## **Overview**

The Wi-Fi module is a 2.4GHz IEEE 802.11b/g/n Wi-Fi single chip solution with standard security features. With optimized power and RF performance, robustness, versatility, reliability, various power profiles, full features and functions, the chip is designed for a wide variety of applications, including Smart home, Wearable devices and IoT (Internet of Things).

It integrates a 32-bit microcontroller, 802.11b/g/n Wi-Fi baseband, a 2.4GHz RF transceiver with antenna switch, RF balun, PA (power amplifier), LNA (low noise receive amplifier) and filters, ample memory space, a general-purpose ADC(Analog-to-Digital Converter), 6-channel PWM(Pulse Width Modulation), flexible I/O interfaces, and multi-stage power management module. With the highly-integrated SoC, few external components and minimal PCB(Printed Circuit Board) area are needed to build Wi-Fi applications.

The Wi-Fi module has many features of the state-of-the-art low power chips, such as good resolution clock gating, advanced management of multi-stage power modes, and dynamic power scaling.

The Wi-Fi module CMOS for single-chip fully-integrated radio and Baseband, and also integrates advanced calibration circuitries that allow the solution to dynamically adjust itself to remove external circuit imperfections or adjust to changes in external conditions.

| Operation Frequency: | IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz                    |
|----------------------|---------------------------------------------------------------|
|                      | IEEE 802.11n(HT40): 2422MHz to 2452MHz                        |
| Channel Numbers:     | IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels                |
|                      | IEEE 802.11n HT40: 7 Channels                                 |
| Channel Separation:  | 5MHz                                                          |
| Type of Modulation:  | IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)                       |
|                      | IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)              |
|                      | IEEE for 802.11n(HT20 and HT40): OFDM (64QAM,16QAM,QPSK,BPSK) |
| Transfer Rate:       | IEEE for 802.11b:                                             |
|                      | 1Mbps/2Mbps/5.5Mbps/11Mbps                                    |
|                      | IEEE for 802.11g:                                             |
|                      | 6Mbps/9Mbps/12Mbps/18Mbps/24Mbps/36Mbps/48Mbps/54Mbps         |

|                     | IEEE for 802.11n(HT20):<br>6.5Mbps/13Mbps/19.5Mbps/26Mbps/39Mbps/52Mbps/58.5Mbps/65Mbps<br>IEEE for 802.11n(HT40):<br>13.5Mbps/27Mbps/40.5Mbps/54Mbps/81Mbps/108Mbps/121.5Mbps/135Mbps |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antenna Type:       | PCB antenna                                                                                                                                                                            |
| Antenna Gain:       | 0dBi                                                                                                                                                                                   |
| Power Supply:       | DC 3.3V                                                                                                                                                                                |
| RF Chip:            | TR6260-S1                                                                                                                                                                              |
| Crystal oscillator: | 40MHz                                                                                                                                                                                  |

## **Transmitter Operational Description**

The 2.4 GHz transmitter up-converts the quadrature baseband signals to the 2.4 GHz RF signal, and drives the antenna with a high powered Complementary Metal Oxide Semiconductor (CMOS) power amplifier. The use of digital calibration further improves the linearity of the power amplifier, enabling state-of-the-art performance of delivering +18.5 dBm of average power for 802.11b transmission and +14 dBm for 802.11n transmission. Additional calibrations are integrated to cancel any imperfections of the radio, such as:

- Carrier leakage
- I/Q phase matching
- Baseband nonlinearities
- RF nonlinearities
- Antenna matching

These built-in calibration routines reduce the amount of time and required for product test and make test equipment unnecessary

## **Receiver Operational Description**

The 2.4 GHz receiver down-converts the 2.4 GHz RF signal to quadrature baseband signals and converts them to the digital domain with 2 high-resolution, high-speed ADCs. To adapt to varying signal channel conditions, RF filters, Automatic Gain Control (AGC), DC offset cancellation circuits and baseband filters are integrated within Wi-Fi Module.