

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201010005

FCC REPORT

Applicant: UbiqiSense Aps

Address of Applicant: Bryghusgade 8, DK-1473 Copenhagen K, Denmark

Equipment Under Test (EUT)

Product Name: Wireless Object Detector

Model No.: UC2-N, UC2-W

Trade mark: Ubiqisense

FCC ID: 2AXKGUC2NW

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 27 Oct., 2020

Date of Test: 28 Oct., to 25 Nov., 2020

Date of report issued: 26 Nov., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	26 Nov., 2020	Original

Tested by: 26 Nov., 2020 Date:

Winner Thang Reviewed by: Date: 26 Nov., 2020

Project Engineer

3 Contents

		'	Page
1	C	OVER PAGE	1
2	V	ERSION	2
3	C	ONTENTS	3
4		EST SUMMARY	
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E. U.T.	
	5.3	TEST MODE AND TEST SAMPLES PLANS	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	6
	5.7	DESCRIPTION OF CABLE USED	
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	6
	5.10	LABORATORY LOCATION	6
	5.11	TEST INSTRUMENTS LIST	
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	
	J		
7	TI	EST SETUP PHOTO	21
Ω	E	IIT CONSTRUCTIONAL DETAILS	22

Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass
Pomark:	•	

- 1. Pass: The EUT complies with the essential requirements in the standard.
- N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	UbiqiSense Aps
Address:	Bryghusgade 8, DK-1473 Copenhagen K, Denmark
Manufacturer:	SHENZHEN XUANTONGWEI TECHNOLOGY CO., LTD.
Address:	Rm301, Building 4, Shenzhen Software Park, Kejizhong 2nd Road, HI-TECH PARK, Nanshan District, Shenzhen City, China.
Factory:	XUANTONGWEI (CHONGQING) ELECTRONICS TECHNOLOGY CO., LTD.
Address:	Building 11, Phase 2, Jinfeng Electronic Information Industry Park, Jiulongpo District, Chongqing, China

5.2 General Description of E.U.T.

Product Name:	Wireless Object Detector
Model No.:	UC2-N, UC2-W
AC adapter:	Model: CW1201000RE
	Input: AC100-240V, 50/60Hz, 0.4A
	Output: DC 12V, 1A
Remark:	Model: UC2-N and UC2-W are the same internally, with the same circuit design, layout, components used and internal wiring. The only difference is the camera:
	UC2-N uses a standard camera
	UC2-W uses a wide-angle camera
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode and test samples plans

Operating mode	Detail description	
Working mode	Keep the EUT in Working mode	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty		
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)		
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)		

Report No: JYTSZE201010005

5.5 Description of Support Units

N/A

5.6 Related Submittal(s)/ Grant(s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

N/A

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

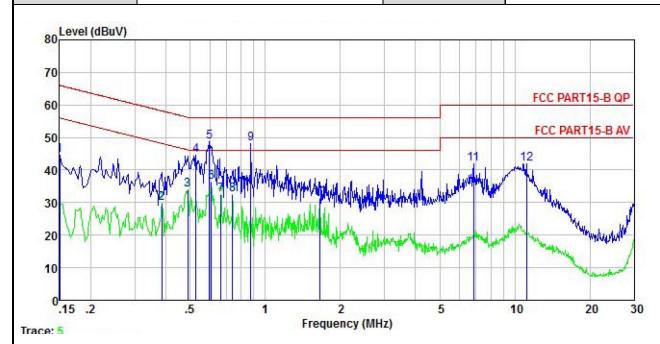
5.11 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Manufacturer Model No. Serial No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
	OOTTWARZDLOR	DDITA 3170	DDI1A3170302	11-18-2020	11-17-2021		
EMI Test Software	AUDIX	E3	Version: 6.110919b				
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
Opectrum analyzer	Ronac a conwarz	10140	100000	11-18-2020	11-17-2021		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021		

Conducted Emission:								
Test Equipment	Manufacturer	ufacturer Model No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021			
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021			
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021			
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021			
Cable	HP	10503A	N/A	03-05-2020	03-04-2021			
EMI Test Software	AUDIX	E3	Version: 6.110919b					

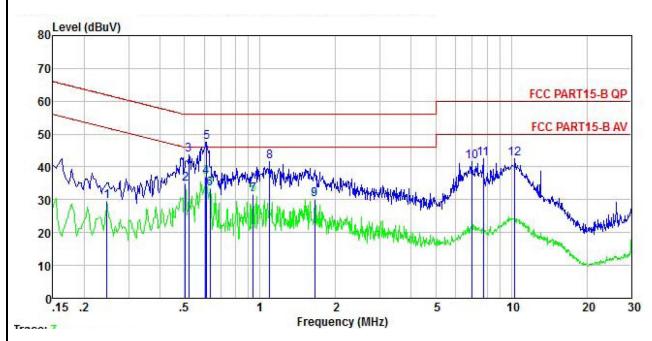
6 Test results and Measurement Data

6.1 Conducted Emission


Test Requirement:	FCC Part 15 B Section 15.107					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)	Limit	(dBµV)			
	, , ,	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	0.5-30	60	50			
	* Decreases with the logarithm	of the frequency.				
Test setup:	Reference Plane					
Toologoodage	AUX Equipment E.U.T Remark EUT: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 					
Test Instruments:	Refer to section 5.11 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement data:

Product name:	Wireless Object Detector	Product model:	UC2-N	
Test by:	ΥΤ	Test mode:	Working mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%	


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	₫B	₫B	₫B	dBu₹	₫₿uѶ	<u>d</u> B	
1 2 3 4 5 6 7 8	0.150	34.44	-0.57	0.01	10.78	44.66		-21.34	
2	0.385	19.68	-0.49	-0.05	10.72	29.86			Average
3	0.489	23.61	-0.44	0.02	10.76	33.95	46.19	-12.24	Average
4	0.527	34.14	-0.45	0.03	10.76	44.48	56.00	-11.52	QP
5	0.598	38.43	-0.48	0.04	10.77	48.76	56.00	-7.24	QP
6	0.608	26.04	-0.49	0.04	10.77	36.36	46.00	-9.64	Average
7	0.665	22.26	-0.51	0.04	10.77	32.56		-13.44	Average
8	0.739	22.15	-0.54	0.05	10.79	32.45	46.00	-13.55	Average
9	0.876	37.90	-0.59	0.06	10.83	48.20	56.00	-7.80	QP
10	1.654	20.65	-0.54	0.15	10.94	31.20	46.00	-14.80	Average
11	6.841	30.86	-0.55	0.83	10.80	41.94		-18.06	
12	11.139	29.89	-0.72	1.85	10.93	41.95		-18.05	350 T T S V

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Product name:	Wireless Object Detector	Product model:	UC2-N
Test by:	YT	Test mode:	Working mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp:22.5℃ Huni:55%

	Freq	Read Level		Aux Factor		Level	Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu∜	<u>dB</u>	<u>d</u> B	<u>ab</u>	dBu∇	dBu∀	<u>ab</u>	
1	0.246	19.42	-0.67	0.01	10.75	29.51	51.91	-22.40	Average
2	0.505	24.61	-0.65	0.03	10.76	34.75	46.00	-11.25	Average
3	0.521	33.52	-0.65	0.03	10.76	43.66	56.00	-12.34	QP
4	0.608	26.70	-0.64	0.04	10.77	36.87	46.00	-9.13	Average
5	0.614	37.48	-0.64	0.04	10.77	47.65	56.00	-8.35	QP
1 2 3 4 5 6 7 8 9	0.634	23.21	-0.64	0.04	10.77	33.38	46.00	-12.62	Average
7	0.938	21.34	-0.67	0.07	10.85	31.59	46.00	-14.41	Average
8	1.094	31.20	-0.68	0.09	10.88	41.49	56.00	-14.51	QP
9	1.654	19.83	-0.70	0.15	10.94	30.22	46.00	-15.78	Average
10	6.951	30.82	-0.75		10.80	41.71		-18.29	
11	7.728	31.41	-0.76		10.84	42.48	60.00	-17.52	QP
12	10.342	30.75	-0.79	1.54	10.94	42.44	60.00	-17.56	QP

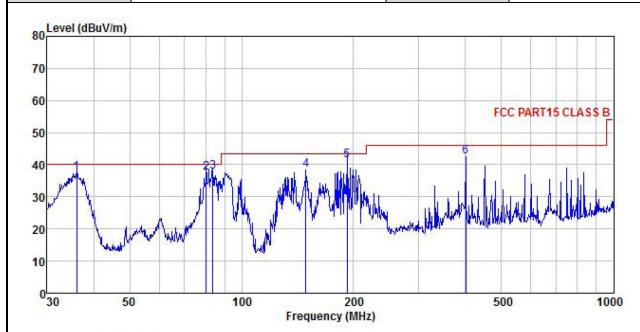
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- $2. \ \ \, {\it Quasi-Peak} \ and \ {\it Average} \ {\it measurementwere} \ performed \ at the \ {\it frequencies} \ with \ {\it maximized} \ peak \ emission.$
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

6.2 Radiated Emissio	11						
Test Requirement:	FCC Part 15 B Se	ection 15.10)9				
Test Frequency Range:	30MHz to 6000MH	Ηz					
Test site:	Measurement Dis	tance: 3m	(Semi	i-Anechoic (Chamber)		
Receiver setup:	Frequency Detector RBW VBW			VBW	Remark		
·	30MHz-1GHz Quasi-pe		eak 120kHz		300kHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MHz	Peak Value	
		RMS	1.50	1MHz	3MHz	Average Value	
Limit:	Frequenc 30MHz-88M		LIM	nit (dBuV/m 40.0	@3m)	Remark Quasi-peak Value	
	88MHz-216N			43.5		Quasi-peak Value	
	216MHz-960			46.0		Quasi-peak Value	
	960MHz-1G			54.0		Quasi-peak Value	
	Above 1GI	Н		54.0		Average Value	
	Above 1GI	1 12		74.0		Peak Value	
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m		RFT			
	AE EUT Horn Antenna Tower AIT (Turntable) Ground Reference Plane Test Receiver Amplifer Controller						
Test Procedure:	ground at a 3 n degrees to detect to	neter semi- ermine the set 3 meters inted on the eight is varion mine the m	anech positions s awa e top ed from naxim	noic camber on of the hig y from the in of a variable om one mete um value of	. The table table the table ta	e-receiving antenna, ntenna tower. meters above the	

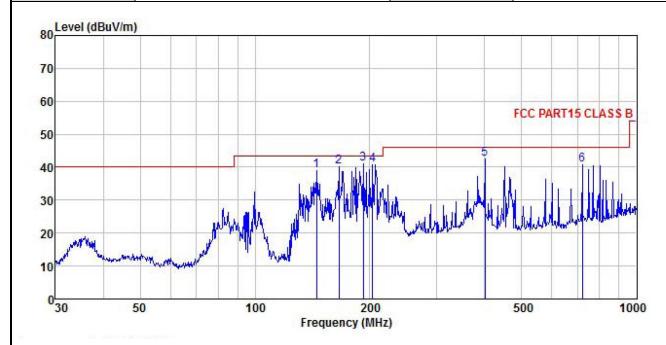
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded



Measurement Data:

Below 1GHz:

Product Name:	Wireless Object Detector	Product Model:	UC2-N		
Test By:	YT	Test mode:	Working mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%		

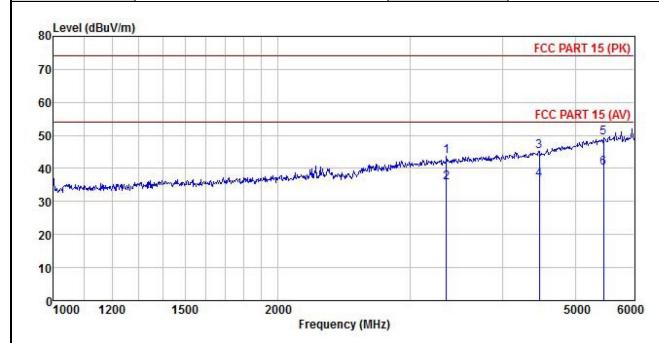

	Freq		Antenna Factor					Limit Line	Over Limit	Remark
_	MHz	—dBu⊽	<u>d</u> B/m	<u>d</u> B		<u>d</u> B	dBuV/m	$\overline{dB}\overline{u}\overline{V}/\overline{m}$		
1	36.001	54.46	12.64	0.34	0.00	29.94	37.50	40.00	-2.50	QP
2	80.362	53.94	12.73	0.47	0.00	29.64	37.50	40.00	-2.50	QP
2 3 4	83.816	54.96	11.88	0.48	0.00	29.61	37.71	40.00	-2.29	QP
4	148.963	52.85	14.22	0.61	0.00	29.23	38.45	43.50	-5.05	QP
5	192.419	51.86	17.60	0.71	0.00	28.88	41.29	43.50	-2.21	QP
6	400.432	51.19	19.10	0.99	0.00	28.78	42.50	46.00	-3.50	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Wireless Object Detector	Product Model:	UC2-N
Test By:	YT	Test mode:	Working mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%

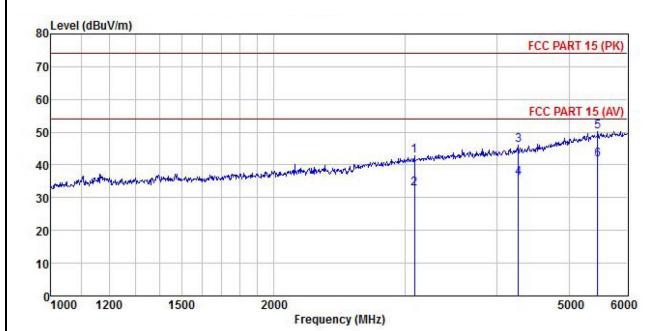
	Freq		Antenna Factor					Limit Line	Over Limit	Remark
2	MHz	dBu∜	— <u>d</u> B/π	<u>ab</u>	<u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dB}\overline{uV/m}$	<u>ab</u>	
1	144.842	53.56	13.90	0.61	0.00	29.25	38.82	43.50	-4.68	QP
2	166.068	52.71	15.80	0.65	0.00	29.08	40.08	43.50	-3.42	QP
3	192.419	51.63	17.60	0.71	0.00	28.88	41.06	43.50	-2.44	QP
4	203.523	50.52	18.32	0.72	0.00	28.81	40.75	43.50	-2.75	QP
5	400.432	51.16	19.10	0.99	0.00	28.78	42.47	46.00	-3.53	QP
6	721.726	47.49	20.55	1.34	0.00	28.58	40.80	46.00	-5.20	QP


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	Wireless Object Detector	Product Model:	UC2-N
Test By:	YT	Test mode:	Working mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%

	Freq		Factor				Level	Limit	Limit	Remark	
	MHz	dBu₹	dB/m	₫B	<u>d</u> B	dB	dBuV/m	dBuV/m	dB		-
1 2 3 4 5 6	4474.304 4474.304	49.09 41.25 48.65 39.99 49.32 40.16		5.19 5.19 6.11 6.11 6.96 6.96	2.12 2.34 2.34 2.64	42.03 42.03 41.85	35.82 45.13 36.47 49.27	74.00 54.00 74.00	-18.18 -28.87 -17.53 -24.73	Average Peak Average	

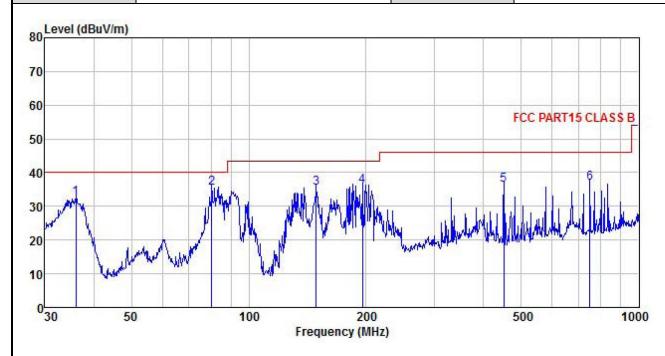

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Wireless Object Detector	Product Model:	UC2-N
Test By:	YT	Test mode:	Working mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

	Freq		Antenna Factor					Limit Line	Over Limit	Remark
	MHz	—dBu⊽	— <u>d</u> B/m	<u>ab</u>	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m		
1	3091.412	48.76	28.46	4.97	1.95	41.46	42.68	74.00	-31.32	Peak
2	3091.412	38.73	28.46	4.97	1.95	41.46	32.65	54.00	-21.35	Average
3	4270.150	49.85	29.74	5.97	2.29	41.86	45.99	74.00	-28.01	Peak
4	4270.150	39.86	29.74	5.97	2.29	41.86	36.00	54.00	-18.00	Average
5	5467.271	50.32	32.23	6.97	2.65	41.84	50.33	74.00	-23.67	Peak
6	5467.271	41.53	32.23	6.97	2.65	41.84	41.54	54.00	-12.46	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

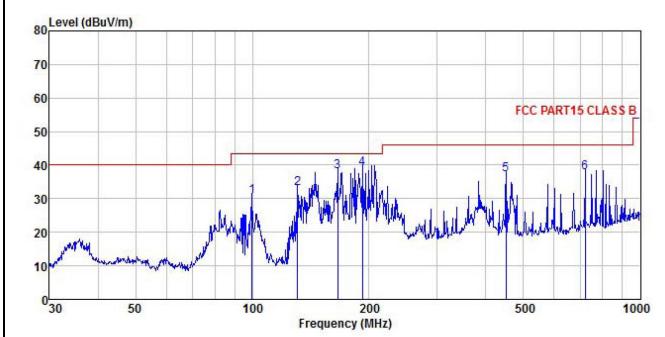


Measurement Data:

Below 1GHz:

Product Name:	Wireless Object Detector	Product Model:	UC2-W
Test By:	YT	Test mode:	Working mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

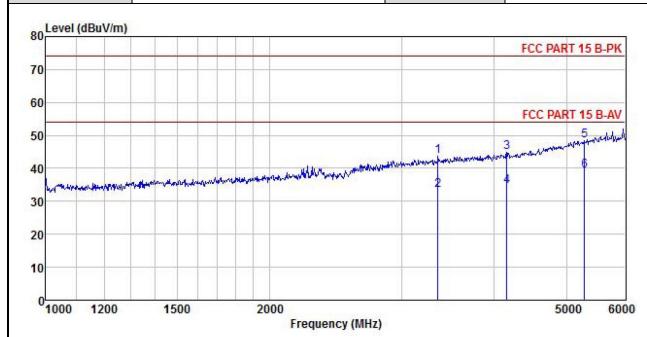
	Freq		Antenna Factor					Limit Line	Over Limit	Remark
-	MHz	——dBu₹	— <u>dB</u> /m	<u>d</u> B		<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	āB	
1	36.001	49.46	12.64	0.34	0.00	29.94	32.50	40.00	-7.50	QP
2	80.362	51.94	12.73	0.47	0.00	29.64	35.50	40.00	-4.50	QP
2	148.963	49.85	14.22	0.61	0.00	29.23	35.45	43.50	-8.05	QP
4	195.822	46.15	17.87	0.71	0.00	28.86	35.87	43.50	-7.63	QP
5	451.135	45.02	19.21	1.05	0.00	28.87	36.41	46.00	-9.59	QP
6	750.108	43.50	20.60	1.35	0.00	28.48	36.97	46.00	-9.03	QP


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Wireless Object Detector	Product Model:	UC2-W
Test By:	YT	Test mode:	Working mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	99.878	50.82	8.80	0.52	0.00	29.53	30.61	43.50	-12.89	QP
2	130.837	49.55	12.11	0.59	0.00	29.32	32.93	43.50	-10.57	QP
3	166.068	50.71	15.80	0.65	0.00	29.08	38.08	43.50	-5.42	QP
4	192.419	49.63	17.60	0.71	0.00	28.88	39.06	43.50	-4.44	QP
5	451.135	45.90	19.21	1.05	0.00	28.87	37.29	46.00	-8.71	QP
6	721.726	44.49	20.55	1.34	0.00	28.58	37.80	46.00	-8.20	QP

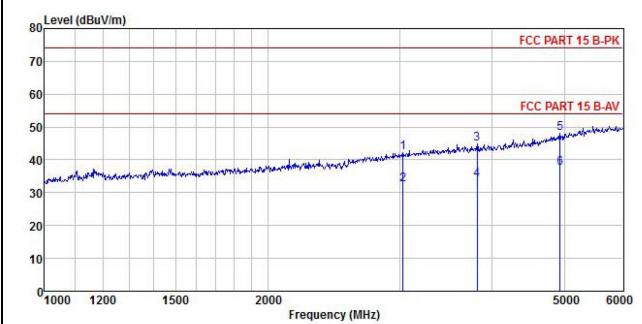

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	Wireless Object Detector	Product Model:	UC2-W
Test By:	YT	Test mode:	Working mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

	Freq		Intenna Factor			Preamp Factor		Limit Line		Remark
	MHz	dBu⊽	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
1	3361.213	49.09	28.62	5.19	2.12	41.36	43.66	74.00	-30.34	Peak
2	3361.213	38.65	28.62	5.19	2.12	41.36	33.22	54.00	-20.78	Average
3	4155.390	48.91	29.56	5.89	2.26	41.81	44.81	74.00	-29.19	Peak
4	4155.390	38.76	29.56	5.89	2.26	41.81	34.66	54.00	-19.34	Average
5	5289.370	49.13	31.83	6.81	2.60	41.91			-25.54	
6	5289.370	39.86	31.83	6.81	2.60	41.91	39.19	54.00	-14.81	Average

Remark:


^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Wireless Object Detector	Product Model:	UC2-W
Test By:	YT	Test mode:	Working mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%

	Freq		ntenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/π	₫B	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	3031.837	48.45	28.42	4.92	1.92	41.49	42.22	74.00	-31.78	Peak
2	3031.837	38.77	28.42	4.92	1.92	41.49	32.54			Average
3	3814.411	49.75	29.08	5.60	2.20	41.79			-29.16	
4	3814.411	38.79	29.08	5.60	2.20	41.79	33.88	54.00	-20.12	Average
5	4931.516	49.82	31.05	6.50	2.48	41.86	47.99		-26.01	
6	4931.516	39.45	31.05	6.50	2.48	41.86	37.62	54.00	-16.38	Average

 $^{1.\} Final\ Level = Receiver\ Read\ level + Antenna\ Factor\ +\ Cable\ Loss -\ Preamplifier\ Factor.$

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.