

VT-RT6M

Bluetooth® Low Energy Mesh Module

Version 0.6BETA Preliminary Release

✓ INTRODUCTION

VT-RT6M is an ultra-low-power SoC module for Bluetooth® 5.0 low energy applications that combines the excellent performance of a leading RF transceiver with a low-power ARM® Cortex-M4F and rich powerful supporting features and peripherals. The VT-RT6M supports Bluetooth® mesh networking specification suited for large-scale device networks to support building automation, sensor networks, asset tracking and other solutions where multiple devices need to communicate reliably and securely.

✓ FEATURES

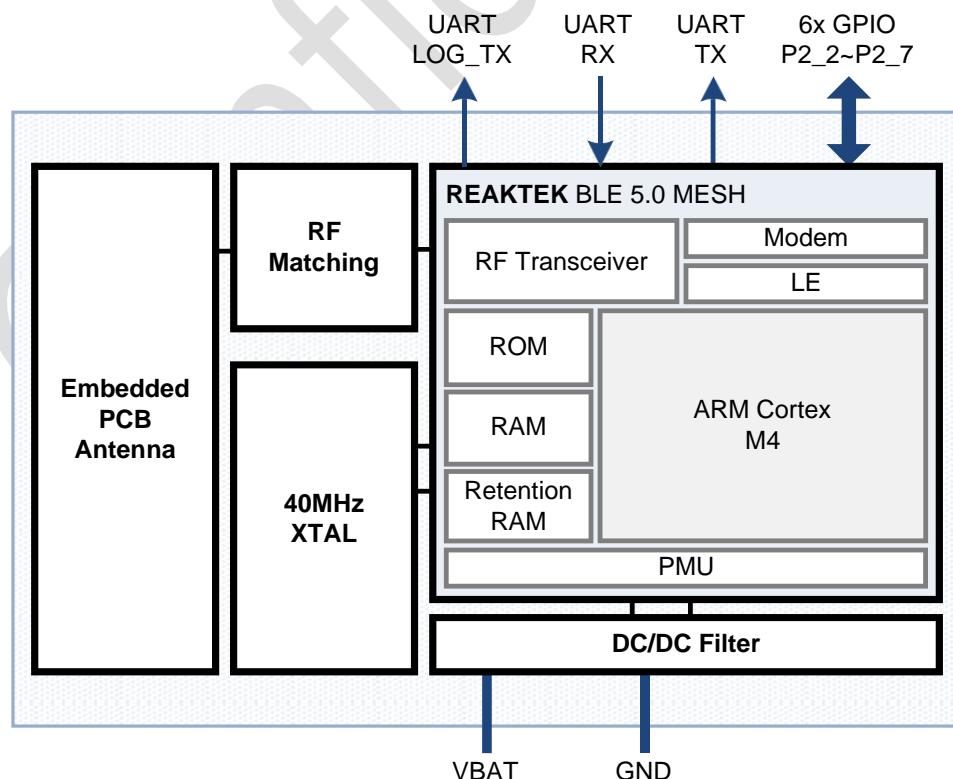
- ★ Bluetooth® Core Spec v5.0 compliant
- ★ Supports Bluetooth Mesh Networking Specification
- ★ Supports AES128/192/256 encryption/decryption
- ★ Supports OTA(Over-the-Air) for firmware upgrade
- ★ Battery Supply Voltage 1.8V to 3.6V
- ★ Operational Temperature -30°C to +85°C
- ★ Current Consumptions
 - Power Down Mode 450nA (Typ.)
 - Deep LPS (with 160K SRAM retention) Mode 2.5uA (Typ.)
 - TX Mode (+0dBm) 8.4mA (Typ.)
 - TX Mode (+4dBm) 10.4mA (Typ.)
 - TX Mode (+8dBm) 12.7mA (Typ.)
 - RX Mode 6.8mA (Typ.)
- ★ Radio Bluetooth® Qualification (End Product, QDID: TBD)
- ★ Meets Radio Certification FCC, RED, KCC and MIC Japan
- ★ Dimension 11.05mm(W) x 17.0mm(L) x 2.1mm(H)
- ★ Pb Free, RoHS Compliant

✓ REVISION HISTORY

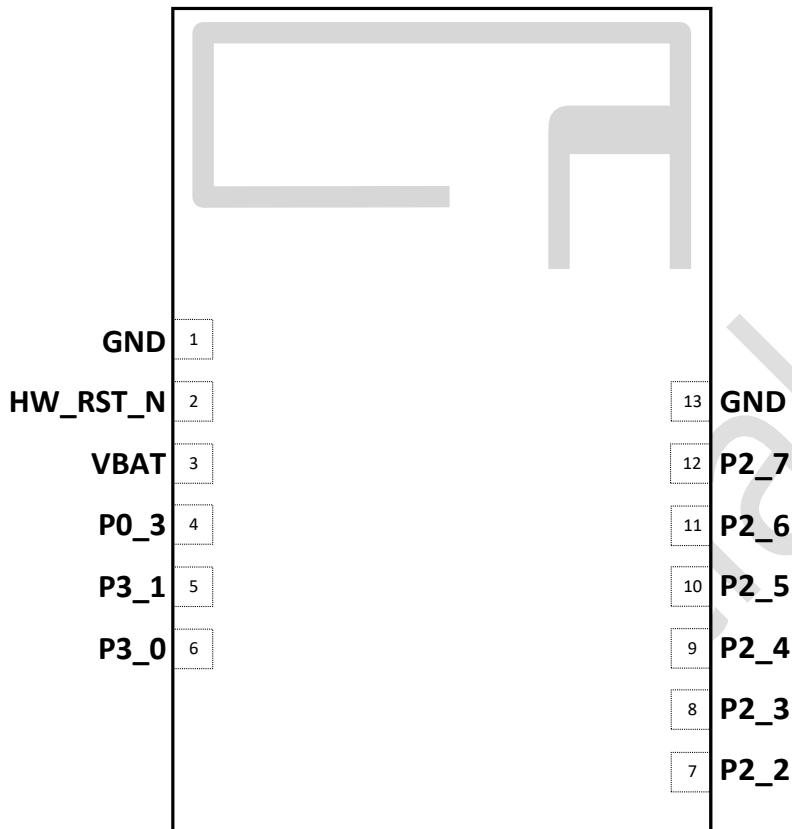
Version Code	Date	Descriptions
0.52 BETA	7-MAY-19	Preliminary release
0.53 BETA	6-JUN-19	Change module part no.; Update operational temperature range;
0.60 BETA	4-SEP-19	Add module block diagram; Add AT Command mode pin definitions; Add module interface descriptions; Add module electrical characteristics; Add PCB layout guide;

Notice:

The information described in this document is the exclusive intellectual property of Vital Tech.


Limited and shall not be reproduced without permission from Vital Tech.

Vital Tech assumes no responsibility for errors or omissions. All data and specifications are subject to change without notice.


✓ MODULE SPECIFICATIONS

Specification Name	Descriptions
Module Dimension	11.05mm(W) x 17mm(L) x 2.1mm(H)
BLE Core Compliant	V5.0 Mesh Networks
Operation Distance	Up to 50 Meters (*LE 1M, apple to apple testing results)
Power Supply	1.8V – 3.6V
Power Consumption	Power Down Mode 450nA
	Deep LPS 2.5uA
	TX mode (+0dBm) 8.4mA
	TX mode (+4dBm) 10.4mA
	TX mode (+8dBm) 12.7mA
	RX mode 6.8mA
Antenna Type	embedded PCB antenna
GPIO Numbers:	Up to 8x (including P3_0 and P3_1)
PWM Numbers:	Up to 6x (P2_2 to P2_7)
12bit ADC Numbers:	Up to 6x (P2_2 to P2_7)
Support interfaces	UART/4-wire SPI master/4-wire SPI slave

✓ BLOCK DIAGRAM

✓ PIN ASSIGNMENTS (TOPVIEW)

✓ PIN DEFINITIONS

➤ SoC Mode Condition:

Note: *I*INOUT (digital bidirectional), *A*NA(analog pin), *D*IG(digital pin).

#	Pin Name	I/O	Ana/Dig	Function
1	GND	-	GND	GND
2	HW_RST_N	IN	DIG	Hardware reset pin; low active;
3	VBAT	-	PWR	Power Supply, 1.8V to 3.6V;
4	P0_3	OUT	DIG	LOG_UART_TX (default)
5	P3_1	INOUT	DIG	HCI_UART_RX (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;
6	P3_0	INOUT	DIG	HCI_UART_TX (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;

7	P2_2	INOUT	ANA/DIG	AUXADC input 2 (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;
8	P2_3	INOUT	ANA/DIG	AUXADC input 3 (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;
9	P2_4	INOUT	ANA/DIG	AUXADC input 4 (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;
10	P2_5	INOUT	ANA/DIG	AUXADC input 5 (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;
11	P2_6	INOUT	ANA/DIG	AUXADC input 6 (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;
12	P2_7	INOUT	ANA/DIG	AUXADC input 7 (default) General purpose IO, 8mA driving capability; With wakeup function, internal strong/weak pull-up and pull-down;
13	GND	-	GND	GND

➤ UART AT Command Mode Condition:

Note: *ANA*(analog pin), *DIG*(digital pin).

#	Pin Name	I/O	Ana/Dig	Function
1	GND	-	GND	GND
2	HW_RST_N	IN	DIG	Hardware reset pin; low active;
3	VBAT	-	PWR	Power Supply, 1.8V to 3.6V;
4	P0_3	OUT	DIG	LOG_UART_TX (default) for debugging purposes; Keep floating for general usage;
5	P3_1	IN	DIG	UART_RX; With weakly pull-high;
6	P3_0	OUT	DIG	UART_TX;

7	P2_2	IN	ANA	NC, keep floating for general usage; With weakly pull-low;
8	P2_3	IN	ANA	NC, keep floating for general usage; With weakly pull-low;
9	P2_4	IN	ANA	NC, keep floating for general usage; With weakly pull-low;
10	P2_5	IN	DIG	LPM_EN ; Enable low power mode, high active; With weakly pull-low;
11	P2_6	OUT	DIG	GATT_STATE ; Indication pin for GATT connection state; Output high when connected; Output low when disconnected;
12	P2_7	OUT	DIG	SYS_READY ; indication pin for BLE stack ready; Output high when BLE stack ready; Output low when BLE stack not ready;
13	GND	-	GND	GND

✓ APPLICATION EXAMPLE

UART AT Command Mode:

✓ INTERFACE DESCRIPTIONS

★ UART

VT-RT6M provides multiple UART baud-rate. The common baud-rate is shown in below table. The UART clock error between two devices should be less than +/- 2.5%.

VT-RT6M UART Features:

- Supports 7/8 dataformat.
- 1/2 bit stopbit.
- Configurable parity bit:odd/even.
- Programmable baud rate (maximum baud rate=4Mbps).
- Support hardware flow control.
- RX line idle state detect.
- DMA supported.

Baud-rate (bps)	Error (%)	Baud-rate (bps)	Error (%)
1200	-0.23	460800	0.17
9600	< 0.01	500000	< 0.01
14400	< 0.01	921600	0.18
19200	< 0.01	1000000	< 0.01
28800	< 0.01	1382400	0.17
38400	< 0.01	1444400	-0.31
57600	< 0.01	1500000	< 0.01
76800	0.01	1843200	-0.35
115200	< 0.01	2000000	0.02
128000	0.02	2764800	0.14
153600	-0.1	3000000	0.06
230400	0.03	4000000	0.03

Table: UART Baud Rate

✓ ELECTRICAL CHARACTERISTICS

★ Temperature Limit Ratings

Parameter	Description	Note	Min.	Typ.	Max.	Unit
T _{STORE}	Storage temperature		-55		125	°C
T _{AOP}	Operational Temperature		-30		85	°C

★ Power Supply DC Characteristics

Parameter	Description	Note	Min.	Typ.	Max.	Unit
V _{BAT}	Supply Voltage		1.8	3	3.6	V

★ ESD Characteristics

Parameter	Description	Note	Min.	Typ.	Max.	Unit
ESD _{HBM}	ESD, human body mode	All pins, test method: JESD22			3500	V
ESD _{MM}	ESD, machine mode	All pins, test method: JESD22			200	V
ESD _{CDM}	ESD, charged device mode	All pins, test method: JESD22			500	V

★ 12bit-AUX ADC Characteristics

Parameter	Description	Note	Min.	Typ.	Max.	Unit
ADC _{BIT}	Resolution	Bypass mode		12		BITS
		Divided mode (1/3.3)		12		BITS
F _{CLK_ADC}	Clock Source	From digital			400	kHz
ADC _{DNL}	DNL	Single-ended mode (Bypass mode)		±1.5		LSB
		Differential mode (Bypass mode)		±3.0		LSB
ADC _{INL}	INL	Single-ended mode (Bypass mode)		±1.0		LSB
		Differential mode (Bypass mode)		±2.0		LSB
ADC _{VIN_RANGE}	Input Voltage Range	External channel (Divided Mode)	0		V _{BAT}	V
		External channel (Bypass Mode)	0		1	-
		Internal channel (V _{BAT})	1.8		3.63	V

ADC _{R_IN}	Input Impedance	Bypass mode		10M		Ohm
		Resistor divider mode (1/4)		500k		Ohm
ADC _{C_Sample}	Input Impedance	Bypass mode		1.9		pF
		Resistor divider mode (1/4)		1.9		pF

★ Radio Characteristics

General Radio Characteristics

Parameter	Description	Note	Min.	Typ.	Max.	Unit
F _{RANGE}	Frequency range		2402		2480	MHz

RX Performance

Condition: VBAT=3V, ambient temperature=25°C

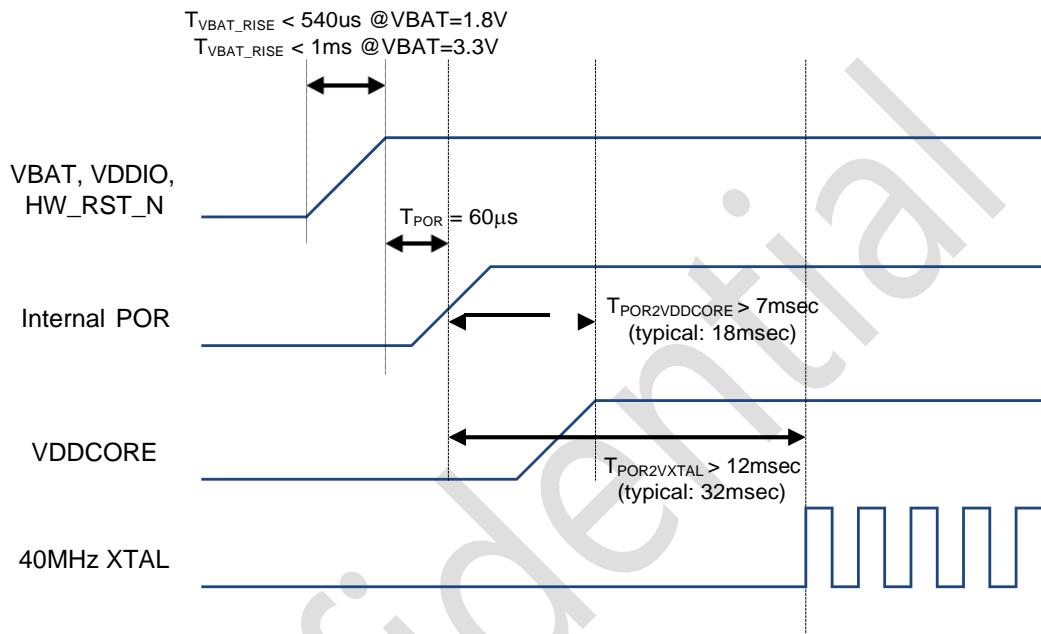
Parameter	Description	Note	Min.	Typ.	Max.	Unit
P _{RX_MIN}	Sensitivity (LE 1M)	PER ≤ 30.8%	-97			dBm
P _{RX_MAX}	Maximum received power	PER ≤ 30.8%		-1		dBm
C/I _{RX_1M}	C/I co-channel		21			dB
	C/I + 1MHz offset		15			dB
	C/I - 1MHz offset		15			dB
	C/I + 2MHz offset		-17			dB
	C/I - 2MHz offset		-15			dB
	C/I + 3MHz offset		-27			dB
	C/I image		-9			dB
	C/I image + 1MHz offset		-15			dB
	C/I image - 1MHz offset		-15			dB
P _{RX_OOB}	Blocker Power Wanted signal level= -67dBm	30MHz ~ 2000MHz	-30			dBm
		2003MHz ~ 2399MHz	-30			dBm
		2484MHz ~ 2997MHz	-30			dBm
		3000MHz ~ 12.75GHz	-30			dBm
PER _{MAX}	Max PER report integrity	Wanted signal= -30dBm		50%		-
P _{RX_IMD}	Max Intermodulation level	Wanted signal f(0) = -64dBm Worst intermodulation level @2f ₁ -f ₂ =f ₀ , f ₁ -f ₂ =n MHz, n=3,4,5...	-50			dBm

TX Performance

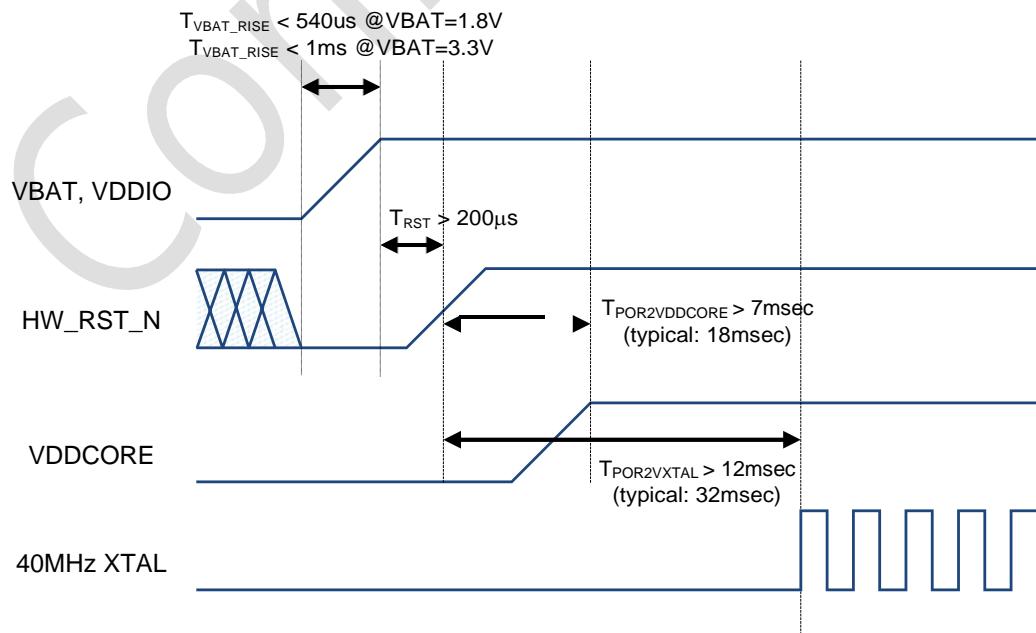
Condition: VBAT=3V, ambient temperature=25°C

Parameter	Description	Note	Min.	Typ.	Max.	Unit
P _{TX_MAX}	Maximum output power				8	dBm
P _{TX_ADJ}	Adjacent channel power ratio (LE 1M)	+2MHz			-20	dBm
		-2MHz			-20	dBm
		≥ +3MHz			-30	dBm
		≤ -3MHz			-30	dBm
F _{MOD}	Modulation Characteristics (LE 1M)	Δf1avg		250		kHz
		Δf2max	185			kHz
		Δf2max pass rate		100%		-
		Δf2avg / Δf1avg		0.88		-
F _{CAR_OFFSET}	Carrier frequency offset and drift (LE 1M)	Average Fn		12.5		kHz
		Drift rate		10		kHz/50μs
		Average drift		10		kHz/50μs
		Maximum drift		10		kHz/50μs
P _{TX_HD2}	2 nd harmonic power			-50		dBm
P _{TX_HD3}	3 rd harmonic power			-50		dBm

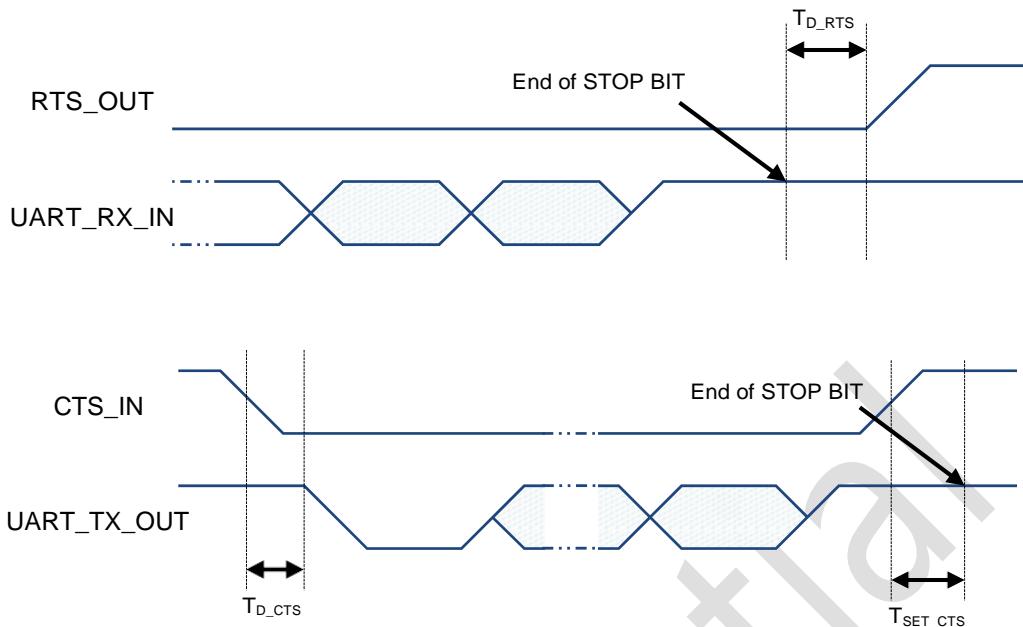
★ Digital I/O Pin DC Characteristics


Condition: ambient temperature=25°C

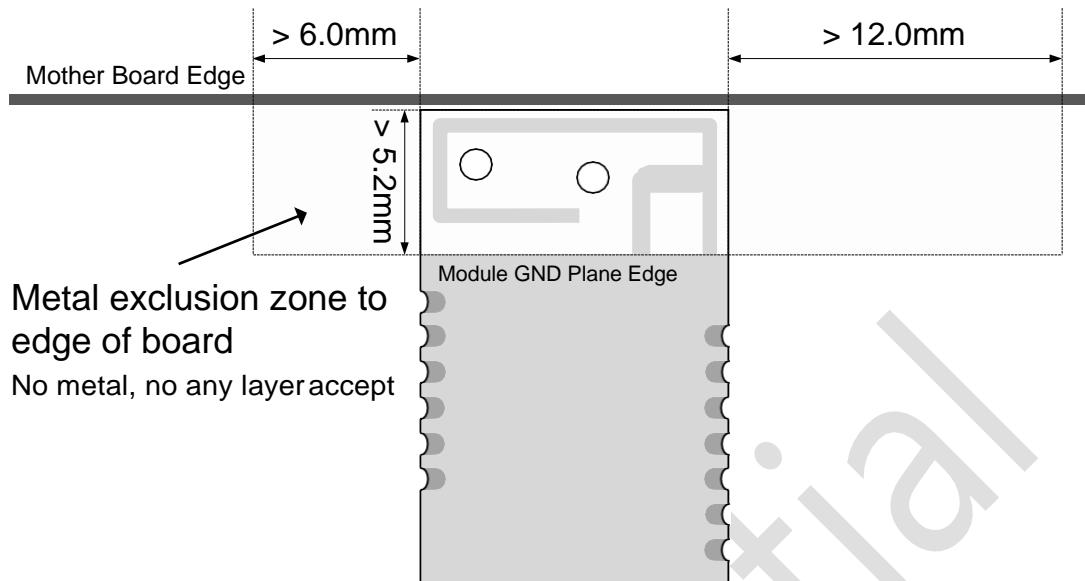
Parameter	Description	Note	Min.	Typ.	Max.	Unit
V _{IH33}	Input high voltage	VDDIO=3.3V	2	3.3	3.6	V
V _{IL33}	Input low voltage		0	0.9	0.9	V
V _{OH33}	Output high voltage		2.97		3.3	V
V _{OL33}	Output low voltage		0		0.33	V
V _{IH28}	Input high voltage	VDDIO=2.8V	1.8	2.8	3.1	V
V _{IL28}	Input low voltage		0	0.8	0.8	V
V _{OH28}	Output high voltage		2.5		2.5	V
V _{OL28}	Output low voltage		0		0.28	V
R _{pull}	Strong Pull	VDDIO=3.3V		10		kOhm
		VDDIO=1.8V		20		kOhm
	Weak Pull	VDDIO=3.3V		100		kOhm
		VDDIO=1.8V		200		kOhm
	Strong Pull (P2_2~P2_7)	VDDIO=3.3V		5		kOhm
		VDDIO=1.8V		2.5		kOhm


R_{pull}	Weak Pull (P2_2~P2_7)	VDDIO=3.3V		50		kOhm
		VDDIO=1.8V		25		kOhm
I_{IH}	Input high current	PAD configured as input mode		0.1		μA
				0.1		μA

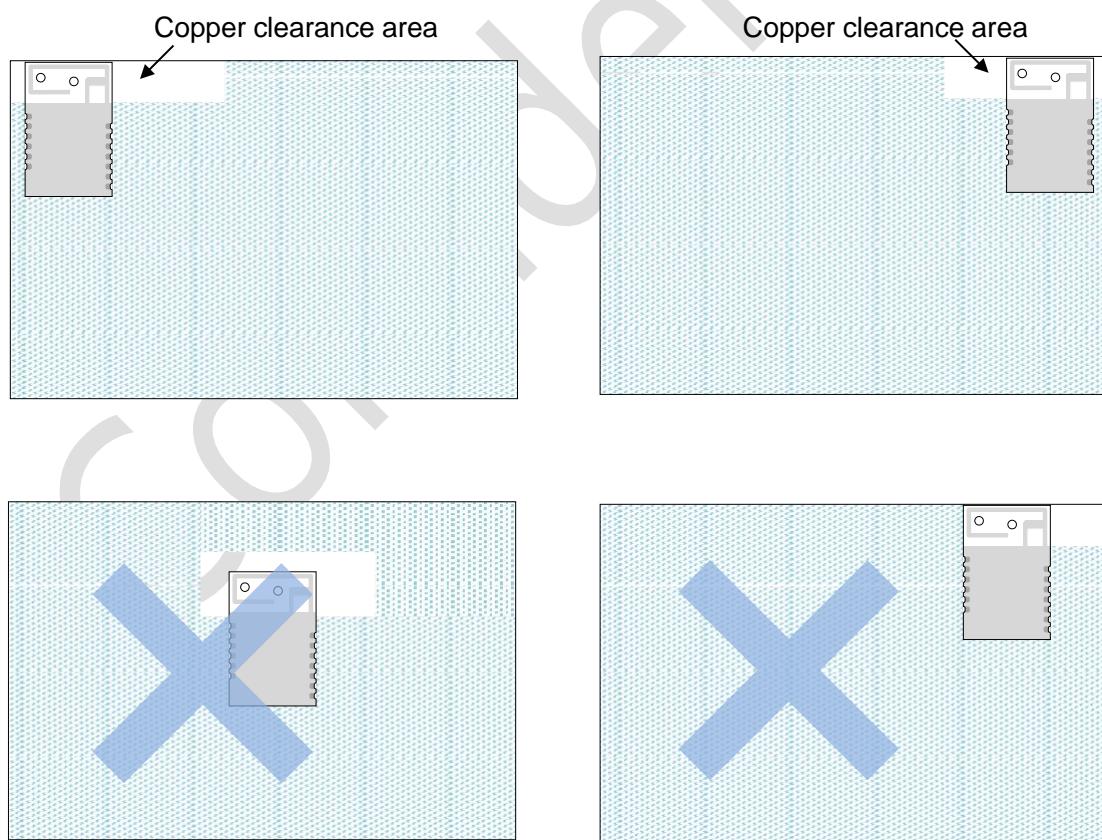
★ Boot Sequence


Boot up by internal power on reset circuit, power on timing is shown in below figure.

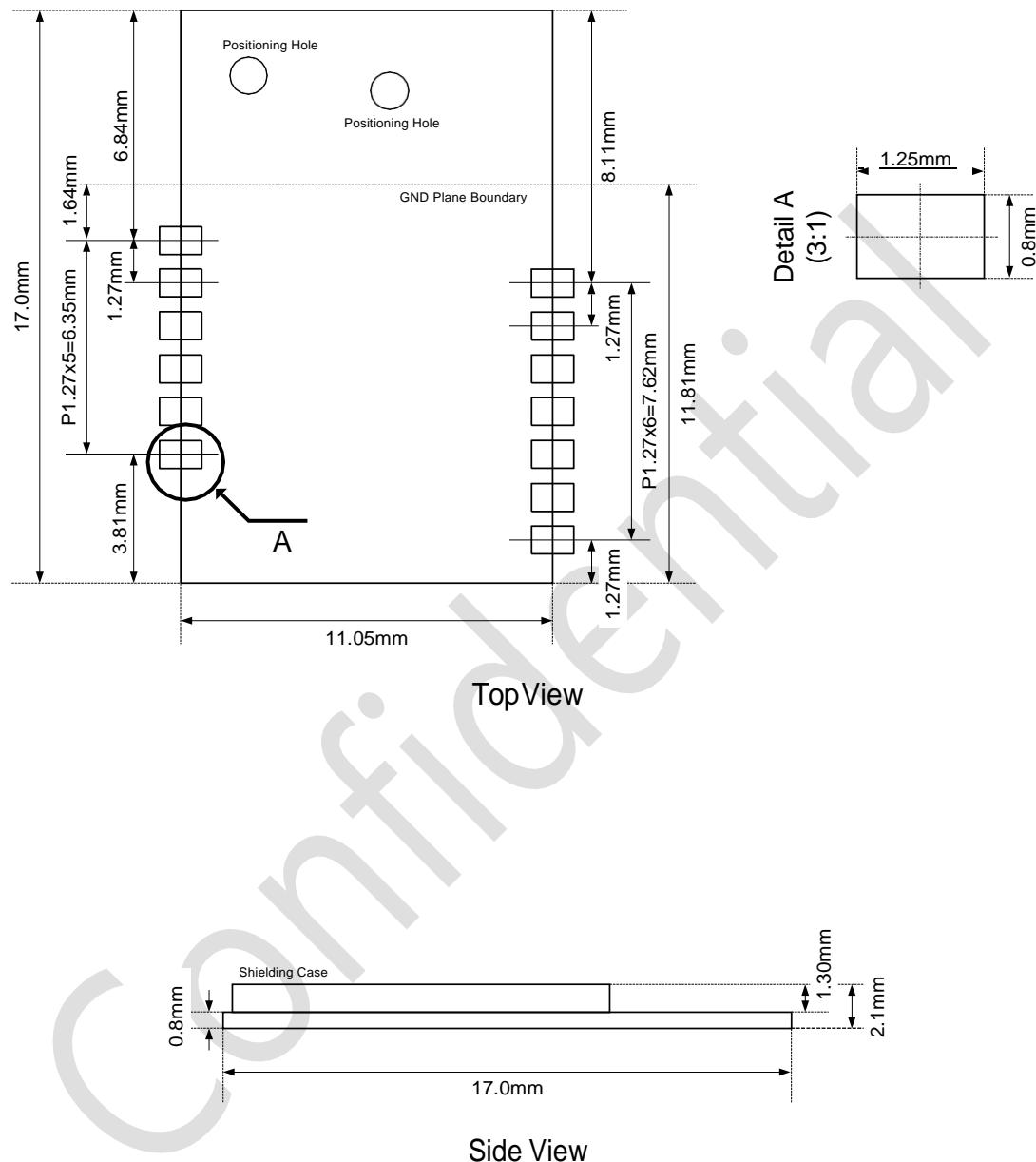
Boot up by HW_RST_N pin, power on timing is shown in below figure.



★ UART Characteristics



Parameter	Description	Note	Min.	Typ.	Max.	Unit
T_{D_RTS}	Timing between UART_RX_IN stop bit and RTS rising edge when RX FIFO is full				0.5	ns
T_{D_CTS}	Timing between CTS falling edge and UART_TX_OUT first bit				25	ns
T_{SET_CTS}	Timing between CTS rising edge and UART_TX_OUT stop bit		75			ns


✓ PCB LAYOUT GUIDE

Module Placement Example:

✓ MODULE DIMENTIONS

The following statement must be included with all versions of this document supplied to an OEM or integrator, but should not be distributed to the end user.

- 1) This device is intended for OEM integrators only.
- 2) Please see the full Grant of Equipment document for other restrictions.

RF Exposure warning

This equipment must be installed and operated in accordance with provided instructions and the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. End-users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.

AUTION:

Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment.

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20cm may be maintained between the antenna and users.

The final end product must be labeled in a visible area with the following:

"Contains FCC ID: 2AXKL-MWBTRT6M" .

Information for the OEMs and Integrators

The following statement must be included with all versions of this document supplied to an OEM or integrator, but should not be distributed to the end user.

- 1) This device is intended for OEM integrators only.
- 2) Please see the full Grant of Equipment document for other restrictions.