

RF TEST REPORT

For

Shenzhen Weihejia Electronic Technology Co.,LTD

Product Name: BWWW Laptop

Model(s).: BaseBook

Report Reference No. : POCE230811004JRW

FCC ID : 2AXKI-WH156B

Applicant's Name : Shenzhen Weihejia Electronic Technology Co.,LTD

Address : Block 102, Building 9, Xihu Industrial park, Xikeng community, Yuanshan street, Longgang district, Shenzhen, China

Testing Laboratory : Shenzhen POCE Technology Co., Ltd.

Address : 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15E
ANSI C63.10-2013 & KDB 789033 D02 General UNII Test Procedures
New Rules v02r01

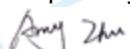
Date of Receipt : August 15, 2023

Date of Test : August 25, 2023 to August 25, 2023

Date of Issue : August 25, 2023

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample


Revision History Of Report

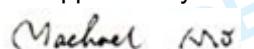
Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE230811004JRW	August 25, 2023

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Amy Zhu / File administrators


Supervised by:

Stone Yin / Technique principal

Approved by:

Machael Mo/ Manager

CONTENTS

1	TEST SUMMARY	5
1.1	TEST STANDARDS	5
1.2	SUMMARY OF TEST RESULT	5
2	GENERAL INFORMATION	6
2.1	CLIENT INFORMATION	6
2.2	DESCRIPTION OF DEVICE (EUT).....	6
2.3	DESCRIPTION OF TEST MODES.....	7
2.4	DESCRIPTION OF SUPPORT UNITS	8
2.5	EQUIPMENTS USED DURING THE TEST	8
2.6	STATEMENT OF THE MEASUREMENT UNCERTAINTY	9
2.7	AUTHORIZATIONS	9
2.8	ANNOUNCEMENT	10
3	RADIO SPECTRUM MATTER TEST RESULTS (RF)	11
3.1	CONDUCTED EMISSION AT AC POWER LINE	11
3.1.1	E.U.T. Operation:	11
3.1.2	Test Setup Diagram:.....	11
3.1.3	Test Data:	12
3.2	DUTY CYCLE	14
3.2.1	E.U.T. Operation:	14
3.2.2	Test Setup Diagram:.....	14
3.2.3	Test Data:	14
3.3	MAXIMUM CONDUCTED OUTPUT POWER.....	15
3.3.1	E.U.T. Operation:	15
3.3.2	Test Setup Diagram:.....	16
3.3.3	Test Data:	16
3.4	POWER SPECTRAL DENSITY	17
3.4.1	E.U.T. Operation:	17
3.4.2	Test Setup Diagram:.....	18
3.4.3	Test Data:	18
3.5	EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	19
3.5.1	E.U.T. Operation:	20
3.5.2	Test Setup Diagram:.....	20
3.5.3	Test Data:	20
3.6	BAND EDGE EMISSIONS (RADIATED)	21
3.6.1	E.U.T. Operation:	22
3.6.2	Test Setup Diagram:.....	23
3.6.3	Test Data:	24
3.7	UNDESIRABLE EMISSION LIMITS (BELOW 1GHz).....	28
3.7.1	E.U.T. Operation:	29
3.7.2	Test Setup Diagram:.....	29
3.7.3	Test Data:	30
3.8	UNDESIRABLE EMISSION LIMITS (ABOVE 1GHz)	33
3.8.1	E.U.T. Operation:	34
3.8.2	Test Setup Diagram:.....	35
3.8.3	Test Data:	36
4	TEST SETUP PHOTOS	41
5	PHOTOS OF THE EUT	42
APPENDIX-5.2G	43	
1.	-26dB AND 99% EMISSION BANDWIDTH.....	43
2.	DUTY CYCLE	58

3. MAXIMUM CONDUCTED OUTPUT POWER	66
4. POWER SPECTRAL DENSITY	74
5. BANDEdge	82
6. SPURIOUS EMISSION	87
7. FREQUENCY STABILITY	95
APPENDIX-5.8G	103
1. -6dB EMISSION BANDWIDTH.....	103
2. -26dB AND 99% EMISSION BANDWIDTH.....	111
3. DUTY CYCLE	126
4. MAXIMUM CONDUCTED OUTPUT POWER	134
5. POWER SPECTRAL DENSITY	142
6. BANDEdge	150
7. SPURIOUS EMISSION	156
8. FREQUENCY STABILITY	164

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

1.2 Summary of Test Result

Item	Method	Requirement	Result
Conducted Emission at AC power line	ANSI C63.10-2013 section 6.2	47 CFR Part 15.207(a)	Pass
Duty Cycle	ANSI C63.10-2013 section 12.2 (b)	/	Pass
Maximum conducted output power	ANSI C63.10-2013, section 12.3	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	ANSI C63.10-2013, section 12.5	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Band edge emissions (Radiated)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Note: 1.N/A -this device(EUT) is not applicable to this testing item

2. RF-conducted test results including cable loss.

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Shenzhen Weihejia Electronic Technology Co.,LTD
Address : Block 102, Building 9, Xihu Industrial park, Xikeng community, Yuanshan street, Longgang district, Shenzhen, China

Manufacturer : Shenzhen Weihejia Electronic Technology Co.,LTD
Address : Block 102, Building 9, Xihu Industrial park, Xikeng community, Yuanshan street, Longgang district, Shenzhen, China

2.2 Description of Device (EUT)

Product Name:	BHWW Laptop
Model/Type reference:	BaseBook
Series Model:	N/A
Model Difference:	N/A
Trade Mark:	N/A
Product Description:	Laptop
Power Supply:	100-240VAC 50/60Hz 1.0A from adapter ; DC7.7V from battery
Power Adaptor:	INPUT:100-240VAC 50/60Hz 1.0A; OUTPUT:12V 3000mA
Operation Frequency:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz
Number of Channels:	802.11a/n(HT20)/ac(HT20):U-NII Band 1: 4;U-NII Band 3: 5; 802.11n(HT40)/ac(HT40):U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80):U-NII Band 1: 1; U-NII Band 3: 1
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Antenna Type:	FPC Antenna
Antenna Gain:	4.46dBi
Sample number:	230811003
HW:	REV11
SW:	V7.0.0

Operation Frequency each of channel

802.11a/n(HT20)/ac(HT20)

Channel	U-NII Band 1 Frequency	U-NII Band 3 Frequency
1	5180 MHz	5745 MHz
2	5200 MHz	5765 MHz
3	5220 MHz	5785 MHz
4	5240 MHz	5805 MHz

5	/	5825 MHz
---	---	----------

802.11n(HT40)/ac(HT40)

Channel	U-NII Band 1 Frequency 1 2	U-NII Band 3 Frequency 5190 MHz 5230 MHz
---------	-------------------------------------	---

802.11ac(HT80)

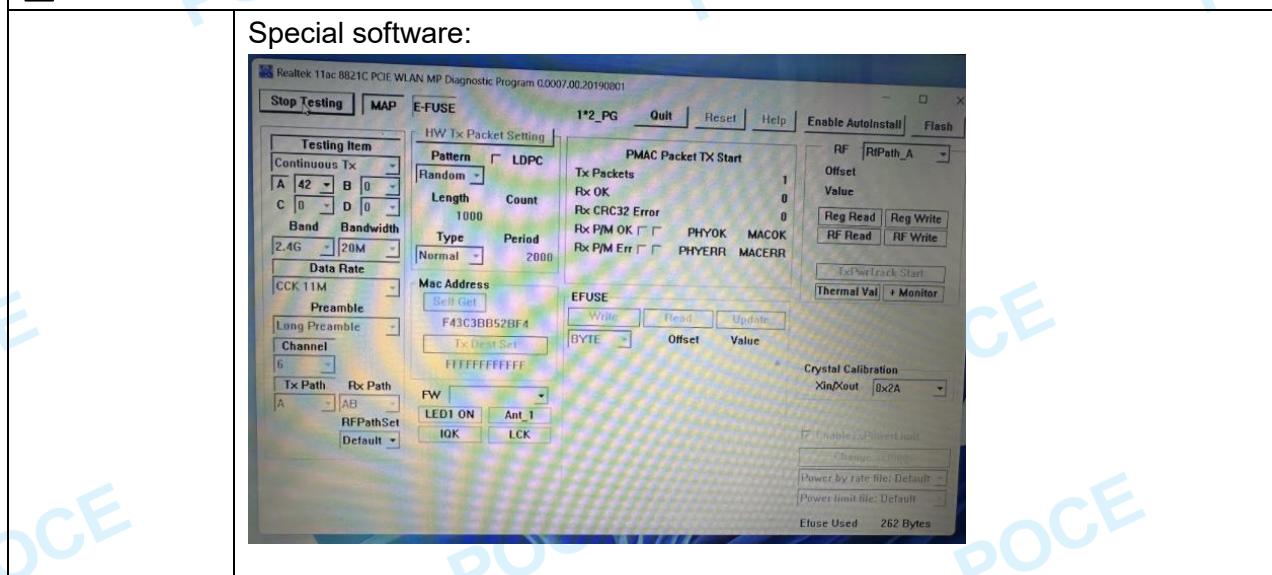
Channel	U-NII Band 1 Frequency 1	U-NII Band 3 Frequency 5775 MHz
---------	--------------------------------	---------------------------------------

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11a/n(HT20)/ac(HT20)		
	U-NII Band 1	U-NII Band 3
Test channel	Frequency (MHz)	Frequency (MHz)
Lowest channel	5180 MHz	5745 MHz
Middle channel	5200 MHz	5785 MHz
Highest channel	5240 MHz	5825 MHz

802.11n(HT40)/ac(HT40)		
	U-NII Band 1	U-NII Band 3
Test channel	Frequency (MHz)	Frequency (MHz)
Lowest channel	5190 MHz	5755 MHz
Highest channel	5230 MHz	5795 MHz


802.11ac(HT80)		
	U-NII Band 1	U-NII Band 3
Test channel	Frequency (MHz)	Frequency (MHz)

Middle channel 5210 MHz 5775 MHz

2.3 Description of Test Modes

No	Title	Description
TM1	802.11a mode	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 54Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS7 is the worst case. Only the data of worst case is recorded in the report.
TM3	802.11ac mode	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS9 is the worst case. Only the data of worst case is recorded in the report.
Description		Keep the EUT works in continuously transmitting mode with GFSK modulation.

Special software is used.
 Through engineering command into the engineering mode.
 engineering command: *#*#3646633#*#
 Other method:

2.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Description	Manufacturer	Model No.	Remark	Certification
1	ADAPTER	Weiheng Digital Company Limited	BCT120300-111DZ	Provide by client	SDOC
2					

2.5 Equipments Used During The Test

Conducted Emission at AC power line					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal. Due Date
Shielding room	CY	8*4*3	20160102	2023/1/26	2025/1/25
Pulse Limiter	Schwarzbeck	VTSD 9561	561-G071	2023/2/27	2024/2/26
Cable	Schwarzbeck	/	/	2023/2/27	2024/2/26
Test Receiver	Rohde & Schwarz	ESPI	1164.6607K03-102109-MH	2023/6/13	2024/6/12
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2022/12/29	2023/12/28
L.I.S.N	Schwarzbeck	NSLK 8126	NSLK 8126	/	/
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	/	/

Emissions in restricted frequency bands and RF					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Test Receiver	R&S	ESCI	102109	2023/6/13	2024/6/12

Spectrum Analyzer	R&S	FSP30	1321.3008K40-101729-jR	2023/6/14	2024/6/13
966 Chamber	CY	9*6*6	20160101	2023/1/26	2025/1/25
Bore-sighting Antenna rack	PBB	1308503	16033	/	/
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021/7/5	2024/7/4
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023/5/21	2025/5/20
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023/5/13	2025/5/12
Horn antenna	COM-POWER	AH-1840(40G)	10100008	2023/4/5	2025/4/4
Power APM(LF)	Schwarzbeck	BBV9743	9743-151	2023/6/13	2024/6/12
Power APM(HF)	Schwarzbeck	BBV9718	9718-282	2023/6/13	2024/6/12
Cable(LF)#2	Schwarzbeck	/	/	2023/2/27	2024/2/26
Cable(LF)#1	Schwarzbeck	/	/	2023/2/27	2024/2/26
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023/2/28	2024/2/27
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2023/2/27	2024/2/26
Power divider	MIDEWEST	PWD-2533	SMA-79	2023/5/11	2026/5/10
signal generator	Keysight	N5181A	MY48180415	2022/12/10	2023/12/9
signal generator	Keysight	N5182A	MY50143455	2022/12/29	2023/12/28
Spectrum Analyzer	Keysight	N9020A	MY53420323	2022/12/29	2023/12/28
RF Sensor Unit	TACHOY	TR1029-2	000001	/	/
RF Control Unit	TACHOY	TR1029-1	000001	/	/
Position Controller	MF	MF-7802	/	/	/
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	/	/
RF TestSoftware	TACHOY	RTS-01	V2.0.0.0	/	/

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Duty cycle	±3.1%
RF conducted power	±0.733dB
RF power density	±0.234%
Occupied Bandwidth	±3.63%
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.	

2.7 Authorizations

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration No.:	778666
A2LA Certificate Number:	6270.01

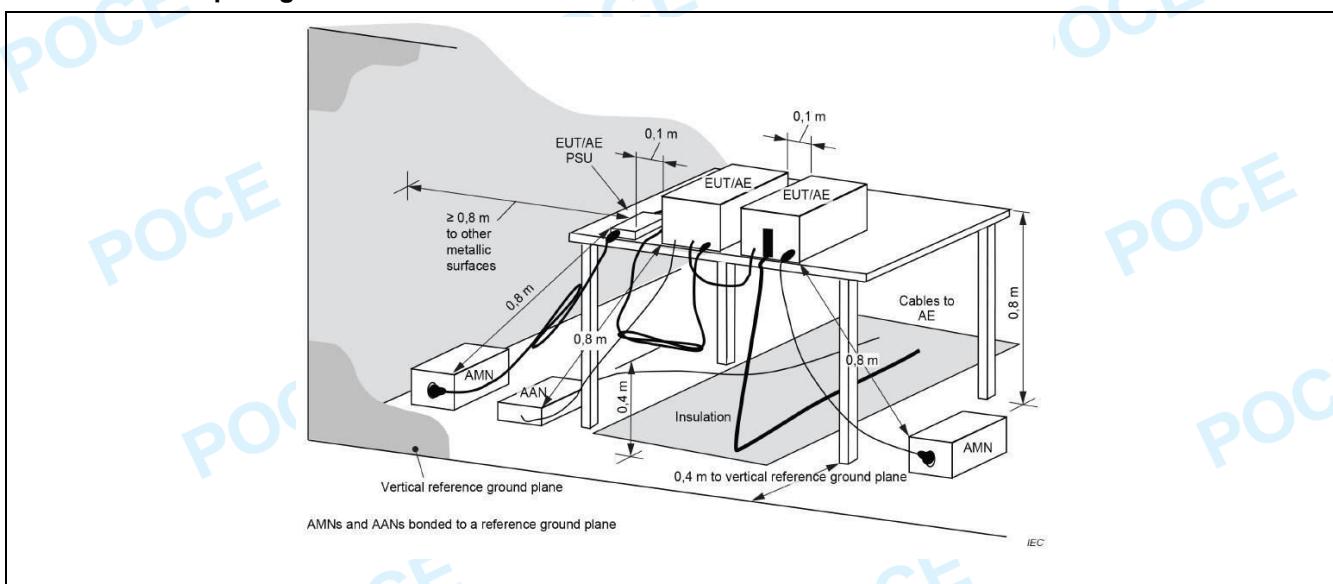
2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

3 Radio Spectrum Matter Test Results (RF)

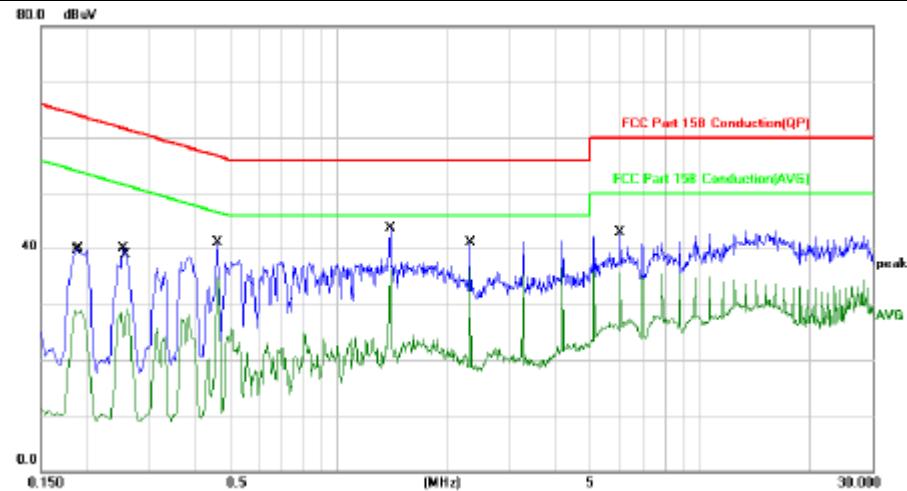
3.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
Test Limit:	Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50

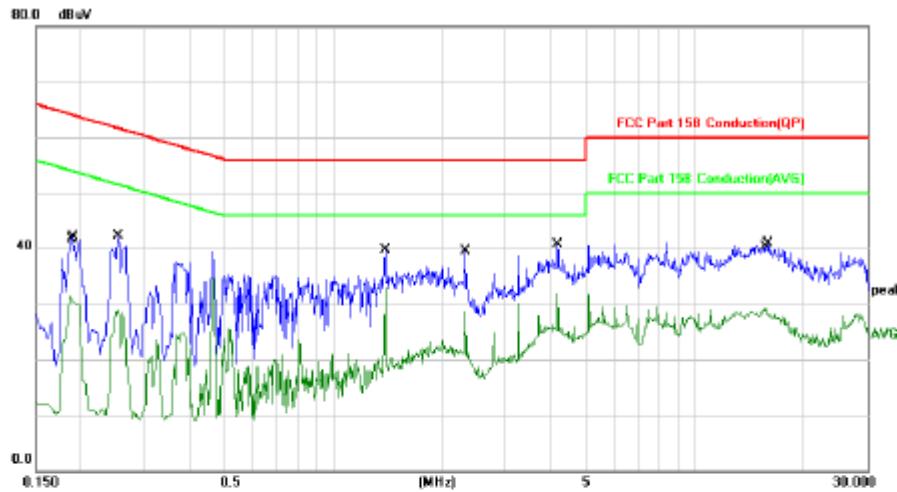

*Decreases with the logarithm of the frequency.

Test Method: Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices

3.1.1 E.U.T. Operation:


Operating Environment:					
Temperature:	22.7 °C	Humidity:	49.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1				
Final test mode:	TM1				

3.1.2 Test Setup Diagram:


3.1.3 Test Data:

TM1 / Line / Band: 5725-5850 MHz / BW: 20 / CH: L

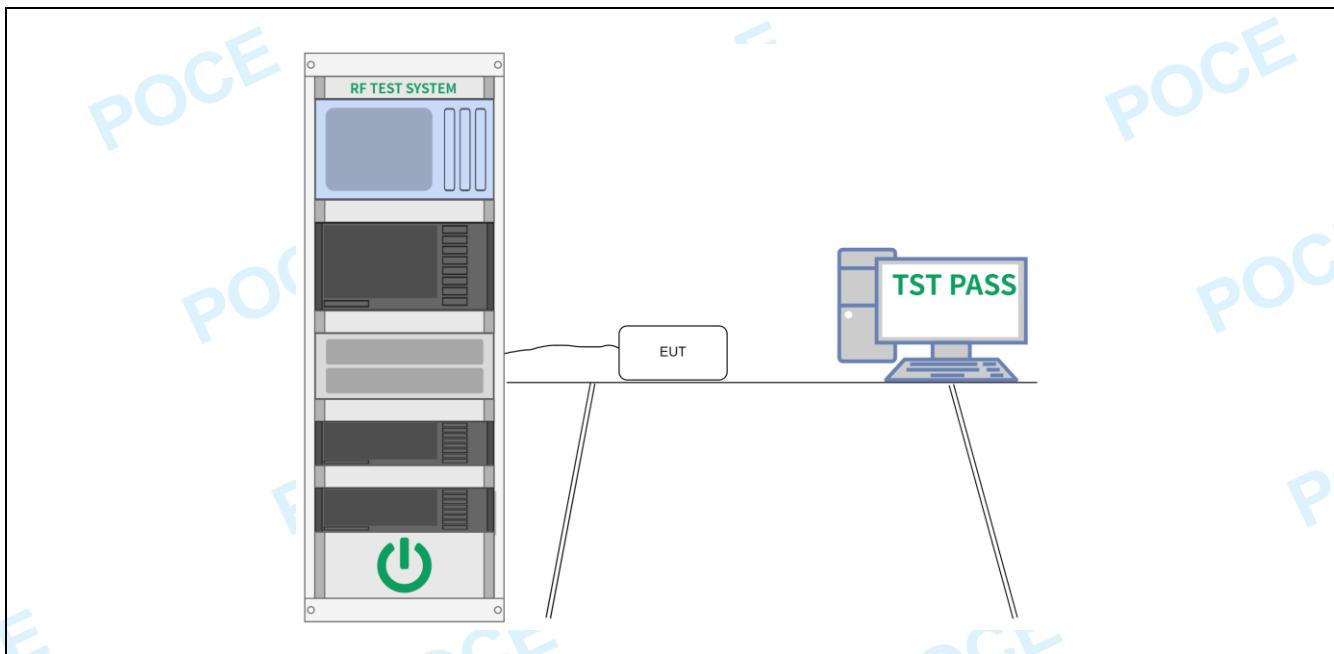
No.	Mk.	Freq. MHz	Reading Level dBm	Correct Factor dB	Measure- ment dBm	Limit dB	Over Detector	Comment
1		0.1860	18.91	9.99	28.90	54.21	-25.31	AVG
2		0.1900	30.02	9.99	40.01	64.03	-24.02	QP
3		0.2540	30.11	9.99	40.10	61.62	-21.52	QP
4		0.2620	19.07	9.98	29.05	51.36	-22.31	AVG
5		0.4620	31.12	9.95	41.07	56.66	-15.59	QP
6		0.4620	24.93	9.95	34.88	46.66	-11.78	AVG
7		1.3900	33.92	9.87	43.79	56.00	-12.21	QP
8		1.3900	26.20	9.87	36.07	46.00	-9.93	AVG
9		2.3179	31.21	9.92	41.13	56.00	-14.87	QP
10	*	2.3179	26.43	9.92	36.35	46.00	-9.65	AVG
11		6.0260	32.90	10.07	42.97	60.00	-17.03	QP
12		6.0260	25.58	10.07	35.65	50.00	-14.35	AVG

TM1 / Line: Neutral / Band: 5725-5850 MHz / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1860	21.42	9.99	31.41	54.21	-22.80	AVG	
2		0.1900	32.19	9.99	42.18	64.03	-21.85	QP	
3		0.2540	32.32	9.99	42.31	61.62	-19.31	QP	
4		0.2540	18.86	9.99	28.85	51.62	-22.77	AVG	
5		1.3940	29.90	9.87	39.77	56.00	-16.23	QP	
6	*	1.3940	23.11	9.87	32.98	46.00	-13.02	AVG	
7		2.3179	29.53	9.92	39.45	56.00	-16.55	QP	
8		2.3179	18.86	9.92	28.78	46.00	-17.22	AVG	
9		4.1740	30.78	9.99	40.77	56.00	-15.23	QP	
10		4.1740	21.89	9.99	31.88	46.00	-14.12	AVG	
11		15.7820	18.89	10.23	29.12	50.00	-20.88	AVG	
12		16.0459	30.71	10.23	40.94	60.00	-19.06	QP	

NOTE:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Measurement Level = Reading level + Correct Factor, Over=Limit- Measurement
4. The test results only show the worst mode or worst channel.


3.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	<ol style="list-style-type: none"> Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak. The zero-span measurement method shall not be used unless both RBW and VBW are $> 50/T$, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

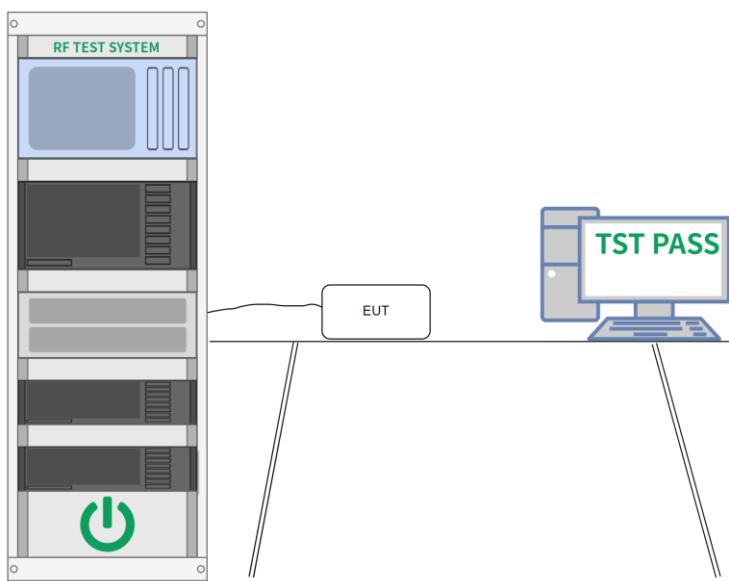
3.2.1 E.U.T. Operation:

Operating Environment:			
Temperature:	22.7 °C	Humidity:	49.8 %
Pre test mode:	TM1, TM2, TM3		
Final test mode:	TM1, TM2, TM3		

3.2.2 Test Setup Diagram:

3.2.3 Test Data:

Please Refer to Appendix for Details.


3.3 Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	<p>For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.</p> <p>If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.</p> <p>For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.</p> <p>If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.</p> <p>However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.</p> <p>The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.</p>
Test Method:	ANSI C63.10-2013, section 12.3
Procedure:	<p>Method SA-1</p> <p>a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.</p> <p>b) Set RBW = 1 MHz.</p> <p>c) Set VBW \geq 3 MHz.</p> <p>d) Number of points in sweep \geq $[2 \times \text{span} / \text{RBW}]$. (This gives bin-to-bin spacing $\leq \text{RBW} / 2$, so that narrowband signals are not lost between frequency bins.)</p> <p>e) Sweep time = auto.</p> <p>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</p> <p>g) If transmit duty cycle $< 98\%$, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle $\geq 98\%$, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</p> <p>h) Trace average at least 100 traces in power averaging (rms) mode.</p> <p>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</p>

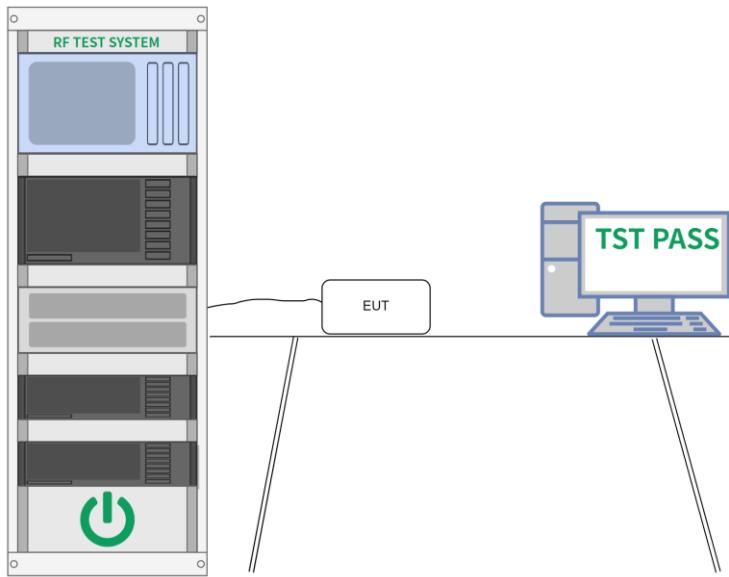
3.3.1 E.U.T. Operation:

Operating Environment:				
Temperature:	22.7 °C	Humidity:	49.8 %	Atmospheric Pressure: 102 kPa
Pre test mode:	TM1, TM2, TM3			
Final test mode:	TM1, TM2, TM3			

3.3.2 Test Setup Diagram:

3.3.3 Test Data:

Please Refer to Appendix for Details.


3.4 Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	<p>For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.</p> <p>For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.</p> <p>Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.</p>
Test Method:	ANSI C63.10-2013, section 12.5
Procedure:	<p>a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power...." (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)</p> <p>b) Use the peak search function on the instrument to find the peak of the spectrum.</p> <p>c) Make the following adjustments to the peak value of the spectrum, if applicable:</p> <ol style="list-style-type: none"> 1) If method SA-2 or SA-2A was used, then add $[10 \log (1 / D)]$, where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. <p>d) The result is the PPSD.</p> <p>e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:</p> <ol style="list-style-type: none"> 1) Set RBW $\geq 1 / T$, where T is defined in 12.2 a). 2) Set VBW $\geq [3 \times RBW]$. <p>3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.</p>

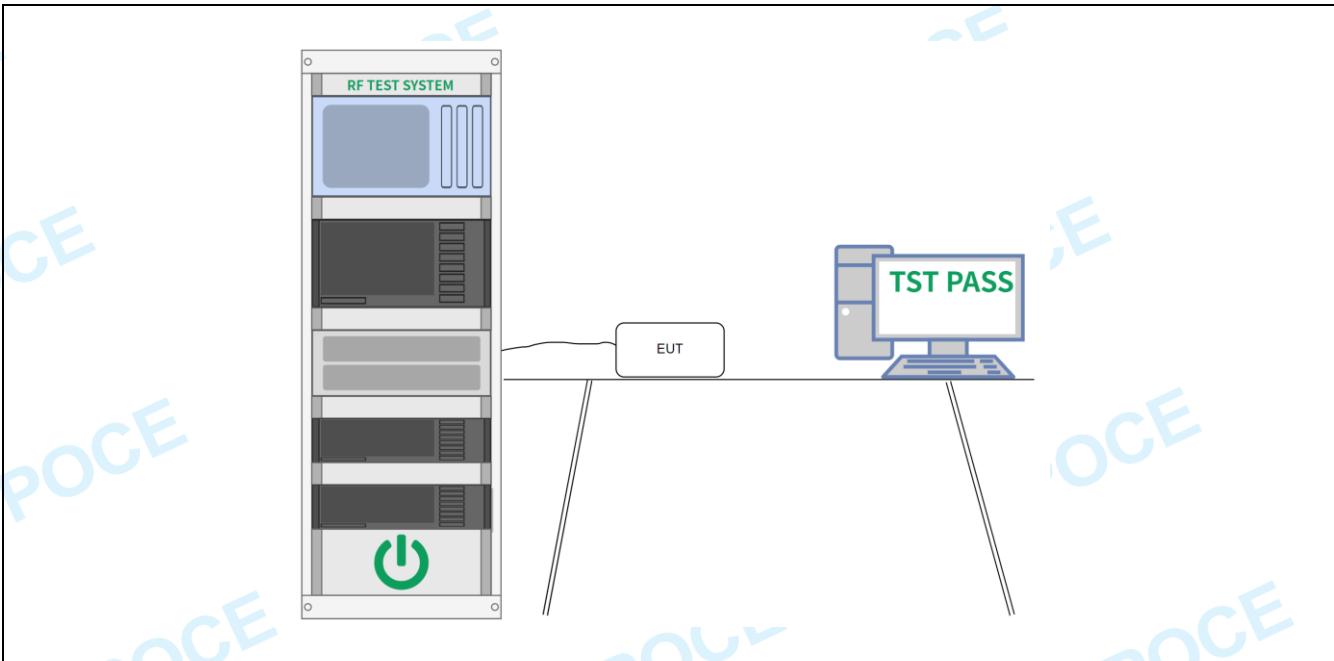
3.4.1 E.U.T. Operation:

Operating Environment:				
Temperature:	22.7 °C	Humidity:	49.8 %	Atmospheric Pressure: 102 kPa
Pre test mode:	TM1, TM2, TM3			
Final test mode:	TM1, TM2, TM3			

3.4.2 Test Setup Diagram:

3.4.3 Test Data:

Please Refer to Appendix for Details.


3.5 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	<p>Emission bandwidth:</p> <ol style="list-style-type: none"> Set RBW = approximately 1% of the emission bandwidth. Set the VBW > RBW. Detector = peak. Trace mode = max hold. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. <p>Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.</p> <p>Occupied bandwidth:</p> <ol style="list-style-type: none"> The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. Step a) through step c) might require iteration to adjust within the specified range. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). <p>6 dB emission bandwidth:</p> <ol style="list-style-type: none"> Set RBW = 100 kHz. Set the video bandwidth (VBW) $\geq 3 \geq RBW$. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.5.1 E.U.T. Operation:

Operating Environment:				
Temperature:	22.7 °C	Humidity:	49.8 %	Atmospheric Pressure: 102 kPa
Pre test mode:	TM1, TM2, TM3			
Final test mode:	TM1, TM2, TM3			

3.5.2 Test Setup Diagram:

3.5.3 Test Data:

Please Refer to Appendix for Details.

3.6 Band edge emissions (Radiated)

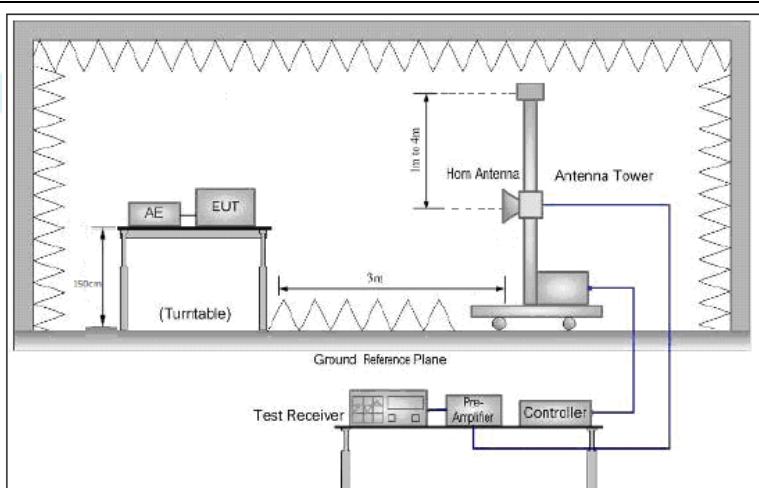
Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)																																																																										
Test Limit:	<p>For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.</p> <p>For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.</p>																																																																										
<table border="1"> <thead> <tr> <th>MHz</th> <th>MHz</th> <th>MHz</th> <th>GHz</th> </tr> </thead> <tbody> <tr><td>0.090-0.110</td><td>16.42-16.423</td><td>399.9-410</td><td>4.5-5.15</td></tr> <tr><td>¹0.495-0.505</td><td>16.69475-16.69525</td><td>608-614</td><td>5.35-5.46</td></tr> <tr><td>2.1735-2.1905</td><td>16.80425-16.80475</td><td>960-1240</td><td>7.25-7.75</td></tr> <tr><td>4.125-4.128</td><td>25.5-25.67</td><td>1300-1427</td><td>8.025-8.5</td></tr> <tr><td>4.17725-4.17775</td><td>37.5-38.25</td><td>1435-1626.5</td><td>9.0-9.2</td></tr> <tr><td>4.20725-4.20775</td><td>73-74.6</td><td>1645.5-1646.5</td><td>9.3-9.5</td></tr> <tr><td>6.215-6.218</td><td>74.8-75.2</td><td>1660-1710</td><td>10.6-12.7</td></tr> <tr><td>6.26775-6.26825</td><td>108-121.94</td><td>1718.8-1722.2</td><td>13.25-13.4</td></tr> <tr><td>6.31175-6.31225</td><td>123-138</td><td>2200-2300</td><td>14.47-14.5</td></tr> <tr><td>8.291-8.294</td><td>149.9-150.05</td><td>2310-2390</td><td>15.35-16.2</td></tr> <tr><td>8.362-8.366</td><td>156.52475-156.52525</td><td>2483.5-2500</td><td>17.7-21.4</td></tr> <tr><td>8.37625-8.38675</td><td>156.7-156.9</td><td>2690-2900</td><td>22.01-23.12</td></tr> <tr><td>8.41425-8.41475</td><td>162.0125-167.17</td><td>3260-3267</td><td>23.6-24.0</td></tr> <tr><td>12.29-12.293</td><td>167.72-173.2</td><td>3332-3339</td><td>31.2-31.8</td></tr> <tr><td>12.51975-12.52025</td><td>240-285</td><td>3345.8-3358</td><td>36.43-36.5</td></tr> <tr><td>12.57675-12.57725</td><td>322-335.4</td><td>3600-4400</td><td>²)</td></tr> <tr><td>13.36-13.41</td><td></td><td></td><td></td></tr> </tbody> </table>				MHz	MHz	MHz	GHz	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	6.31175-6.31225	123-138	2200-2300	14.47-14.5	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	12.57675-12.57725	322-335.4	3600-4400	²)	13.36-13.41			
MHz	MHz	MHz	GHz																																																																								
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15																																																																								
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46																																																																								
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75																																																																								
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5																																																																								
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2																																																																								
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5																																																																								
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7																																																																								
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4																																																																								
6.31175-6.31225	123-138	2200-2300	14.47-14.5																																																																								
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2																																																																								
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4																																																																								
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12																																																																								
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0																																																																								
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8																																																																								
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5																																																																								
12.57675-12.57725	322-335.4	3600-4400	²)																																																																								
13.36-13.41																																																																											

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

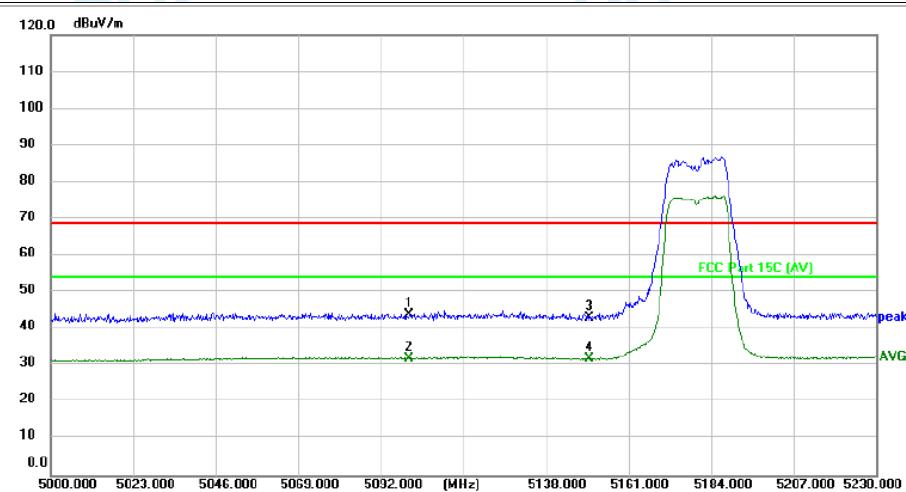
The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

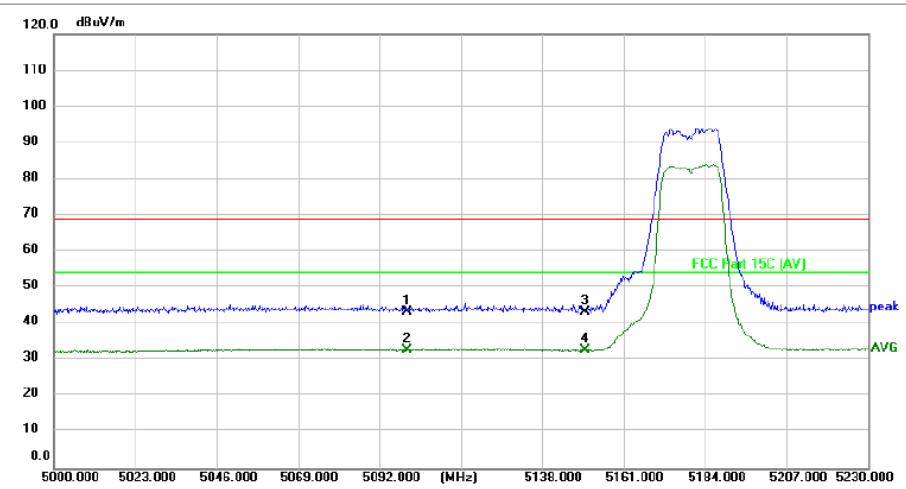

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3

	Above 960	500	3
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6		
Procedure:	<p>Above 1GHz:</p> <p>a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.</p> <p>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</p> <p>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</p> <p>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</p> <p>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</p> <p>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.</p> <p>g. Test the EUT in the lowest channel, the middle channel, the Highest channel.</p> <p>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</p> <p>i. Repeat above procedures until all frequencies measured was complete.</p> <p>Remark:</p> <p>1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor</p> <p>2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.</p> <p>3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.</p> <p>4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.</p>		

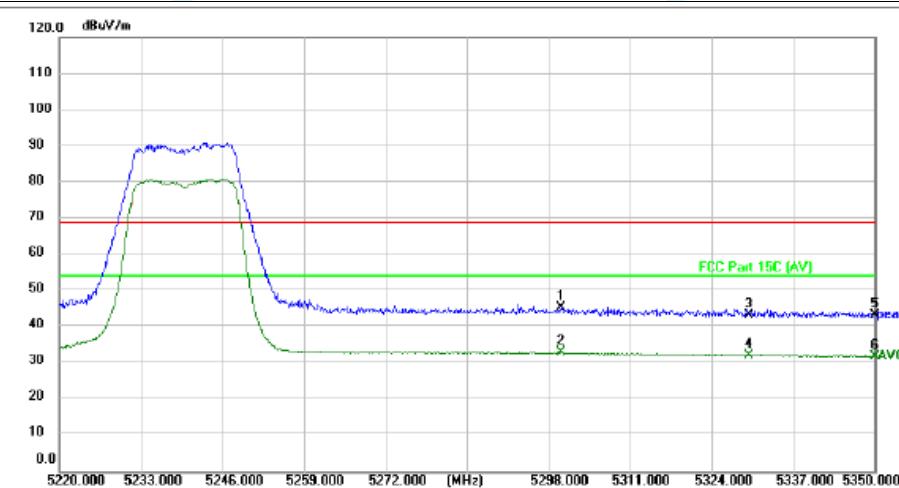
3.6.1 E.U.T. Operation:


Operating Environment:				
Temperature:	22.7 °C	Humidity:	49.8 %	Atmospheric Pressure: 102 kPa
Pre test mode:	TM1, TM2, TM3			
Final test mode:	TM1			

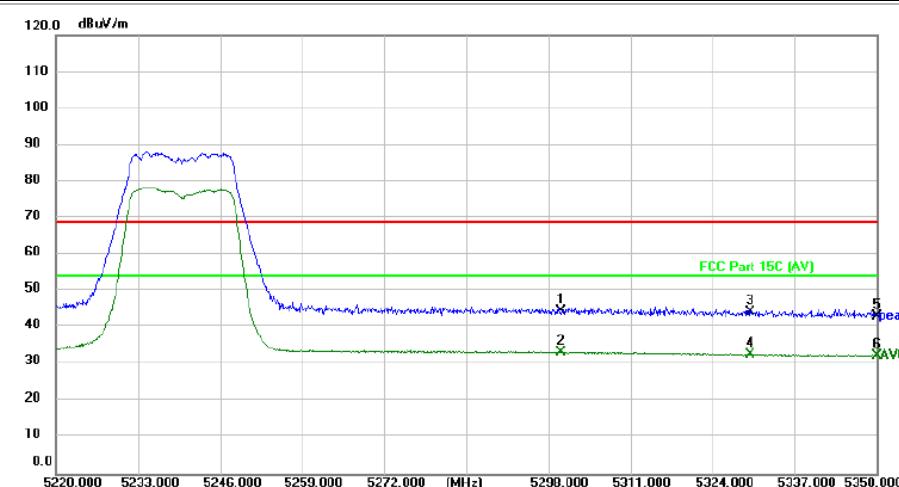
3.6.2 Test Setup Diagram:


3.6.3 Test Data:

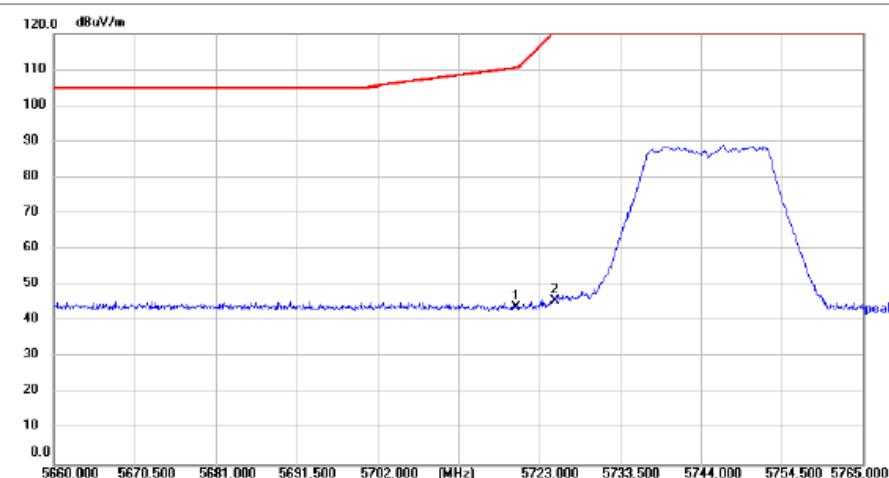
TM1 / Polarization: Horizontal / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5100.000	44.02	-0.04	43.98	68.20	-24.22	peak			P	
2 *	5100.000	32.05	-0.04	32.01	54.00	-21.99	AVG			P	
3	5150.000	42.91	0.05	42.96	68.20	-25.24	peak			P	
4	5150.000	31.88	0.05	31.93	54.00	-22.07	AVG			P	

TM1 / Polarization: Vertical / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5100.000	42.84	0.43	43.27	68.20	-24.93	peak			P	
2 *	5100.000	32.55	0.43	32.98	54.00	-21.02	AVG			P	
3	5150.000	43.03	0.46	43.49	68.20	-2471	peak			P	
4	5150.000	32.34	0.46	32.80	54.00	-21.20	AVG			P	

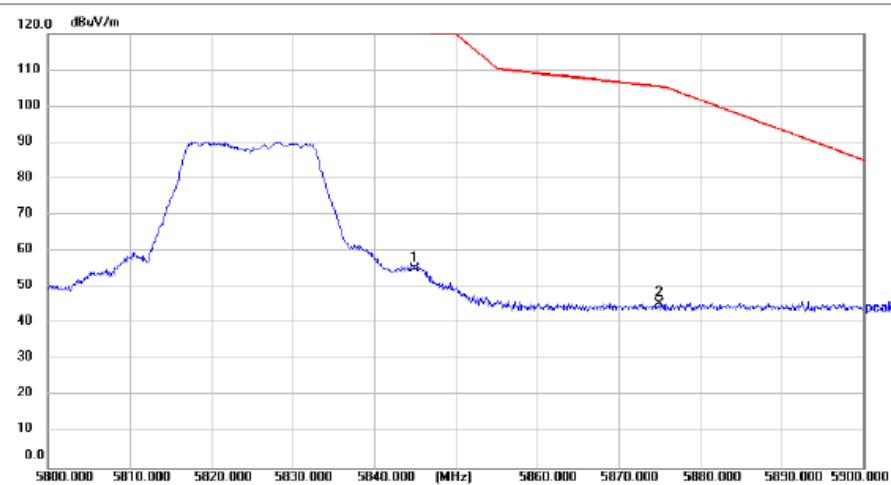
TM1 / Polarization: Horizontal / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5300.000	45.03	0.35	45.38	68.20	-22.82	peak			P	
2 *	5300.000	32.77	0.35	33.12	54.00	-20.88	AVG			P	
3	5330.000	42.90	0.41	43.31	68.20	-24.89	peak			P	
4	5330.000	31.83	0.41	32.24	54.00	-21.76	AVG			P	
5	5350.000	43.04	0.45	43.49	68.20	-24.71	peak			P	
6	5350.000	31.51	0.45	31.96	54.00	-22.04	AVG			P	

TM1 / Polarization: Vertical / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5300.000	44.05	0.56	44.61	68.20	-23.59	peak			P	
2 *	5300.000	32.65	0.56	33.21	54.00	-20.79	AVG			P	
3	5330.000	43.55	0.58	44.13	68.20	-24.07	peak			P	
4	5330.000	32.01	0.58	32.59	54.00	-21.41	AVG			P	
5	5350.000	42.59	0.60	43.19	68.20	-25.01	peak			P	
6	5350.000	31.51	0.60	32.11	54.00	-21.89	AVG			P	

TM1 / Polarization: Horizontal / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5720.000	43.06	0.97	44.03	110.80	-66.77	peak	150		P	
2	5725.000	44.64	0.97	45.61	122.20	-76.59	peak	150		P	

TM1 / Polarization: Vertical / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5720.000	43.34	0.81	44.15	110.80	-66.65	peak			P	
2	5725.000	45.28	0.81	46.09	122.20	-76.11	peak			P	

TM1 / Polarization: Horizontal / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5845.000	53.97	1.12	55.09	122.20	-67.11	peak	150		P	
2 *	5875.000	44.19	1.15	45.34	105.20	-59.86	peak	150		P	

TM1 / Polarization: Vertical / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	5845.000	56.53	0.90	57.43	122.20	-64.77	peak			P	
2	5875.000	43.36	0.92	44.28	105.20	-60.92	peak			P	

Note: Peak and Average measurement were performed at the frequencies with maximized peak emission.
Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement

Note:

If the waveform is below the AV limit of 20dbm, the AV waveform will not be displayed and no AV points will be marked

3.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)																										
Test Limit:	<p>Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.</p> <p>Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:</p>																										
	<table border="1"> <thead> <tr> <th>Frequency (MHz)</th><th>Field strength (microvolts/meter)</th><th>Measurement distance (meters)</th></tr> </thead> <tbody> <tr> <td>0.009-0.490</td><td>2400/F(kHz)</td><td>300</td></tr> <tr> <td>0.490-1.705</td><td>24000/F(kHz)</td><td>30</td></tr> <tr> <td>1.705-30.0</td><td>30</td><td>30</td></tr> <tr> <td>30-88</td><td>100 **</td><td>3</td></tr> <tr> <td>88-216</td><td>150 **</td><td>3</td></tr> <tr> <td>216-960</td><td>200 **</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>3</td></tr> </tbody> </table>			Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	0.009-0.490	2400/F(kHz)	300	0.490-1.705	24000/F(kHz)	30	1.705-30.0	30	30	30-88	100 **	3	88-216	150 **	3	216-960	200 **	3	Above 960	500	3
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)																									
0.009-0.490	2400/F(kHz)	300																									
0.490-1.705	24000/F(kHz)	30																									
1.705-30.0	30	30																									
30-88	100 **	3																									
88-216	150 **	3																									
216-960	200 **	3																									
Above 960	500	3																									
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6																										
Procedure:	<p>Below 1GHz:</p> <ol style="list-style-type: none"> For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet. Test the EUT in the lowest channel, the middle channel, the Highest channel. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. Repeat above procedures until all frequencies measured was complete. <p>Remark:</p> <ol style="list-style-type: none"> Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. <p>Above 1GHz:</p> <ol style="list-style-type: none"> For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to 																										

determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

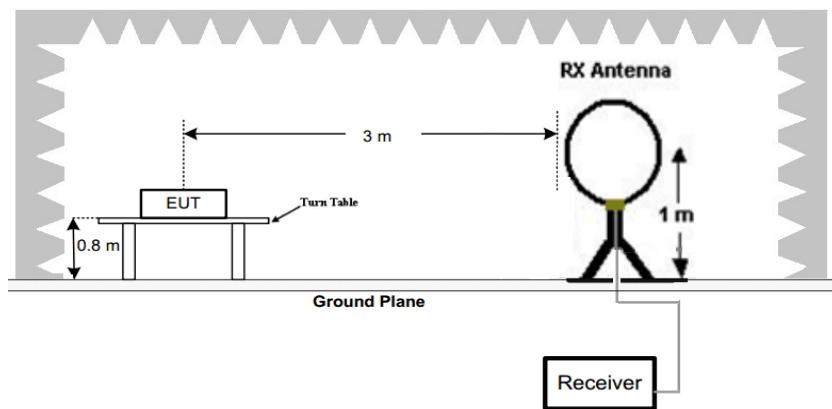
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

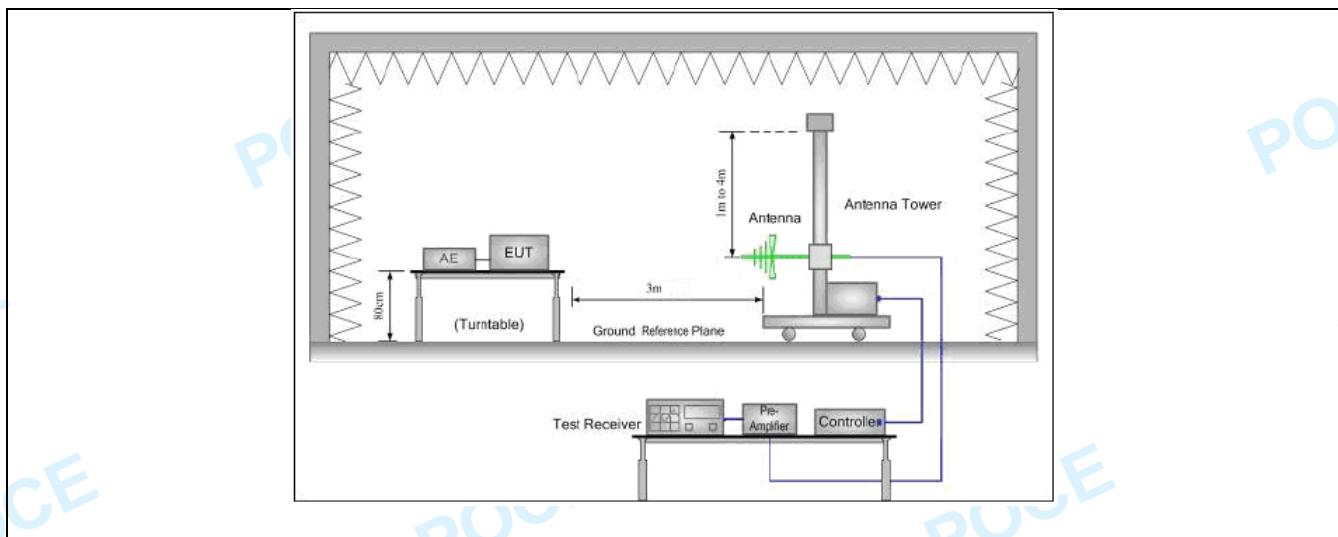
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.


Remark:


1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

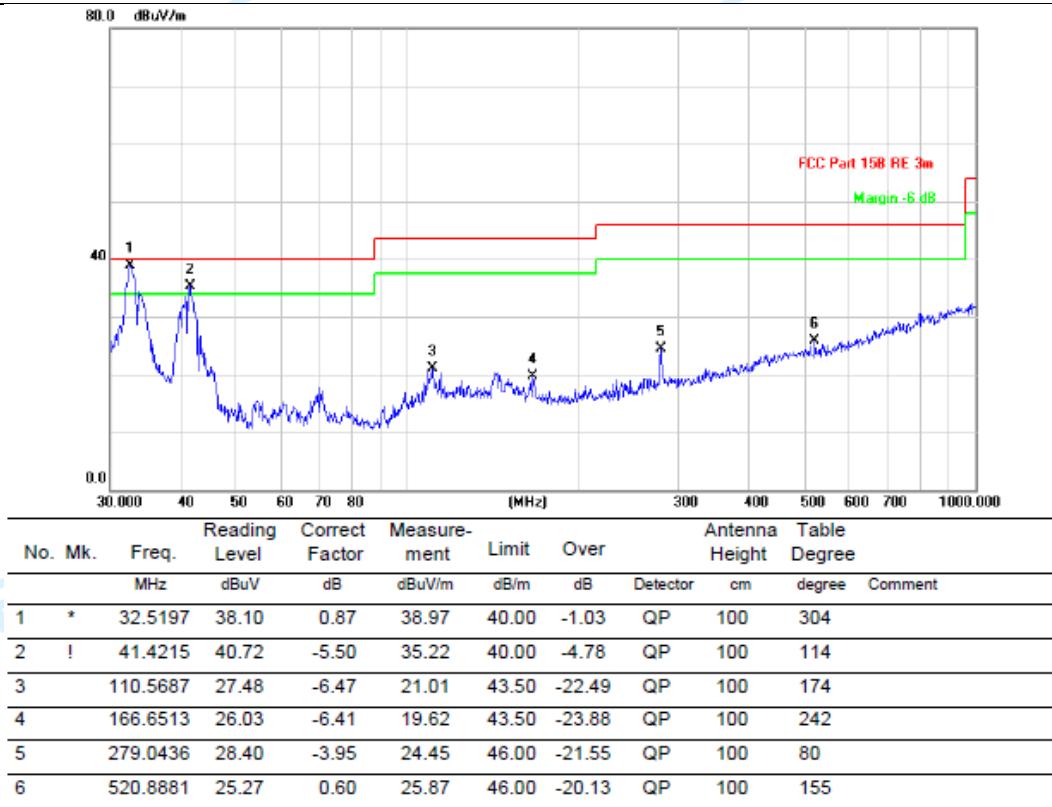
3.7.1 E.U.T. Operation:

Operating Environment:				
Temperature:	22.7 °C	Humidity:	49.8 %	Atmospheric Pressure: 102 kPa
Pre test mode:	TM1			
Final test mode:	TM1			

3.7.2 Test Setup Diagram:

3.7.3 Test Data:

Between 9KHz – 30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

NOTE: The test results only show the worst mode or worst channel.

Between 30MHz – 1000MHz

TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: L

Note: Peak and Average measurement were performed at the frequencies with maximized peak emission.

Measurement Level = Reading level + Correct Factor, Over=Limit- Measurement

Note:

Per ANSI C63.10-2013, if there are two or more antennas, the conducted powers at Core 0, Core 1, ..., Core i were first measured separately, as shown in the section above (this product only have one antenna). The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

For correlated unequal antenna gain

$$\text{Directional gain} = 10 \times \log[(10G1/20 + 10G2/20 + \dots + 10GN/20)^2 / NANT] \text{ dBi}$$

For completely uncorrelated unequal antenna gain

$$\text{Directional gain} = 10 \times \log[(10G1/10 + 10G2/10 + \dots + 10GN/10) / NANT] \text{ dBi}$$

Sample Multiple antennas Calculation: Core 0 + Core 1 + ... Core i. = MIMO/CDD

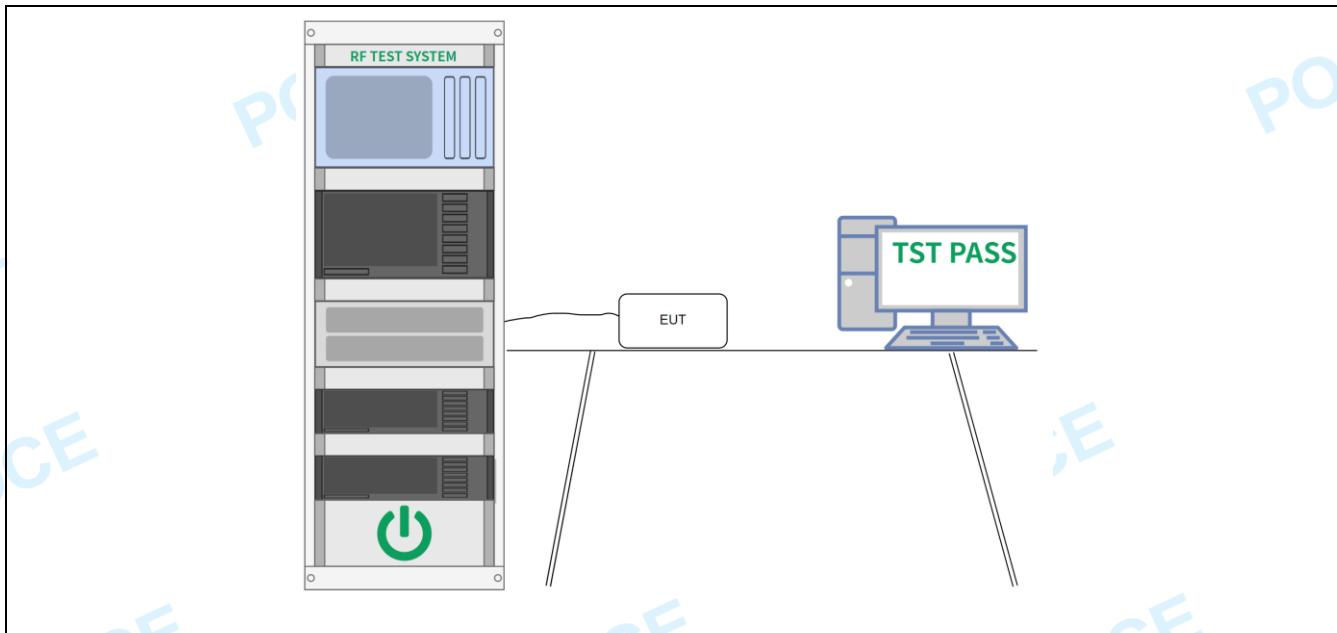
(i is the number of antennas)

$$(\#VALUE! \text{ mW} + \text{ mW}) = \#VALUE! \text{ mW} = \text{ dBm}$$

Sample e.i.r.p. Calculation:

$$\text{e.i.r.p. (dBm)} = \text{Conducted Power (dBm)} + \text{Ant gain (dBi)}$$

3.8 Undesirable emission limits (above 1GHz)

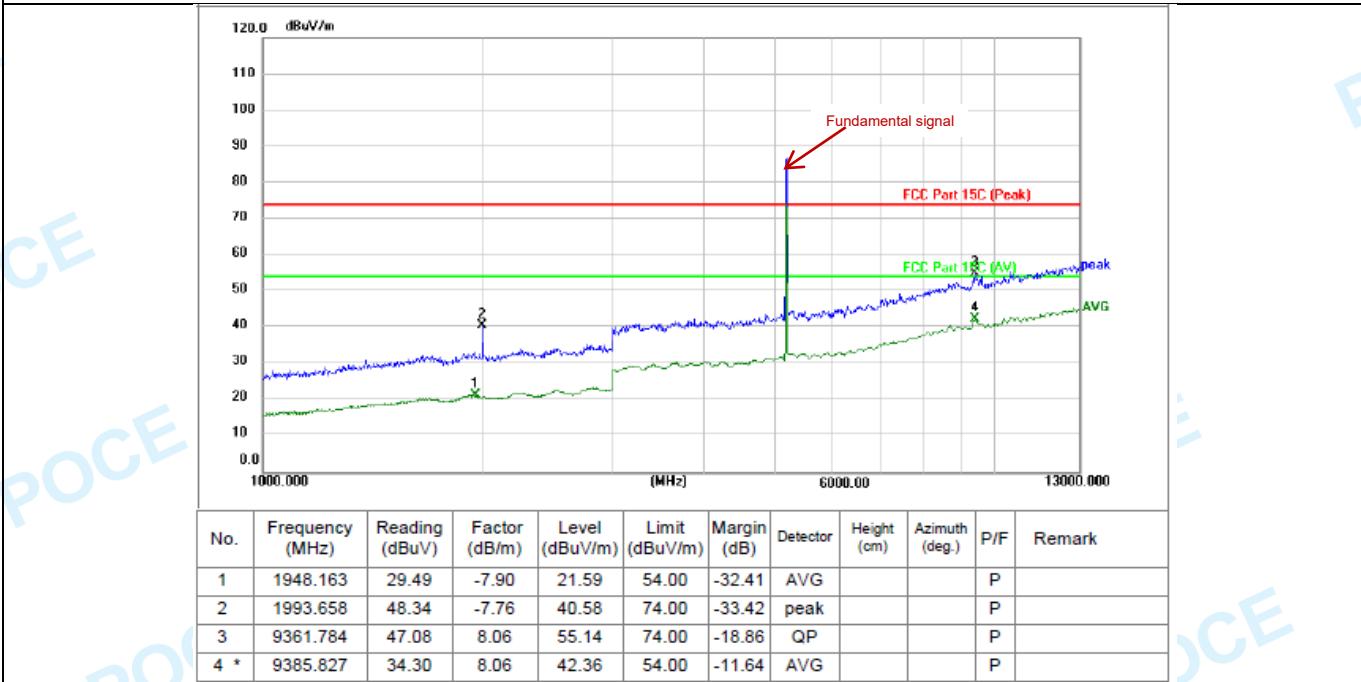

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)																																																																											
Test Limit:	<p>For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.</p> <p>For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.</p>																																																																											
<table border="1"> <thead> <tr> <th>MHz</th><th>MHz</th><th>MHz</th><th>GHz</th></tr> </thead> <tbody> <tr><td>0.090-0.110</td><td>16.42-16.423</td><td>399.9-410</td><td>4.5-5.15</td></tr> <tr><td>¹0.495-0.505</td><td>16.69475-16.69525</td><td>608-614</td><td>5.35-5.46</td></tr> <tr><td>2.1735-2.1905</td><td>16.80425-16.80475</td><td>960-1240</td><td>7.25-7.75</td></tr> <tr><td>4.125-4.128</td><td>25.5-25.67</td><td>1300-1427</td><td>8.025-8.5</td></tr> <tr><td>4.17725-4.17775</td><td>37.5-38.25</td><td>1435-1626.5</td><td>9.0-9.2</td></tr> <tr><td>4.20725-4.20775</td><td>73-74.6</td><td>1645.5-1646.5</td><td>9.3-9.5</td></tr> <tr><td>6.215-6.218</td><td>74.8-75.2</td><td>1660-1710</td><td>10.6-12.7</td></tr> <tr><td>6.26775-6.26825</td><td>108-121.94</td><td>1718.8-1722.2</td><td>13.25-13.4</td></tr> <tr><td>6.31175-6.31225</td><td>123-138</td><td>2200-2300</td><td>14.47-14.5</td></tr> <tr><td>8.291-8.294</td><td>149.9-150.05</td><td>2310-2390</td><td>15.35-16.2</td></tr> <tr><td>8.362-8.366</td><td>156.52475- 156.52525</td><td>2483.5-2500</td><td>17.7-21.4</td></tr> <tr><td>8.37625-8.38675</td><td>156.7-156.9</td><td>2690-2900</td><td>22.01-23.12</td></tr> <tr><td>8.41425-8.41475</td><td>162.0125-167.17</td><td>3260-3267</td><td>23.6-24.0</td></tr> <tr><td>12.29-12.293</td><td>167.72-173.2</td><td>3332-3339</td><td>31.2-31.8</td></tr> <tr><td>12.51975-12.52025</td><td>240-285</td><td>3345.8-3358</td><td>36.43-36.5</td></tr> <tr><td>12.57675-12.57725</td><td>322-335.4</td><td>3600-4400</td><td>(²)</td></tr> <tr><td>13.36-13.41</td><td></td><td></td><td></td></tr> </tbody> </table>				MHz	MHz	MHz	GHz	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	6.31175-6.31225	123-138	2200-2300	14.47-14.5	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	12.57675-12.57725	322-335.4	3600-4400	(²)	13.36-13.41				
MHz	MHz	MHz	GHz																																																																									
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15																																																																									
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46																																																																									
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75																																																																									
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5																																																																									
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2																																																																									
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5																																																																									
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7																																																																									
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4																																																																									
6.31175-6.31225	123-138	2200-2300	14.47-14.5																																																																									
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2																																																																									
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4																																																																									
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12																																																																									
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0																																																																									
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8																																																																									
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5																																																																									
12.57675-12.57725	322-335.4	3600-4400	(²)																																																																									
13.36-13.41																																																																												
¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.																																																																												
² Above 38.6																																																																												
<p>The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.</p> <p>Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:</p>																																																																												
<table border="1"> <thead> <tr> <th>Frequency (MHz)</th><th>Field strength (microvolts/meter)</th><th>Measurement distance (meters)</th></tr> </thead> <tbody> <tr><td>0.009-0.490</td><td>2400/F(kHz)</td><td>300</td></tr> <tr><td>0.490-1.705</td><td>24000/F(kHz)</td><td>30</td></tr> <tr><td>1.705-30.0</td><td>30</td><td>30</td></tr> <tr><td>30-88</td><td>100 **</td><td>3</td></tr> <tr><td>88-216</td><td>150 **</td><td>3</td></tr> <tr><td>216-960</td><td>200 **</td><td>3</td></tr> <tr><td>Above 960</td><td>500</td><td>3</td></tr> </tbody> </table>					Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	0.009-0.490	2400/F(kHz)	300	0.490-1.705	24000/F(kHz)	30	1.705-30.0	30	30	30-88	100 **	3	88-216	150 **	3	216-960	200 **	3	Above 960	500	3																																																
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)																																																																										
0.009-0.490	2400/F(kHz)	300																																																																										
0.490-1.705	24000/F(kHz)	30																																																																										
1.705-30.0	30	30																																																																										
30-88	100 **	3																																																																										
88-216	150 **	3																																																																										
216-960	200 **	3																																																																										
Above 960	500	3																																																																										
Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)																																																																											
Test Limit:	<p>For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.</p> <p>For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.</p>																																																																											
<table border="1"> <thead> <tr> <th>MHz</th><th>MHz</th><th>MHz</th><th>GHz</th></tr> </thead> <tbody> <tr><td>0.090-0.110</td><td>16.42-16.423</td><td>399.9-410</td><td>4.5-5.15</td></tr> <tr><td>¹0.495-0.505</td><td>16.69475-16.69525</td><td>608-614</td><td>5.35-5.46</td></tr> <tr><td>2.1735-2.1905</td><td>16.80425-16.80475</td><td>960-1240</td><td>7.25-7.75</td></tr> <tr><td>4.125-4.128</td><td>25.5-25.67</td><td>1300-1427</td><td>8.025-8.5</td></tr> <tr><td>4.17725-4.17775</td><td>37.5-38.25</td><td>1435-1626.5</td><td>9.0-9.2</td></tr> <tr><td>4.20725-4.20775</td><td>73-74.6</td><td>1645.5-1646.5</td><td>9.3-9.5</td></tr> <tr><td>6.215-6.218</td><td>74.8-75.2</td><td>1660-1710</td><td>10.6-12.7</td></tr> <tr><td>6.26775-6.26825</td><td>108-121.94</td><td>1718.8-1722.2</td><td>13.25-13.4</td></tr> <tr><td>6.31175-6.31225</td><td>123-138</td><td>2200-2300</td><td>14.47-14.5</td></tr> <tr><td>8.291-8.294</td><td>149.9-150.05</td><td>2310-2390</td><td>15.35-16.2</td></tr> <tr><td>8.362-8.366</td><td>156.52475- 156.52525</td><td>2483.5-2500</td><td>17.7-21.4</td></tr> <tr><td>8.37625-8.38675</td><td>156.7-156.9</td><td>2690-2900</td><td>22.01-23.12</td></tr> <tr><td>8.41425-8.41475</td><td>162.0125-167.17</td><td>3260-3267</td><td>23.6-24.0</td></tr> <tr><td>12.29-12.293</td><td>167.72-173.2</td><td>3332-3339</td><td>31.2-31.8</td></tr> <tr><td>12.51975-12.52025</td><td>240-285</td><td>3345.8-3358</td><td>36.43-36.5</td></tr> <tr><td>12.57675-12.57725</td><td>322-335.4</td><td>3600-4400</td><td>(²)</td></tr> <tr><td>13.36-13.41</td><td></td><td></td><td></td></tr> </tbody> </table>					MHz	MHz	MHz	GHz	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	6.31175-6.31225	123-138	2200-2300	14.47-14.5	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	12.57675-12.57725	322-335.4	3600-4400	(²)	13.36-13.41			
MHz	MHz	MHz	GHz																																																																									
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15																																																																									
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46																																																																									
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75																																																																									
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5																																																																									
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2																																																																									
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5																																																																									
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7																																																																									
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4																																																																									
6.31175-6.31225	123-138	2200-2300	14.47-14.5																																																																									
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2																																																																									
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4																																																																									
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12																																																																									
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0																																																																									
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8																																																																									
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5																																																																									
12.57675-12.57725	322-335.4	3600-4400	(²)																																																																									
13.36-13.41																																																																												
¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.																																																																												
² Above 38.6																																																																												
<p>The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.</p> <p>Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:</p>																																																																												
<table border="1"> <thead> <tr> <th>Frequency (MHz)</th><th>Field strength (microvolts/meter)</th><th>Measurement distance (meters)</th></tr> </thead> <tbody> <tr><td>0.009-0.490</td><td>2400/F(kHz)</td><td>300</td></tr> <tr><td>0.490-1.705</td><td>24000/F(kHz)</td><td>30</td></tr> <tr><td>1.705-30.0</td><td>30</td><td>30</td></tr> <tr><td>30-88</td><td>100 **</td><td>3</td></tr> <tr><td>88-216</td><td>150 **</td><td>3</td></tr> <tr><td>216-960</td><td>200 **</td><td>3</td></tr> <tr><td>Above 960</td><td>500</td><td>3</td></tr> </tbody> </table>					Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	0.009-0.490	2400/F(kHz)	300	0.490-1.705	24000/F(kHz)	30	1.705-30.0	30	30	30-88	100 **	3	88-216	150 **	3	216-960	200 **	3	Above 960	500	3																																																
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)																																																																										
0.009-0.490	2400/F(kHz)	300																																																																										
0.490-1.705	24000/F(kHz)	30																																																																										
1.705-30.0	30	30																																																																										
30-88	100 **	3																																																																										
88-216	150 **	3																																																																										
216-960	200 **	3																																																																										
Above 960	500	3																																																																										

Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6
Procedure:	<p>Above 1GHz:</p> <p>a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.</p> <p>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</p> <p>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</p> <p>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</p> <p>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</p> <p>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.</p> <p>g. Test the EUT in the lowest channel, the middle channel, the Highest channel.</p> <p>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</p> <p>i. Repeat above procedures until all frequencies measured was complete.</p> <p>Remark:</p> <ol style="list-style-type: none"> 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

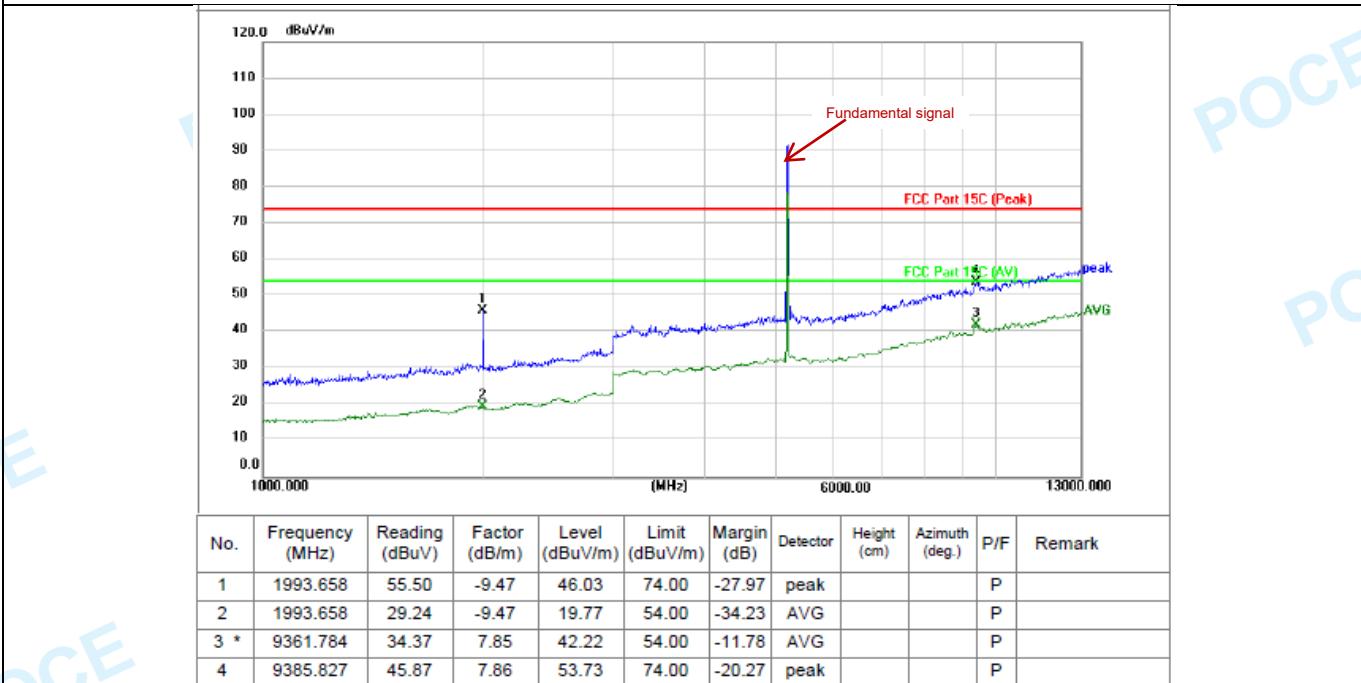
3.8.1 E.U.T. Operation:

Operating Environment:				
Temperature:	22.7 °C	Humidity:	49.8 %	Atmospheric Pressure: 102 kPa
Pre test mode:	TM1			
Final test mode:	TM1			

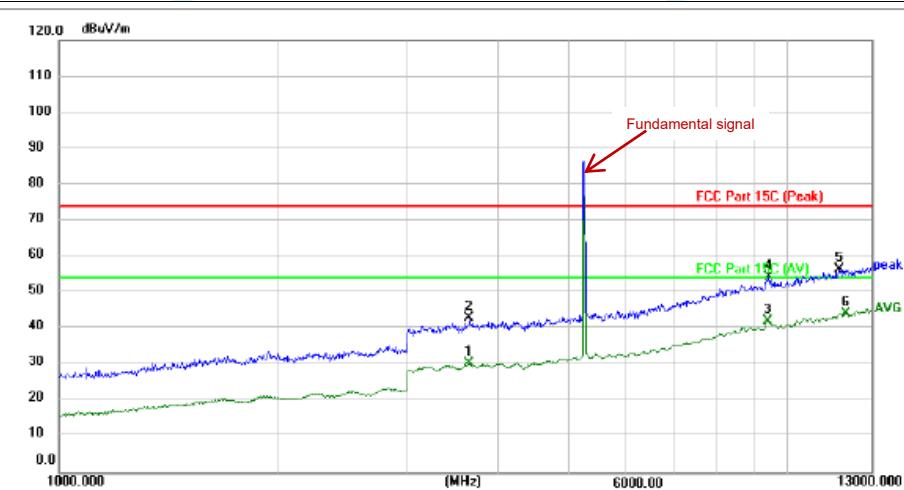
3.8.2 Test Setup Diagram:



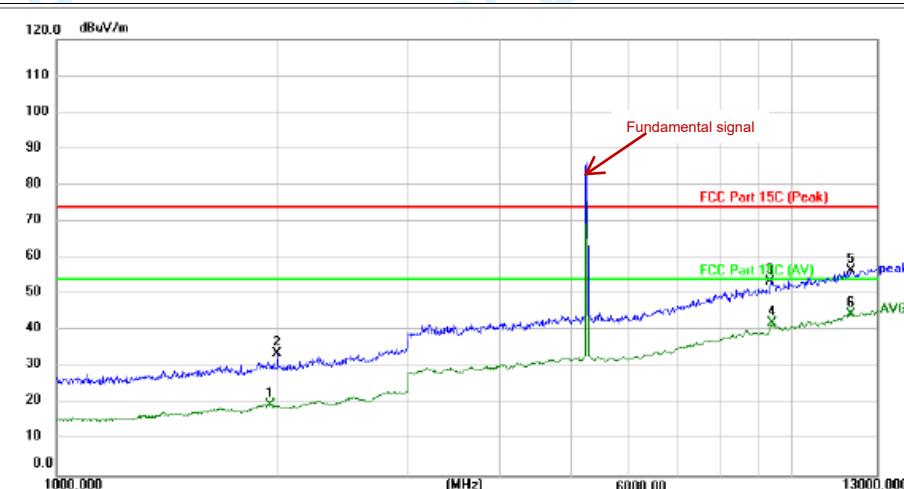
3.8.3 Test Data:


the worst mode and channel are recorded,

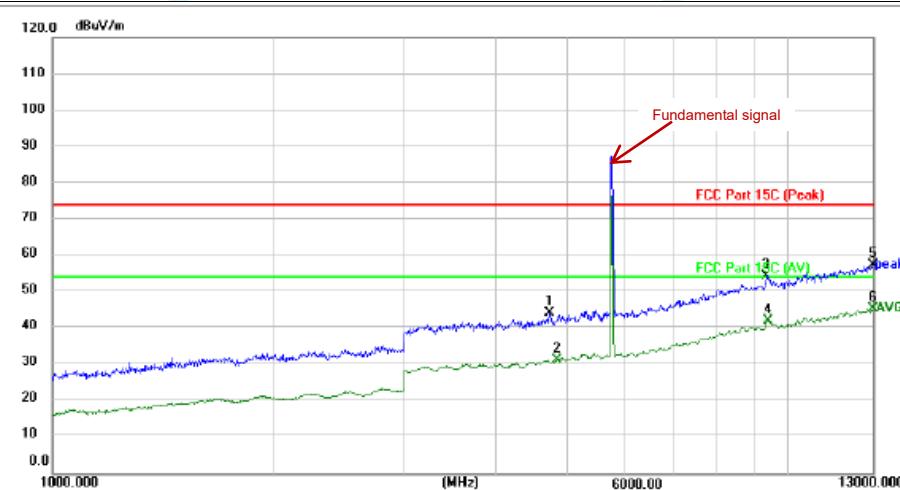
The testing frequency can reach up to 25GHz, but above 13GHz only background waveform, therefore not recorded in the report


TM1 / Polarization: Horizontal / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: L

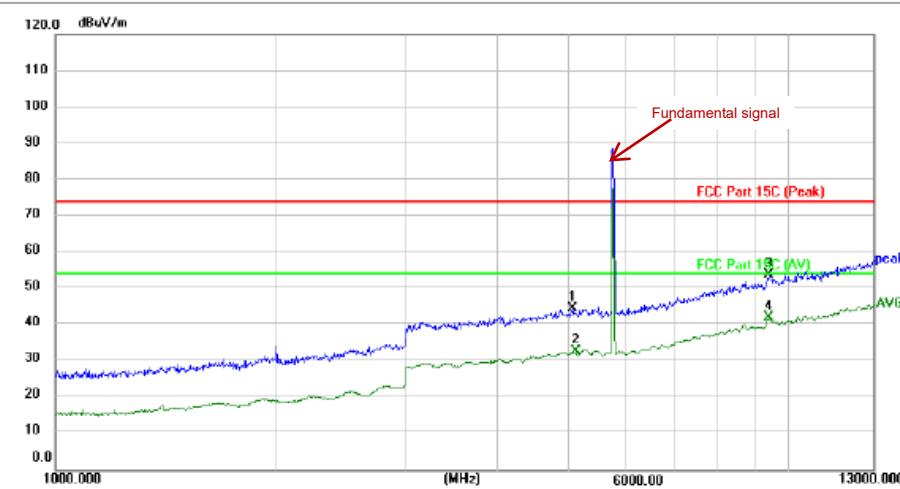
TM1 / Polarization: Vertical / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: L



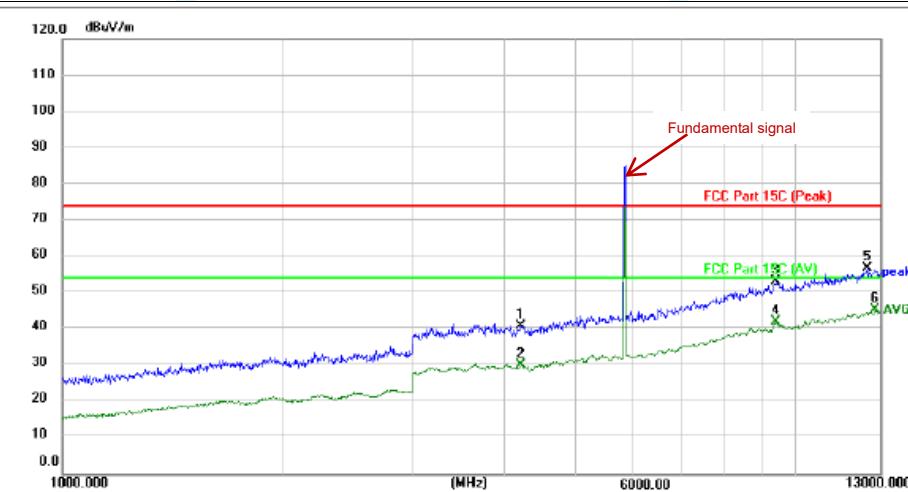
TM1 / Polarization: Horizontal / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	3642.734	33.97	-3.59	30.38	54.00	-23.62	AVG			P	
2	3652.089	46.59	-3.57	43.02	74.00	-30.98	peak			P	
3	9385.827	34.19	8.06	42.25	54.00	-11.75	AVG			P	
4	9409.932	46.24	8.08	54.32	74.00	-19.68	peak			P	
5	11762.498	46.80	9.84	56.64	74.00	-17.36	peak			P	
6 *	11975.597	34.31	10.00	44.31	54.00	-9.69	AVG			P	

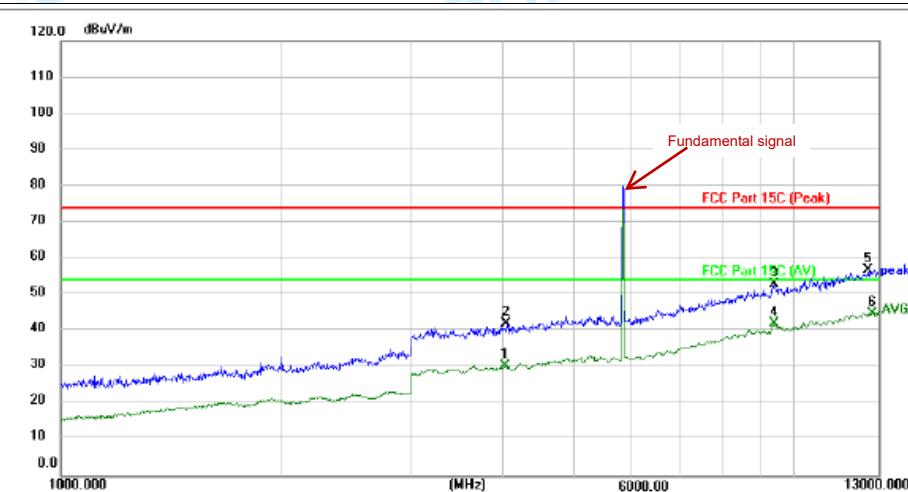
TM1 / Polarization: Vertical / 802.11a-Band: 5180-5240MHz / BW: 20 / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	1953.166	29.28	-9.62	19.66	54.00	-34.34	AVG	150		P	
2	1993.658	43.07	-9.47	33.60	74.00	-40.40	peak	150		P	
3	9337.802	45.73	7.83	53.56	74.00	-20.44	peak	150		P	
4	9385.827	34.15	7.86	42.01	54.00	-11.99	AVG	150		P	
5	11975.597	46.34	10.29	56.63	74.00	-17.37	peak	150		P	
6 *	11975.597	34.35	10.29	44.64	54.00	-9.36	AVG	150		P	

TM1 / Polarization: Horizontal / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4732.054	45.28	-1.15	44.13	74.00	-29.87	peak			P	
2	4854.998	32.13	-0.73	31.40	54.00	-22.60	AVG			P	
3	9337.802	46.32	8.07	54.39	74.00	-19.61	peak			P	
4	9385.827	34.19	8.06	42.25	54.00	-11.75	AVG			P	
5	13000.000	45.60	11.84	57.44	74.00	-16.56	peak			P	
6 *	13000.000	33.61	11.84	45.45	54.00	-8.55	AVG			P	

TM1 / Polarization: Vertical / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5071.380	44.24	0.41	44.65	74.00	-29.35	peak			P	
2	5110.554	32.27	0.44	32.71	54.00	-21.29	AVG			P	
3	9361.784	46.00	7.85	53.85	74.00	-20.15	peak			P	
4 *	9385.827	34.20	7.86	42.06	54.00	-11.94	AVG			P	

TM1 / Polarization: Horizontal / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4216.210	43.49	-2.47	41.02	74.00	-32.98	peak			P	
2	4227.038	32.67	-2.44	30.23	54.00	-23.77	AVG			P	
3	9385.827	45.10	8.06	53.16	74.00	-20.84	peak			P	
4	9385.827	34.08	8.06	42.14	54.00	-11.86	AVG			P	
5	12477.290	45.97	10.98	56.95	74.00	-17.05	peak			P	
6 *	12801.466	33.84	11.52	45.36	54.00	-8.64	AVG			P	

TM1 / Polarization: Vertical / 802.11a-Band: 5725-5850 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4025.977	33.20	-2.88	30.32	54.00	-23.68	AVG			P	
2	4057.075	44.84	-2.77	42.07	74.00	-31.93	peak			P	
3	9361.784	45.04	7.85	52.89	74.00	-21.11	peak			P	
4	9385.827	34.28	7.86	42.14	54.00	-11.86	AVG			P	
5	12605.963	45.65	11.35	57.00	74.00	-17.00	peak			P	
6 *	12768.673	33.32	11.63	44.95	54.00	-9.05	AVG			P	

Remark: Margin = Limit – Level

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

Level=Test receiver reading + correction factor

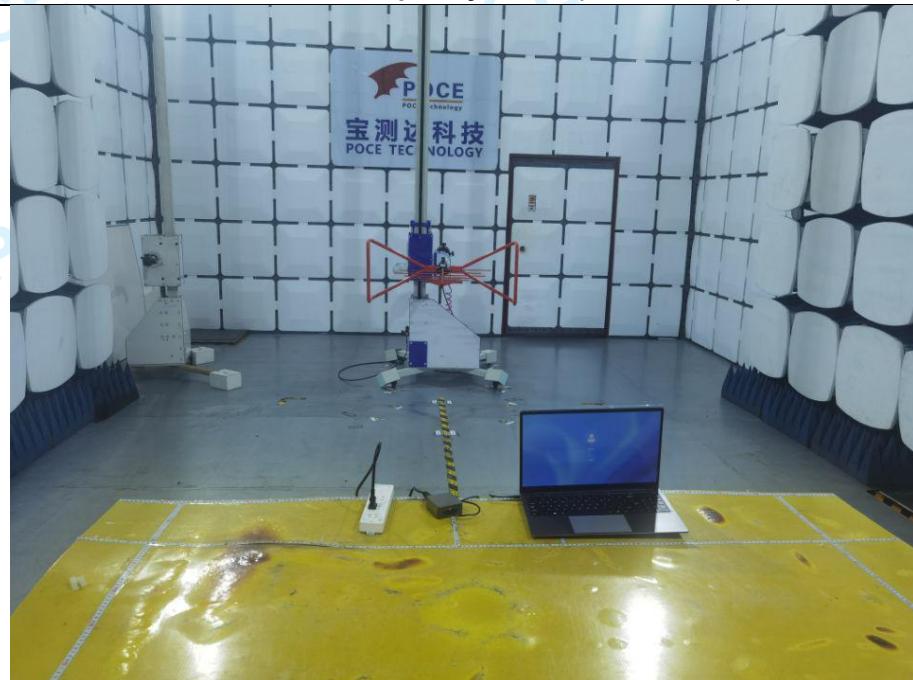
Note:

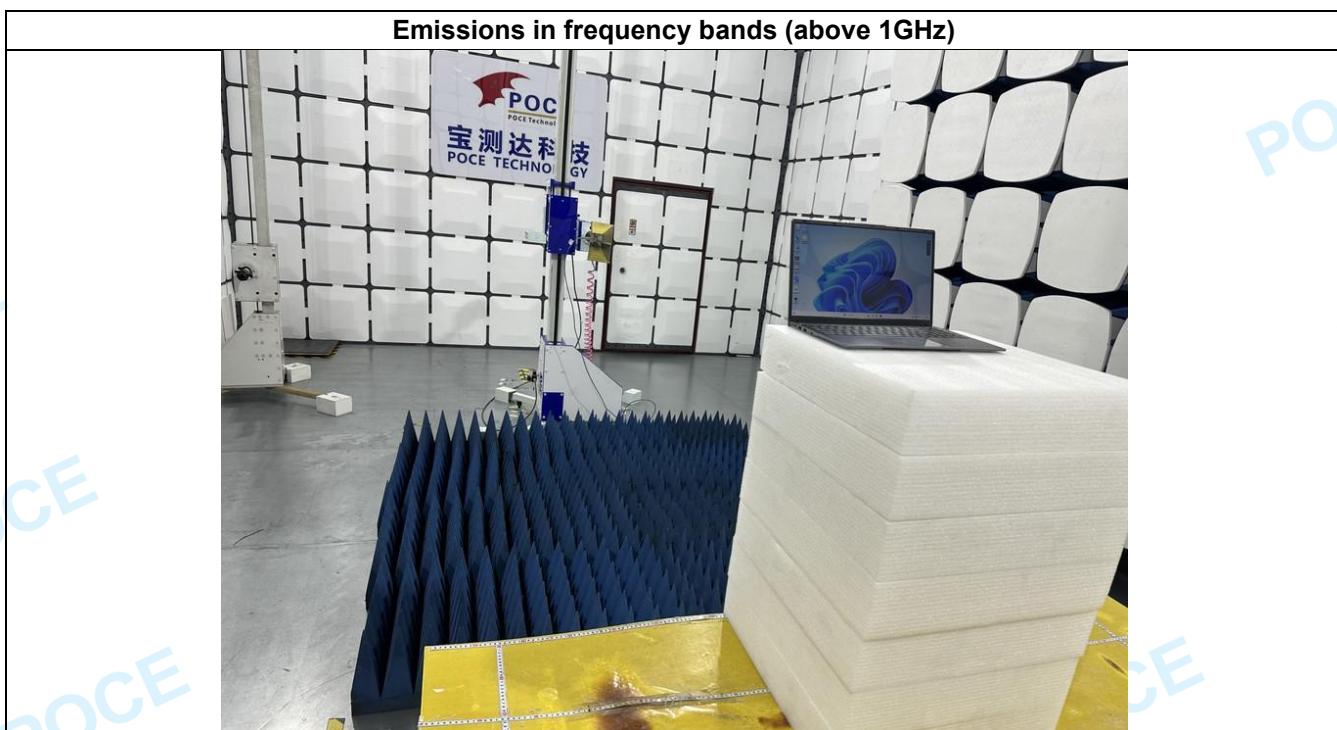
Per ANSI C63.10-2013, if there are two or more antennas, the conducted powers at Core 0, Core 1, ..., Core i were first measured separately, as shown in the section above (this product only have one antenna). The measured values were then summed in linear power units then converted back to dBm.

Sample Multiple antennas Calculation: Core 0 + Core 1 + ... Core i. = MIMO/CDD
(i is the number of antennas)

(#VALUE! mW + XX mW) = #VALUE! mW = XX dBm

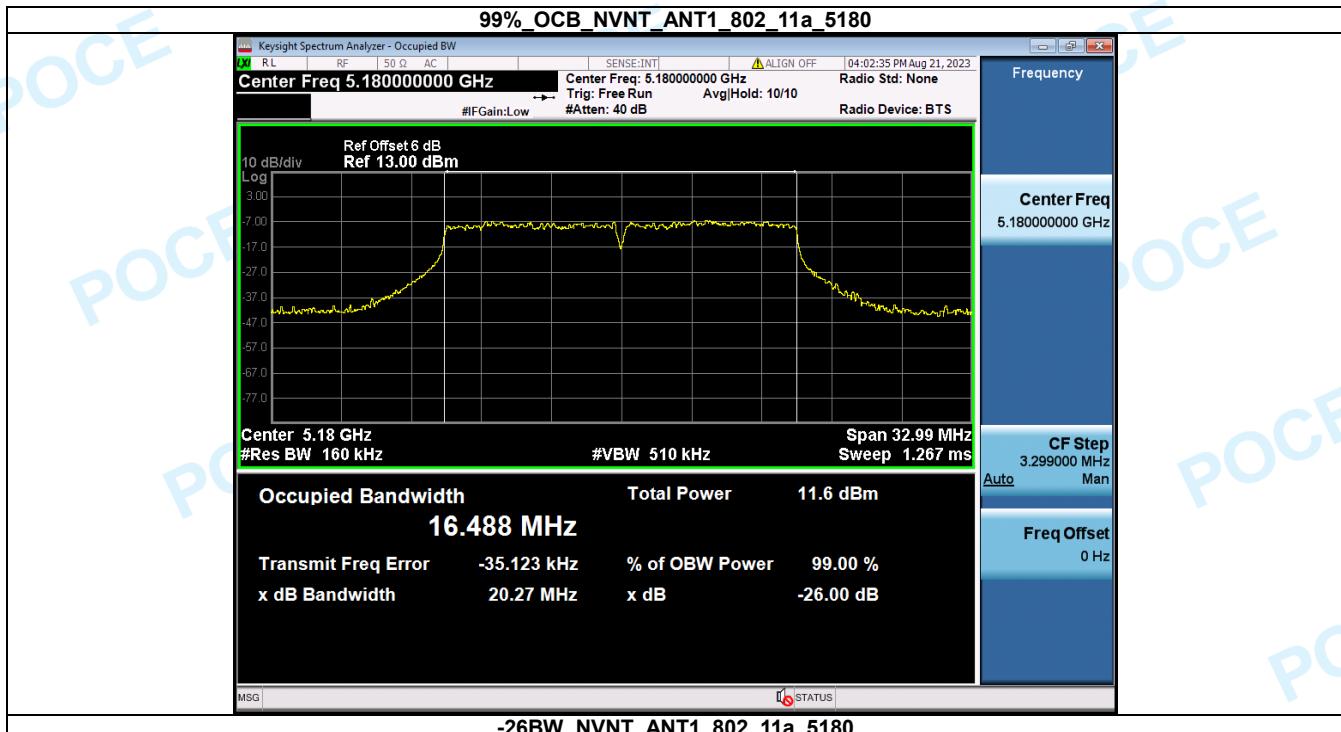
Sample e.i.r.p. Calculation:

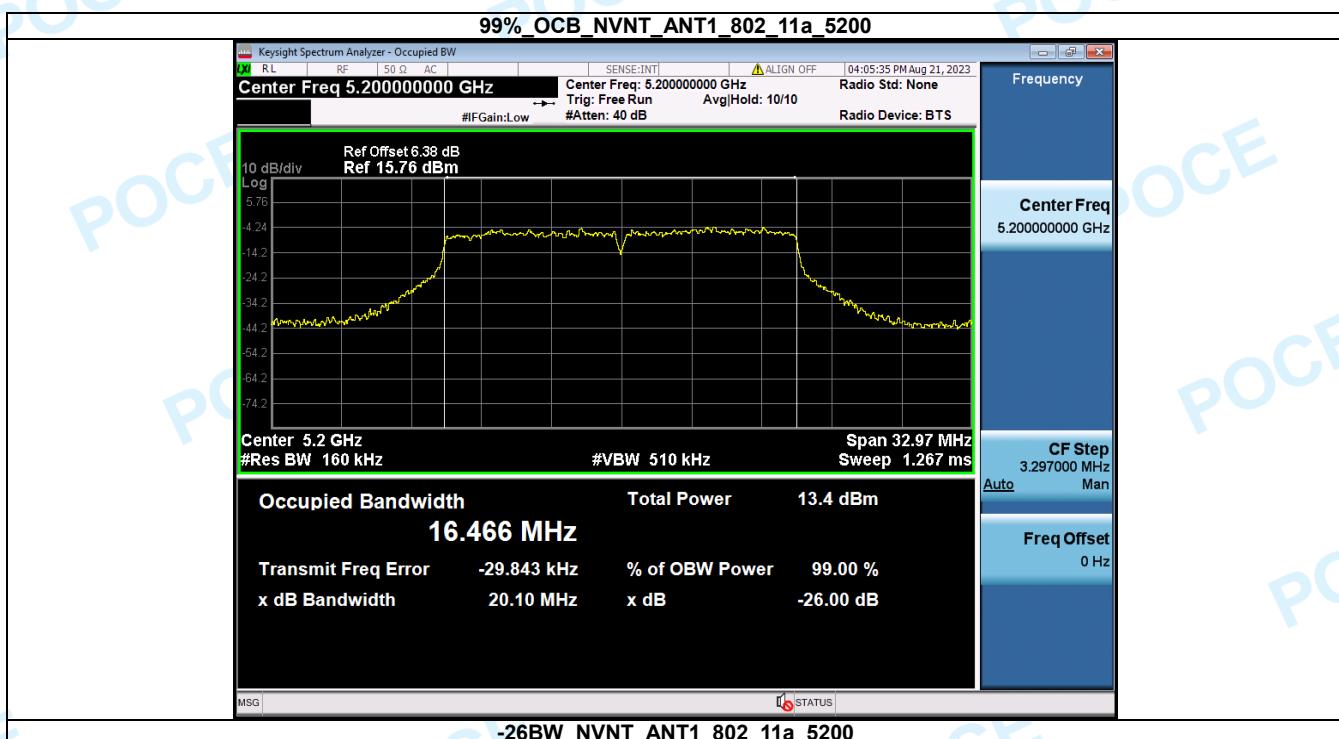
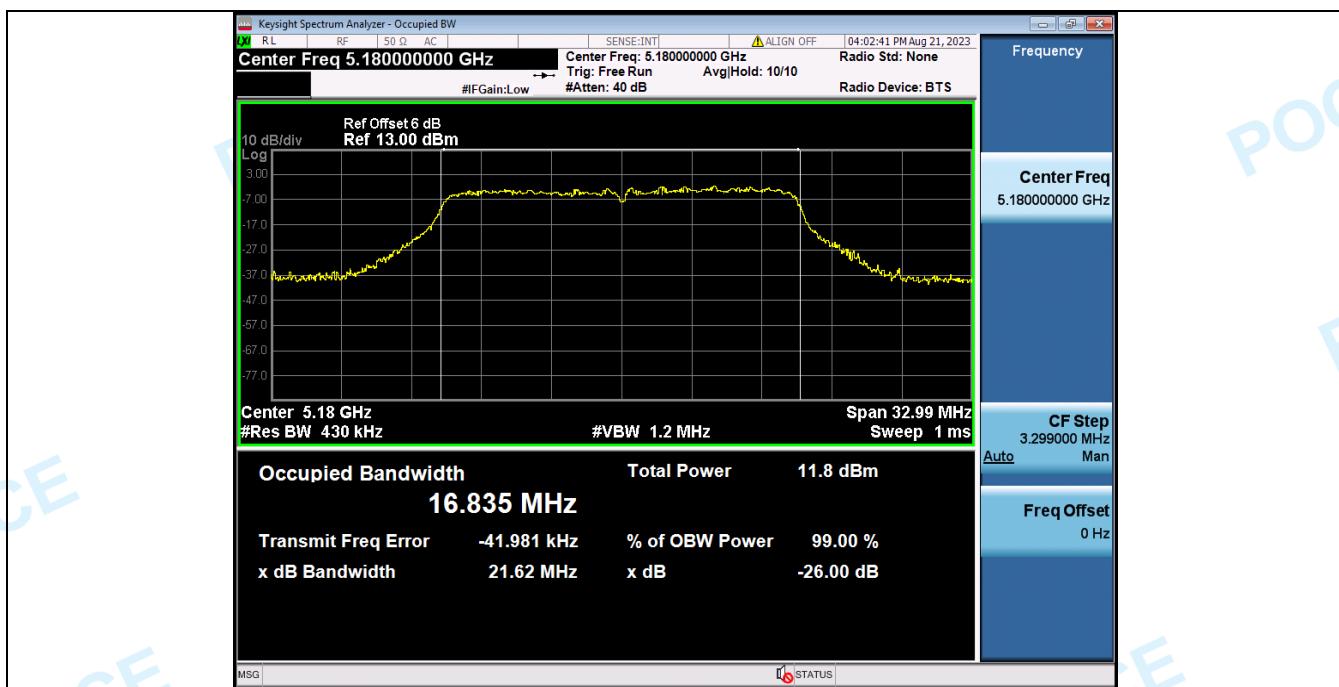

XX dBm = Conducted Power (dBm) + Ant gain (dBi)

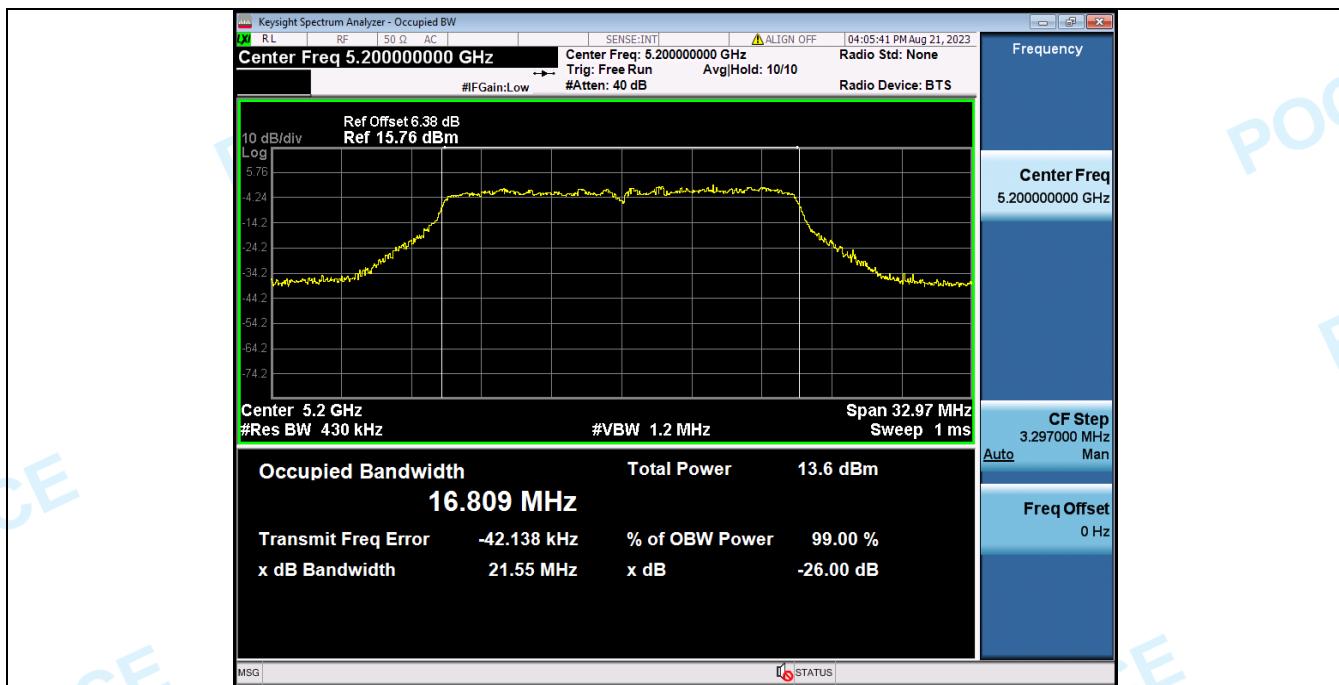

4 TEST SETUP PHOTOS

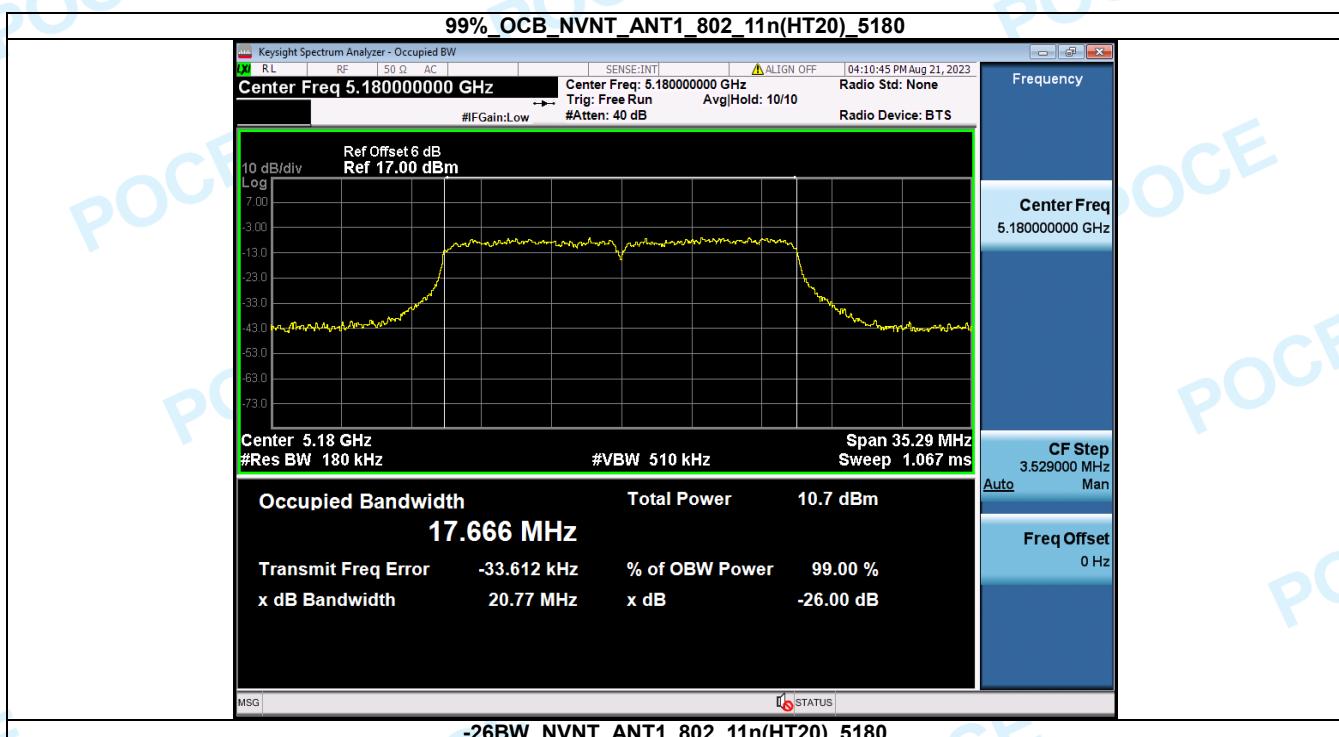
Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)


5 PHOTOS OF THE EUT



Please refer to report No.: POCE230811187TRW for details.


Appendix-5.2G


1. -26dB and 99% Emission Bandwidth


Condition	Antenna	Modulation	Frequency(MHz)	-26dB_Emission_Bandwidth(MHz)	Occupied Bandwidth(MHz)
NVNT	ANT1	802.11a	5180.00	21.62	16.49
NVNT	ANT1	802.11a	5200.00	21.55	16.47
NVNT	ANT1	802.11a	5240.00	21.72	16.50
NVNT	ANT1	802.11n(HT20)	5180.00	21.36	17.67
NVNT	ANT1	802.11n(HT20)	5200.00	21.36	17.60
NVNT	ANT1	802.11n(HT20)	5240.00	21.36	17.64
NVNT	ANT1	802.11ac(VHT20)	5180.00	22.01	17.67
NVNT	ANT1	802.11ac(VHT20)	5200.00	21.46	17.67
NVNT	ANT1	802.11ac(VHT20)	5240.00	22.01	17.69
NVNT	ANT1	802.11n(HT40)	5190.00	42.88	36.19
NVNT	ANT1	802.11n(HT40)	5230.00	43.05	36.20
NVNT	ANT1	802.11ac(VHT40)	5190.00	43.54	36.24
NVNT	ANT1	802.11ac(VHT40)	5230.00	43.07	36.25
NVNT	ANT1	802.11ac(VHT80)	5210.00	82.82	75.62

