and relevant error code on

other failures.

4. De-initialize the library by calling the SFPInterfaceDeInit(). API returns 0 on success and error

code on failure.

5. Link the library while compiling the application by “-li2cinterface”.

SFP Interface Table:

Sr
No.

Command API Remarks

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

1 Init - Custom API
int SFPInterfaceInit(void)

2
DeInit - Custom
API

int SFPInterfaceDeInit(void)

3 Read Byte

int SFPReadByte(uint8_t
i_ui8_deviceAddress, uint8_t
i_ui8_registerAddress, uint8_t*
o_ui8_data)

4 Read Word

int SFPReadWord(uint8_t
i_ui8_deviceAddress, uint8_t
i_ui8_registerAddress, uint16_t*
o_ui16_data)

5 Write Byte
int SFPWriteByte(uint8_t
i_ui8_deviceAddress, uint8_t
i_ui8_registerAddress, uint8_t i_ui8_data)

6 Write Word

int SFPWriteWord(uint8_t
i_ui8_deviceAddress, uint8_t
i_ui8_registerAddress, uint16_t
i_ui16_data)

7 Page Read

int SFPPageRead(uint8_t
i_ui8_deviceAddress, uint8_t
i_ui8_registerAddress, uint16_t i_ui16_n,
uint8_t *o_ui8_data)

SFPPageRead API performs
read operation for maximum
63 Bytes chunk due to MRAA
library limitation.

8 Page Write

int SFPPageWrite(uint8_t
i_ui8_deviceAddress, uint8_t
i_ui8_registerAddress, uint16_t i_ui16_n,
const uint8_t* i_ui8_data)

SFPPageWrite API performs
write operation for maximum
8 Bytes chunk.

9 Read MOD ABS int SFPReadModABS(bool *o_b_mode)

10 Read Tx Fault int SFPReadTxFault(bool *o_b_fault)

11 Read LOS int SFPReadLOS(bool *o_b_los)

12 Read Tx Disable
int SFPReadTxDisable(bool
*o_b_tx_disable)

13
Set Tx Disable
value

int SFPSetTxDisable(bool i_b_status)

Pass 1 to set TxDisable thus
disable Tx laser; pass 0 to
clear TxDisable thus enable
Tx laser.

14
SFP Power
Operation

int SFPPower(E_SFPPOWERSWITCH
i_e_switch)

15
Get SFP Power
Status

int getSFPStatus(void)

Possible values:
SFP_DEVICE_ON,
SFP_DEVICE_OFF,
SFP_DEVICE_POWERING_UP,
SFP_DEVICE_POWERING_OFF

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

If there is issue with Device
on XMFH, OFF to ON
transition will indicate status
sequence as:
SFP_DEVICE_OFF >
SFP_DEVICE_POWERING_UP
> Post 3-4 Sec timeout >
SFP_DEVICE_OFF

6.1.4 OCC Library Usage

1. User needs to include the header file of the library into the application. For OCC, It will be

<occ_interface.h> file.

2. After including the header file user needs to initialize the library by calling the OCCInterfaceInit()

function. API returns 0 on success and error code on failure.

 [Once Init is successful, multiple APIs can be called before deinit.]

3. Call the relevant API from following list in OCC Interface Table to perform operation on OCC I2C

interface. This functions expects different arguments. occ_interface.h describes all OCC

functions operations, input & output parameters.

API returns 0 on success, -1 if OCCInterfaceInit not performed / failed and relevant error code

on other failures.

4. De-initialize the library by calling the OCCInterfaceDeInit(). API returns 0 on success and error

code on failure.

5. Link the library while compiling the application by “-li2cinterface”.

OCC Interface Table:

Sr
No.

Command API Remarks

1 Init - Custom API
int OCCInterfaceInit(void)

2
DeInit - Custom
API

int OCCInterfaceDeInit(void)

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

3 Read Power
int OCCReadPWR(int i_i_pdNum, float
*o_f_pwrVal)

typedef enum {
PD_1577=0, PD_1550,
PD_1270, PD_4, PD_NONE
} E_PDNUM;

XMF-H EEPROM should be
flashed with OCC
calibration values. If it is
not, API will provide
uncalibrated Power value
and return value will
indicate Error.

6.1.5 Battery Management Library Usage

1. User needs to include the header file <battery_management.h> of the library into the

application source code.

2. User needs to initialize the library by calling the BatteryManagementInit() function.

[Once Init is successful, multiple APIs can be called before deinit.]

3. Call the relevant API from following list in Battery management Interface Table to perform

operation on Power management I2C interface.

4. De-initialize the library by calling the BatteryManagementDeInit().

5. Link the library while compiling the application by “-lbatterymanagement”.

Battery management Interface Table:

Sr
No.

Command API Remarks

1 Init - Custom API int BatteryAPIInit(void)

2 DeInit - Custom API int BatteryAPIDeInit(void)

3
Get Battery Charger
Temperature int GetBatteryChargerTemp(float *o_f_temp) Temperature in C

4 Get Battery Voltage int GetBatteryVoltage(float *o_f_voltage) Battery voltage in Volts

5 Get Battery Current int GetBatteryCurrent(float *o_f_current) Battery current in A

6
Get Battery Charge
Percentage

int GetBatteryChargePercentage(float
*o_f_chargePercentage)

Predicted remaining battery
capacity as a percentage of
FullChargeCapacity

7 Get Battery Charge Voltage
int GetBatteryChargerVoltage(float
*o_f_chargeVoltage) Charging voltage in Volts

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

6.1.6 LED Control Library Usage

1. User needs to include the header file <led_control.h> of the library into the application source

code.

2. User needs to initialize the library by calling the LEDInit() function.

[Once Init is successful, multiple APIs can be called before deinit.]

3. Call the relevant API from following list in LED Control Interface Table to perform operation on

LED I2C interface.

4. De-initialize the library by calling the LEDDeInit().

5. Link the library while compiling the application by “-lledinterface”.

LED Control Interface Table:

Sr
No.

Command API Remarks

1 Init - Custom API int LEDInit(void)

2 DeInit - Custom API void LEDDeInit(void)

3 Enable Controller int LEDEnableController(bool i_b_state)

4 LED Brightness

int LEDBrightness(E_LEDID i_e_ledId, uint8_t
i_ui8_colorRed, uint8_t i_ui8_colorGreen, uint8_t
i_ui8_colorBlue)

 typedef enum {
LED_ID_ALM=0x01,
LED_ID_WIFI=0x02,
LED_ID_PWR=0x04,
LED_ID_BAT=0x08,
LED_ID_ALL=0x0F }
E_LEDID;

Valid range for
brightness: 0-128

5 Reset Power Control Logic int ResetPowerContolLogic(void)

6.1.7 Common Interface Library Usage

1. User needs to include the header file of the library into the application. For Common interface,

It will be <common_i2c_operation.h> file.

2. Call the relevant API from following list in Common Interface Table to perform operation on I2C

interface. This functions expects different arguments. common_i2c_operation.h describes all

functions operations, input & output parameters.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

3. Link the library while compiling the application by “-li2cinterface”.

Common Interface Table:

Sr
No.

Command API Remarks

1

Get
Diagnostics
Data

int
GetDiagnosticsData
(T_DIAG *diag)

 typedef struct _diag
{ uint8_t conf_reg; // Configuration Register
 uint8_t mfg_id; // Manufacturing ID
 uint8_t rev_id; // Revision ID
 uint8_t conv_rate; // Conversion Rate
 uint8_t ch_disable_reg; // Channel Disable
 uint8_t status_reg; // Status Register
 float temp; // Temperature
 float channel[7]; // channels
} T_DIAG;

/* Diagnostics Parameters */
/* Channel array contains values as mentioned below:
 Channel[0]: TIA OUT
 Channel[1]: Ref Voltage
 Channel[2]: Current_PL
 Channel[3]: +3v3
 Channel[4]: VAdaptor
 Channel[5]: Pack_Load
 Channel[6]: +5VUSB
*/

6.2 LOGGING

Log files are generated at location “/var/log”. Instrument specific files are generated ex. OTDR.log,

OCM.log.

These log files maintain entries for Interface Library API calls and additional logged error points, useful

processed data from Instruments.

Roll over mechanism keeps latest 2 log files for each instrument with maximum 5 MB size for each file.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

6.3 SERIAL APPLICATION

Serial Application is intended to use for direct communication over serial interface without much

processing. It can help to automate communication using script by calling application along with

required arguments.

Serial application can be executed by “serialapp” command on XMF-H terminal prompt.

Sample commands and output are displayed below.

Command Format:- cmd-a == ASCII

Command Format:- cmd-x == HEX

Response Format:- resp-a == ASCII

Response Format:- resp-x == HEX

root@xmf-h:~# serialapp

USAGE : serialapp serial-port-no cmd-a/x resp-a/x command

Example:

serialapp 0 cmd-a resp-a otdr measure_time%0d%0a

serialapp 1 cmd-a resp-x CBDI%0d%0a

6.3.1 OTDR COMMANDS EXAMPLES

root@xmf-h:~# serialapp 0 cmd-a resp-a ver%0d%0a

ver

Configuration: IIVI_OTDR

Firmware Vers: IIVI_SUB_OTDR_0.5.41B

Serial Number:

root@xmf-h:~# serialapp 0 cmd-a resp-a echo%0d%0a

echo

ECHO: ON

root@xmf-h:~# serialapp 0 cmd-a resp-a echo on%0d%0a

echo on

root@xmf-h:~# serialapp 0 cmd-a resp-a otdr measure_time%0d%0a

otdr measure_time

OTDR MEASURE_TIME: 1.0 s

root@xmf-h:~# serialapp 0 cmd-a resp-a otdr run%0d%0a

otdr run

root@xmf-h:~# serialapp 0 cmd-a resp-a otdr status%0d%0a

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

otdr status

OTDR STATUS: IDLE

root@xmf-h:~# serialapp 0 cmd-a resp-a otdr dump trace%0d%0a

otdr dump trace

km,dB

0.0000,-17.50

0.0040,-17.50

0.0080,-17.33

0.0120,-17.10

0.0161,-17.59

0.0201,-40.00

0.0241,-23.23

…

…

...

34.9839,-40.00

34.9880,-40.00

34.9920,-40.00

34.9960,-40.00

root@xmf-h:~# serialapp 0 cmd-a resp-a otdr dump event%0d%0a

otdr dump event

type,x_km,loss_u_km,refl_u_km,loss_dB,refl_dB,attn_dB/km

3,0.0000,0.1406,0.0618,-3.73,-42.66,0.191

4,24.4855,NaN,0.0618,3.85,-53.99,0.191

6.3.2 OCM COMMANDS EXAMPLES

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-a DREV%0d%0a

Rev CTM1370 1.5.0, Compiled on Apr 03 2019 16:04:00 Release: 54 IMAGE CRC:36061

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-a SNUM%0d%0a

LB AGSC 20190716606

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-a FWVR%0d%0a

01.05

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-a HWVR%0d%0a

00.00

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-x CBDI%0d%0a

75 42 ca 01 52 4c d7 83 03 00 00 00 00 05 01 29 eb 67 0c 19 d8 09 36 18 06 00 00 00 34 33 44 43 34 73

3f 43 00 00 80 3f 2f 6e a3 3c 05 24 81 de 5b ed 3d 68 52 84 38 00 00 00 00 00 00 00 00 ff ff ff ff 49 49 2d

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

56 49 20 50 68 6f 74 6f 6e 69 63 73 20 20 20 20 20 4c 42 20 41 47 53 43 20 32 30 31 39 30 37 31 36 36

30 36 20 20 20 20 20 20 20 20 20 20 20 20 20 2c 0e

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-x CGTP1%0d%0a

0a 0a 00 00 00 00 10 03 00 00 00 00 00 00 00 00 00 00 00 00 35 cc 0e 37 ce b7 d5 34 34 33 44 43 a8 8d

d6 34 67 26 44 43 7b 87 d6 34 9a 19 44 43 f0 04 d6 34 cd 0c 44 43 15 e8 d5 34 01 00 44 43 20 50 d6 34

34 f3 43 43 2f 97 d5 34 67 e6 43 43 c9 87 d5 34 9a d9 43 43 12 cb d5 34 cd cc 43 43 28 fd d4 34 01 c0 43

43 a9 a5 d4 34 34 b3 43 43 38 78 d5 34 67 a6 43 43 74 53 d5 34 9a 99 43 43 50 bc d5 34 cd 8c 43 43 87

18 d6 34 01 80 43 43 8e dd d5 34 34 73 43 43 da b2 d5 34 67 66 43 43 6e 18 d6 34 9a 59 43 43 ed 3d 07

37 cd 4c 43 43 a1 d3 d5 34 01 40 43 43 02 30 d6 34 34 33 43 43 1e 49 d6 34 67 26 43 43 16 5d d5 34 9a

19 43 43 32 d3 d4 34 cd 0c 43 43 d4 34 01 00 43 43 ba 01 d4 34 34 f3 42 43 d8 4a d4 34 67 e6 42 43 d3

c8 d4 34 9a d9 42 43 76 86 d4 34 cd cc 42 43 03 5b d4 34 01 c0 42 43 87 d0 d4 34 34 b3 42 43 18 8e d4

34 67 a6 42 43 05 a8 d4 34 9a 99 42 43 60 15 d5 34 cd 8c 42 43 ec f4 d4 34 01 80 42 43 9c 71 d5 34 34

73 42 43 45 85 d6 34 67 66 42 43 da f5 d6 34 9a 59 42 43 a2 00 d7 34 cd 4c 42 43 d1 73 d8 34 01 40 42

43 2f 6f d9 34 34 33 42 43 12 9a d9 34 67 26 42 43 36 da da 34 9a 19 42 43 bf db 34 cd 0c 42 43 5f c8 db

34 01 00 42 43 d0 ed dc 34 34 f3 41 43 73 5f dd 34 67 e6 41 43 e8 af dc 34 9a d9 41 43 1b cf dc 34 cd cc

41 43 7d 56 dd 34 01 c0 41 43 c7 36 dc 34 34 b3 41 43 ef 95 db 34 67 a6 41 43 73 b9 db 34 9a 99 41 43

40 cf da 34 cd 8c 41 43 6a 28 da 34 01 80 41 43 5a 6d da 34 34 73 41 43 78 83 d9 34 67 66 41 43 94 ee

d8 34 9a 59 41 43 42 84 d9 34 cd 4c 41 43 68 cc d8 34 01 40 41 43 27 ec d7 34 34 33 41 43 3f ba d8 34

67 26 41 43 0a 2c d9 34 9a 19 41 43 88 ad d8 34 cd 0c 41 43 d0 90 d9 34 01 00 41 43 0c c2 d9 34 34 f3

40 43 9c 1c d9 34 67 e6 40 43 15 f6 d9 34 9a d9 40 43 38 74 d9 34 cd cc 40 43 e6 90 d8 34 01 c0 40 43 6d

6f d9 34 34 b3 40 43 64 26 d9 34 67 a6 40 43 52 d1 d7 34 9a 99 40 43 1d a8 d7 34 cd 8c 40 43 1b 5d d8

34 01 80 40 43 68 fb d7 34 34 73 40 43 9b 62 d8 34 67 66 40 43 f0 11 d9 34 9a 59 40 43 6a 68 d8 34 cd

4c 40 43 60 58 d9 34 01 40 40 43 e7 df d9 34 34 33 40 43 cd de d8 34 67 26 40 43 8f db d9 34 9a 19 40

43 47 4b da 34 cd 0c 40 43 8a 7e da 34 01 00 40 43 06 6f da 34 34 f3 3f 43 f2 ff d9 34 67 e6 3f 43 a7 7d

d9 34 9a d9 3f 43 97 2d d9 34 cd cc 3f 43 32 8c d9 34 01 c0 3f 43 84 34 d9 34 34 b3 3f 43 41 24 d9 34 67

a6 3f 43 28 02 da 34 9a 99 3f 43 48 9b d9 34 cd 8c 3f 43 c9 7d da 34 01 80 3f 43 f7 7d da 34 34 73 3f 43

ef e8 55 55

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-x CSSP%0d%0a

0a 0a 00 00 00 00 08 00 00 00 00 00 34 33 44 43 8d 46 55 55

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-x CSSP0%0d%0a

0a 0a 00 00 00 00 08 00 00 00 00 00 34 33 44 43 8d 46 55 55

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-x CSSP1%0d%0a

0a 0a 00 00 00 00 08 00 01 00 00 00 34 33 44 43 dc ec 55 55

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-x CSSP2%0d%0a

0a 0a 00 00 00 00 08 00 02 00 00 00 67 26 44 43 1e 94 55 55

root@xmf-h:/IoT/examples# serialapp 1 cmd-a resp-x CSTA1%0d%0a

0a 0a 00 00 00 00 08 00 00 b5 5a 42 00 00 00 00 b3 8c 55 55

root@xmf-h:/IoT/examples#

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

6.4 XMF-H WEB UI

This section provides steps to use Web UI for communication with instruments of XMF-H.

1. To open Web UI, open chrome browser. Then, enter URL http://IP-ADDRESS

• Ex: http://10.1.10.184 (if in Station mode) or

Ex: http://xmf-h.local or http://192.168.100.1 (if in AP mode)

Find out IP address from System information tab as shown in SECTION 3 or by issuing

“ifconfig” command on Serial interface console.

The Web UI appears as shown below:

2. Click on “Network Settings” from left side navigation menu to configure the network related

settings of your board as shown below

http://ip-address/
http://10.1.10.184/
http://xmf-h.local/
http://192.168.100.1/

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

• If you are accessing Web UI at very first time after firmware flash, set a password using

at least six alphanumeric characters and click SIGN IN.

• Enter the password again and click SIGN IN.

• You’re now signed into the board’s Web UI. You can move on to flash the latest

firmware (refer SECTION 4) or to configure network settings (refer SECTION 3).

3. Click on “COMMUNICATION” from left side navigation menu to issue command and get related

responses of your XMF-H board as shown below.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

• Select the OTDR from the instrument dropdown box. Then select (otdr_get_params,

ver, OTDR_ON, OTDR_OFF etc.) command from command dropdown box as shown

below:

o Click on Submit Button.

o You will now see response of selected command.

• Select the OSA from the instrument dropdown box. Then select any from (PWR_off,

CTM_reset, PWR_on etc.) command from command dropdown box.

o Click on Submit Button.

• Select the OCC from the instrument dropdown box. Then select (OCC) command from

command dropdown box and click on Submit Button.

• Select the SFP from the instrument dropdown box. Then select (SFP) command from

command dropdown box and click on Submit Button.

• Select the OTHER from the instrument dropdown box. Then select (ADC128D181)

command from command dropdown box and click on Submit Button.

6.5 FREESCALE KL02 FLASHER APPLICATION

Freescale KL02 is setup by init script on XMFH Boot time. In order to upgrade Freescale firmware, flasher

application is included. It halts the execution, erases the chip, writes new firmware and resets Freescale

KL02. Issue following command with firmware bin file name to upgrade.

root@xmf-h:~# kl02-flasherapp firmware.bin

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

6.6 REMOTE FIRMWARE UPGRADE

This section describes remote firmware upgrade procedure for XMF-H through Postman Chrome

extension.

Procedure:

1. Launch Postman Chrome Browser extension.

2. You can create a new request from the Postman launch screen, using New > Request, or by

clicking the + button to open a new tab.

3. When using the launch screen or New button, you can first give your request a name and

description, and choose / create a collection to save it in. Save to create your request. It will

open in a new tab.

4. Once your new tab is open, you can specify the details you need for your request.

5. Use the API http://IP-ADDRESS/cgi-bin/upload.php in the Postman endpoint bar.

6. Set method type to POST.

7. Then select Body -> form-data -> Enter parameter name (fileToUpload) and on the right side of

key column, there will be dropdown "text, file", select File. Choose your image file and post it.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

8. Once you have your request set up, click Send and examine the Response.

9. A file should be uploaded to /tmp/ to the board.

10. The firmware uploads to XMF-H. The WiFi LED will start blinking fast. Do not press the PWR

button or reset the board. Please make sure the board stays connected to its power source until

the firmware update is complete. After approximately 5 minutes, the firmware upgrade will be

completed. The device will automatically reboot.

II-VI Incorporated

375 Saxonburg Boulevard

Saxonburg, PA 16056

T. 724.352.4455 | F. 724.352.5284 | www.ii-vi.com

7. FCC Interference Statement

Federal Communications Commission (FCC) Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to

Part 15 of the FCC Rules.

These limits are designed to provide reasonable protection against harmful interference in a residential

installation. This equipment generate, uses and can radiate radio frequency energy and, if not installed and

used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment

does cause harmful interference to radio or television reception, which can be determined by turning the

equipment off and on, the user is encouraged to try to correct the interference by one of the following

measures:

⚫ Reorient or relocate the receiving antenna.
⚫ Increase the separation between the equipment and receiver.
⚫ Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
⚫ Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance

could void the user’s authority to operate this equipment.

The SAR limit adopted by USA and Canada is 1.6 watts/kilogram (W/kg) averaged over one gram of tissue. The

highest SAR value reported to the Federal Communications

Commission (FCC) and the Industry Canada (IC) for this device type when it is properly worn on the body is

0.09 W/kg.

RF exposure warning

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.

