

FCC TEST REPORT

Applicant Name : EPIC SYSTEMS CO., LTD.
Brand Name : N/A
Applicant Address : Technology Development Center RM. 406, Gyeonggi
: Technopark, 705, Haean-ro, Sangnok-gu, Ansan-si,
Gyeonggi-do, Republic Of Korea
FCC ID : 2AXFW-ES-F9000K
Products Name : DIGITAL DOOR LOCK
Model No. : ES-F9000K
Variant Model No. : N/A
Products Manufacturer : EPIC SYSTEMS CO., LTD.
Test Standard : FCC CFR 47 Part 15 Subpart C
Test Method : KDB 558074 D01 v05 and ANSI C63.10:2013
Test Result : PASS
Dates of Test : August 24, 2020 to August 28, 2020
Date of Issue : September 02, 2020
Test Laboratory : Korea Standard Testlab
FCC Registration No. : 829397

Tested by

Approved by

Seungho Baek
Test Engineer
Dongin Youn
Technical Manager

TABLE OF CONTENTS

1. General Information	4
1.1. Client Information	4
1.2. General Description of E.U.T.	4
1.3. Details of E.U.T.	4
1.4. Test Facility	5
2. Test Equipment and Ancillaries used for Tests	6
3. Summary of Test Results	8
4. Test Results	9
4.1. E.U.T. test conditions	9
4.1.1. EUT channels and frequencies list	10
4.1.2. Test Mode	10
4.2. Antenna	11
4.2.1. Requirement	11
4.2.2. Test Result	11
4.3. Occupied 6 dB Bandwidth	12
4.3.1. Requirement	12
4.3.2. Test method	12
4.3.3. Test Configuration	12
4.3.4. Test Procedure	12
4.3.5. Test Result	13
4.4. Maximum Peak Output Power	15
4.4.1. Requirement	15
4.4.2. Test Method	15
4.4.3. Test Configuration	15
4.4.4. Test Procedure	15
4.4.5. Test Result	16
4.5. Peak Power Spectral Density	18
4.5.1. Requirement	18
4.5.2. Test Method	18
4.5.3. Test Configuration	18
4.5.4. Test Procedure	18
4.5.5. Test Result	19
4.6. Conducted Spurious Emissions	21
4.6.1. Requirement	21
4.6.2. Test Procedure	21
4.6.3. Test Configuration	21
4.6.4. Test Procedure	21

4.6.5. Test Result	22
4.7. Radiated Spurious Emission	27
4.7.1. Requirement	27
4.7.2. Test Method	27
4.7.3. Test Configuration	28
4.7.4. Test Procedure	29
4.7.5. Test Result	30
4.8. Band Edges Compliance	36
4.8.1. Requirement	36
4.8.2. Test Method	36
4.8.3. Test Configuration	36
4.8.4. Test Procedure	36
4.8.5. Test Result	37
4.9. Radio Frequency Exposure Procedures	39
4.9.1. Requirement	39
4.9.2. Conclusion	40
4.10. AC power line conducted emissions	41
4.10.1. Requirement	41
4.10.2. Test Procedure	41
4.10.3. Test Result	42
4.10.4. Plot of the ac power line conducted emissions	43

1. General Information

1.1. Client Information

Applicant : EPIC SYSTEMS CO., LTD.
Address of Applicant : Technology Development Center RM. 406, Gyeonggi Technopark, 705,
Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, Republic Of Korea

1.2. General Description of E.U.T.

Product Name : DIGITAL DOOR LOCK
Model No. : ES-F9000K

1.3. Details of E.U.T.

Operating Frequency : 2402 MHz to 2480 MHz
Type of Modulation : GFSK
Number of Channels : 40 Channels
Channel Separation : 2 MHz
Duty Cycle : Continuous operation possible for testing purposes
Antenna Type : PCB Antenna
Antenna gain : -3.02 dBi
Speciality : Bluetooth specification version 4.0 (BLE)
Power Supply : Working voltage
Normal Test Voltage : DC 6 V

1.4. Test Facility

Korea Standard Testlab has been accredited as a designated testing laboratory by National Radio Research Agency in Korea under ISO/IEC 17025.

- Address

Korea Standard Testlab
#107-27, Jangdeokdong-gil, Namyang-eup, Hwaseong-si, Gyeonggi-do, Korea
Tel : +82-31-356-7333
FAX : +82-31-356-7303

- Laboratory Accreditations and Listings

KC Designation No. : KR0155
FCC Registration No. : 0028220721

2. Test Equipment and Ancillaries used for Tests

No.	Test Equipment	Manufacturer	Model No.	Serial No.	Next Cal. Data	Used equipment
1	Spectrum Analyzer	Agilent	E4440A	MY45304715	20.10.01	<input checked="" type="checkbox"/>
2	Frequency Counter	HP	5350B	3049A05530	21.05.30	<input type="checkbox"/>
3	DC Power Supply	KEYSIGHT	U8002A	MY5813082	21.02.25	<input checked="" type="checkbox"/>
4	Signal Generator	Leader Electronics	3220	137231	21.05.28	<input checked="" type="checkbox"/>
5	Synthesized CW Generator	HP	83711B	US34490158	21.05.28	<input checked="" type="checkbox"/>
6	SYNTHESIZED SWEEPER	HP	8340B	2804A00830	21.05.28	<input type="checkbox"/>
7	Function Generator	IWATSU	SG-4105	62372780	21.05.27	<input type="checkbox"/>
8	Modulation Analyzer	Agilent	8901B	3438A05099	21.05.28	<input type="checkbox"/>
9	Audio Analyaer	Agilent	8903B	3279A18576	21.05.27	<input type="checkbox"/>
10	Power Meter	Agilent	E4418B	GB43312894	21.05.27	<input type="checkbox"/>
11	Power Sensor	HP	8485A	3316A14708	21.05.27	<input type="checkbox"/>
12	Power Sensor	Agilent	8482B	2703703543	21.05.27	<input type="checkbox"/>
13	Pre Amplifier	GTC	GA-1825A	GT0929/003	21.02.22	<input type="checkbox"/>
14	Pre Amplifier	8449B	HP	3008A00224	21.06.18	<input checked="" type="checkbox"/>
15	Attenuator	Weinsche	53-30-33	MG906	21.05.27	<input type="checkbox"/>
16	Step Attenuator	Agilent	8494B	MY41110204	21.05.27	<input type="checkbox"/>
17	Step Attenuator	Agilent	8495B	3308A17660	21.05.27	<input type="checkbox"/>
18	Step Attenuator	Agilent	8496B	US40152183	21.05.27	<input type="checkbox"/>
19	Attenuator	HP	30dB	N/A	21.05.27	<input type="checkbox"/>
20	Attenuator	TAE SUNG	SMA-1	N/A	21.05.27	<input type="checkbox"/>
21	Attenuator	TAE SUNG	SMA-2	N/A	21.05.27	<input type="checkbox"/>
22	Termination	KWANG YEOK	KYTE-NJ-150W	2040004	21.05.27	<input type="checkbox"/>
23	Bluetooth Tester	TESCOM	TC-3000A	3000A590236	21.05.27	<input type="checkbox"/>
24	Loop ANT.	Com-Power	AL-130	121010	21.06.10	<input checked="" type="checkbox"/>

25	Horn ANT.	SCHWARZBECK	BBHA 9120D	831	20.07.23	■
26	Temp & Humidity Chamber	Seoksan Tech	SE-CT-02	S7400JD5340618	21.05.27	□
27	Test Receiver	LIG Nex1	LSA-265	L07098033	20.10.01	□
28	Test Receiver	ROHDE&SCHWARZ	ESPI	101014	21.05.28	□
29	Bi-log Antenna	SCHWARZBECK	VULB9163	760	21.04.09	■
30	EMI TEST Receiver	ESI	ROHD & SCHWARZ	838786	21.02.20	■

3. Summary of Test Results

No	Test	Standard Sub-Class	Result
0	Antenna Requirement	§15.203,§15.247(c)	Compliant
1	Maximum Peak Output Power	§15.247(b)	Compliant
2	Peak Power Spectral Density	§15.247(e)	Compliant
3	Occupied 6dB Bandwidth	§15.247(a)	Compliant
4	Band Edges Compliance	§15.247(d)	Compliant
5	Conducted Spurious Emission	§15.247(d)	Compliant
6	Radiated Spurious Emission	§15.247, §15.205, §15.209	Compliant
7	Radio Frequency Exposure Procedures	§2.1093	Compliant

4. Test Results

4.1. E.U.T. test conditions

Test Voltage: DC 6 V
Temperature: 25 °C
Humidity: 50 % RH
Atmospheric Pressure: 1 006 mbar
Test frequencies and frequency range: Test frequencies are 2 402 MHz to 2 480 MHz.
Low channel is 2 402 MHz, Middle channel is 2 440 MHz, High channel is 2 480 MHz, BLE Mode, Total channel is 40.

4.1.1. EUT channels and frequencies list

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2 402	20	2 442
1	2 404	21	2 444
2	2 406	22	2 446
3	2 408	23	2 448
4	2 410	24	2 450
5	2 412	25	2 452
6	2 414	26	2 454
7	2 416	27	2 456
8	2 418	28	2 458
9	2 420	29	2 460
10	2 422	30	2 462
11	2 424	31	2 464
12	2 426	32	2 466
13	2 428	33	2 468
14	2 430	34	2 470
15	2 432	35	2 472
16	2 434	36	2 474
17	2 436	37	2 476
18	2 438	38	2 478
19	2 440	39	2 480

4.1.2. Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2 402 MHz	2 440 MHz	2 480 MHz

4.2. Antenna

4.2.1. Requirement

FCC Part 15 C section 15.203

For intentional device. According to 15.203. an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

FCC Part 15 C section 15.247(c) (1)(i)

(i) Systems operating in the 2 400 ~ 2 483.5 MHz bands that are used exclusively for fixed.

Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

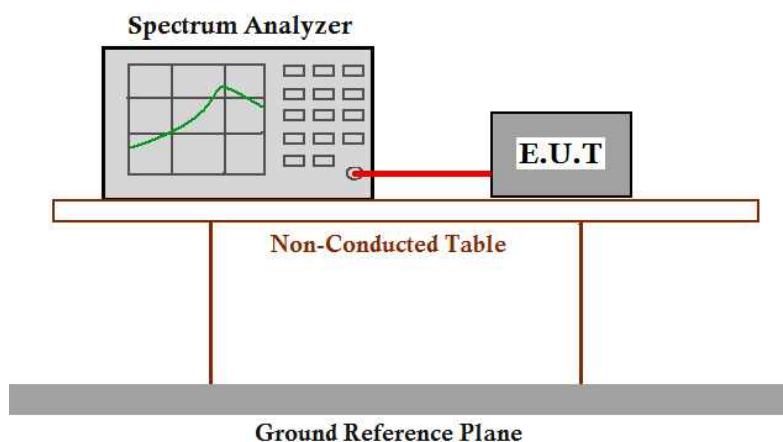
4.2.2. Test Result

The antenna is PCB antenna and no consideration of replacement. The directional gain of the antenna is -3.02 dBi. Please refer to the EUT internal photos.

Test Result : The unit does meet the FCC requirements.

4.3. Occupied 6 dB Bandwidth

4.3.1. Requirement


FCC Part 15 C section 15.247

(a)(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2 400 ~ 2 483.5 MHz, and 5 725 ~ 5 850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.3.2. Test method

KDB 558074 D01 v05 and ANSI C63.10

4.3.3. Test Configuration

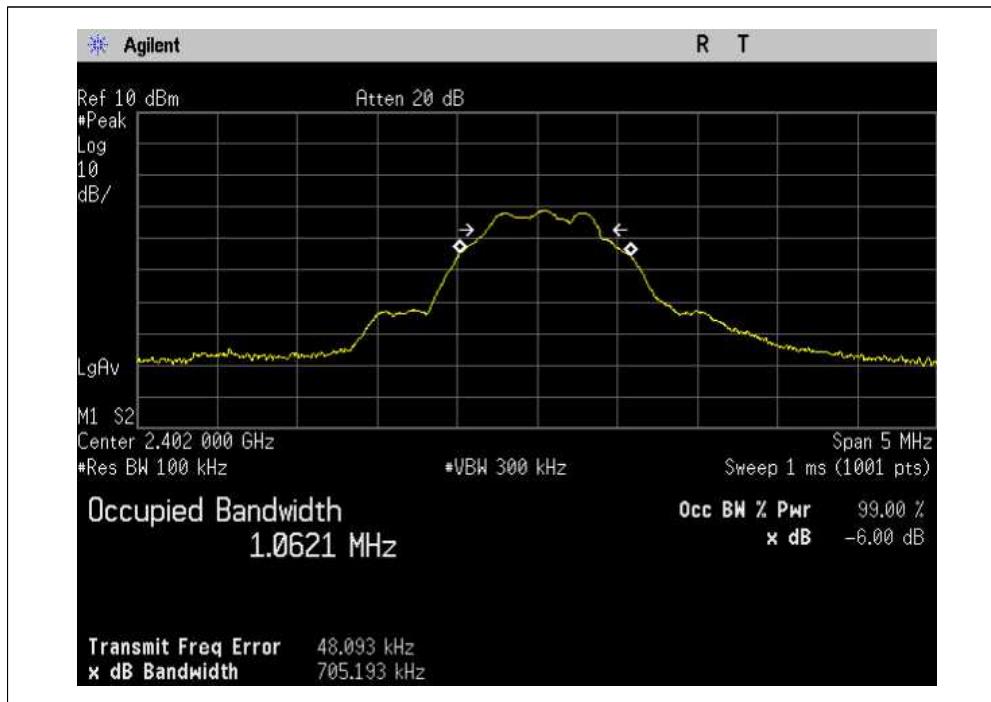
4.3.4. Test Procedure

- 1) Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer :
 - a) Set RBW = 100 kHz.
 - b) Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
 - c) Detector = Peak.
 - d) Trace mode = max hold.
 - e) Sweep = auto couple.
 - f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

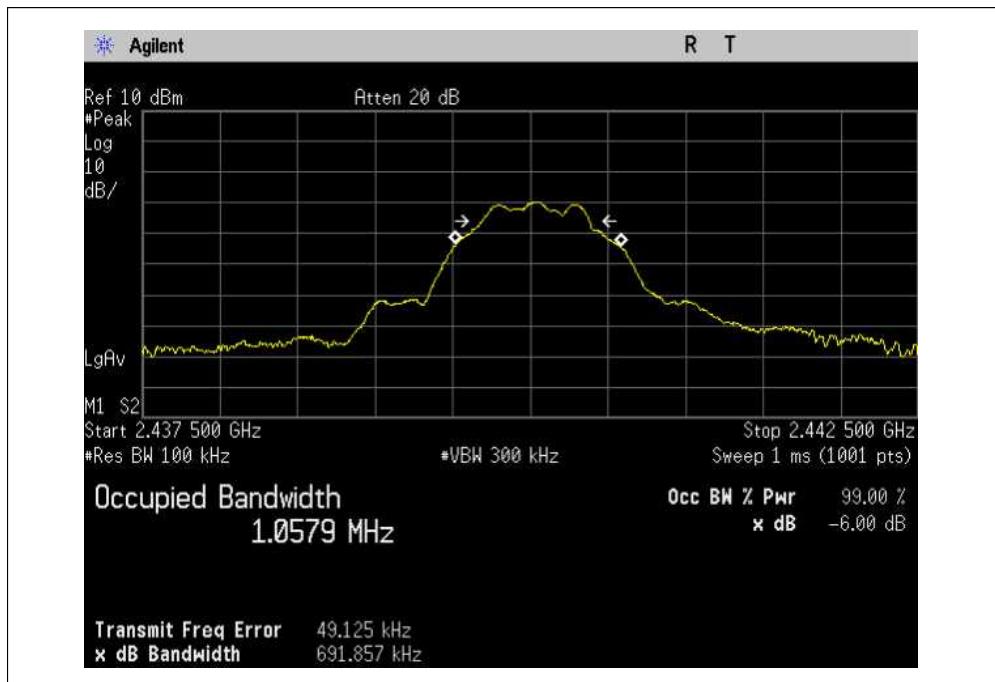
4.3.5. Test Result

BLE mode

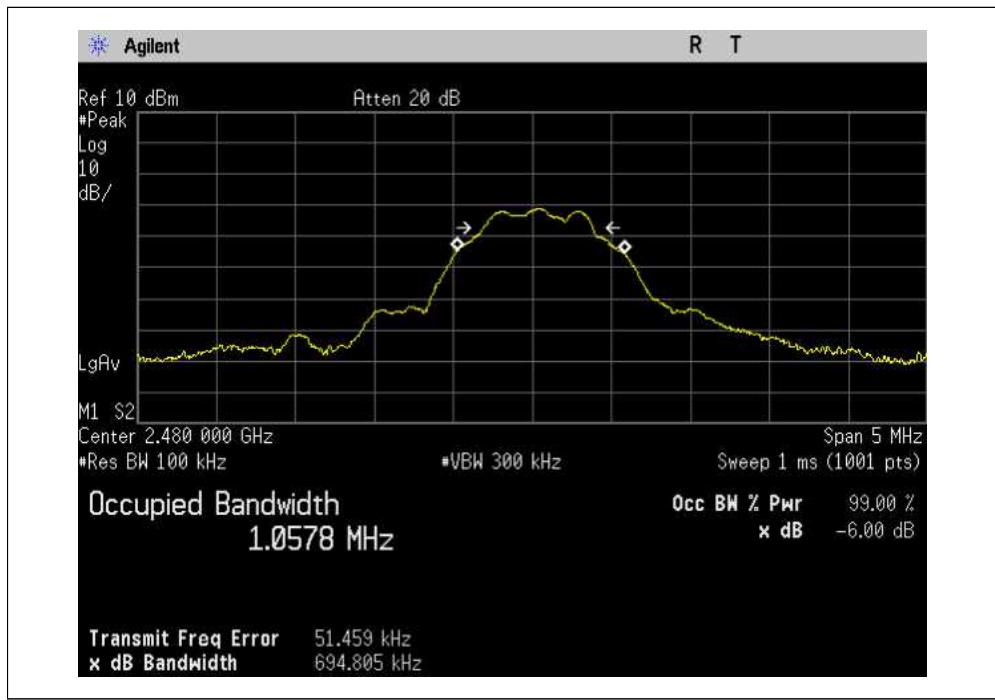
Test Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Limit (kHz)	Result
Low	2 402	705.19	≥500	Pass
Middle	2 440	691.86	≥500	Pass
High	2 480	694.81	≥500	Pass


Test Channel	Frequency (MHz)	99% Bandwidth (kHz)	Limit (kHz)	Result
Low	2 402	1 062.10	N/A	N/A
Middle	2 440	1 057.90	N/A	N/A
High	2 480	1 057.80	N/A	N/A

Test Result : The unit does meet the FCC requirements.


Please refer to the following test plots:

For BLE


Low Channel(2 402 MHz):

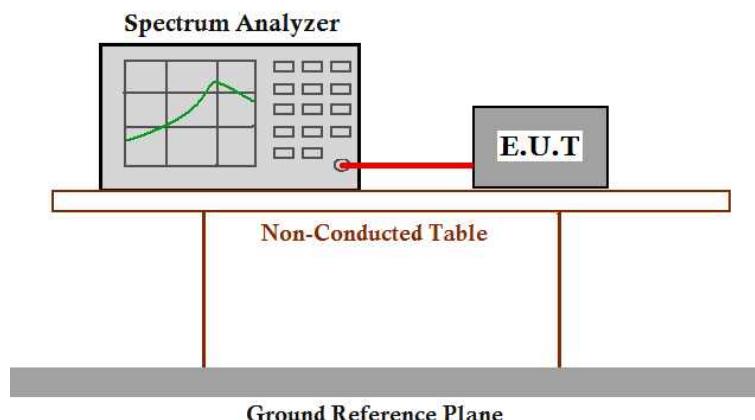
Middle Channel(2.440 MHz):

High Channel(2.480 MHz):

4.4. Maximum Peak Output Power

4.4.1. Requirement

FCC Part 15 C section 15.247


(b)(3) For systems using digital modulation in the 902 ~ 928 MHz, 2 400 ~ 2 483.5 MHz, and 5 725 ~ 5 850 MHz bands: 1 Watt.

Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b) (1), (b) (2), and (b) (3) of section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.4.2. Test Method

KDB 558074 D01 v05 and ANSI C63.10

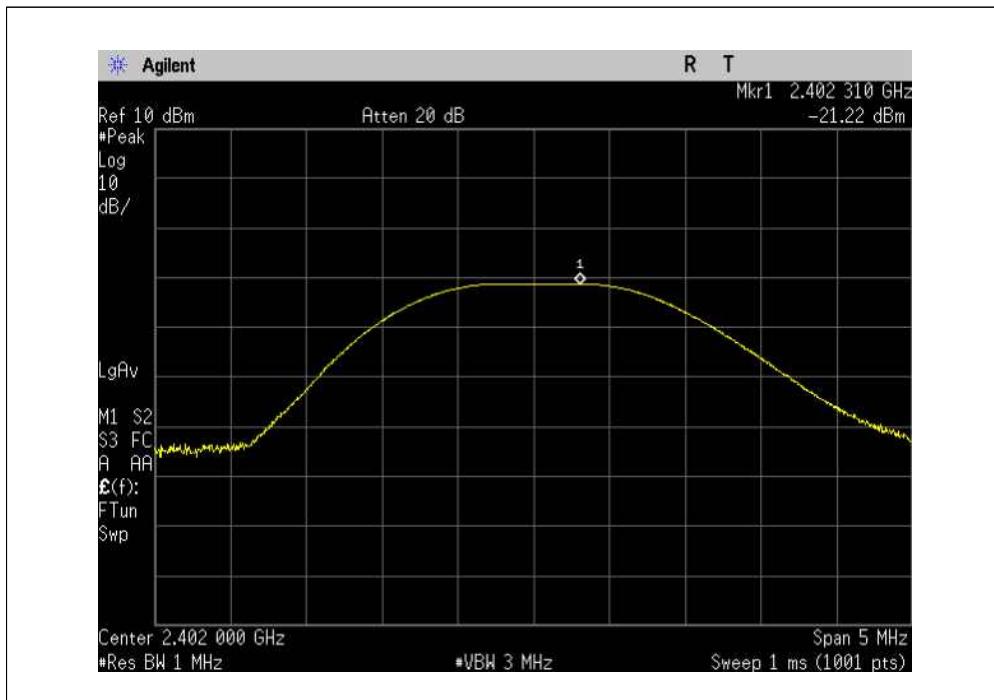
4.4.3. Test Configuration

4.4.4. Test Procedure

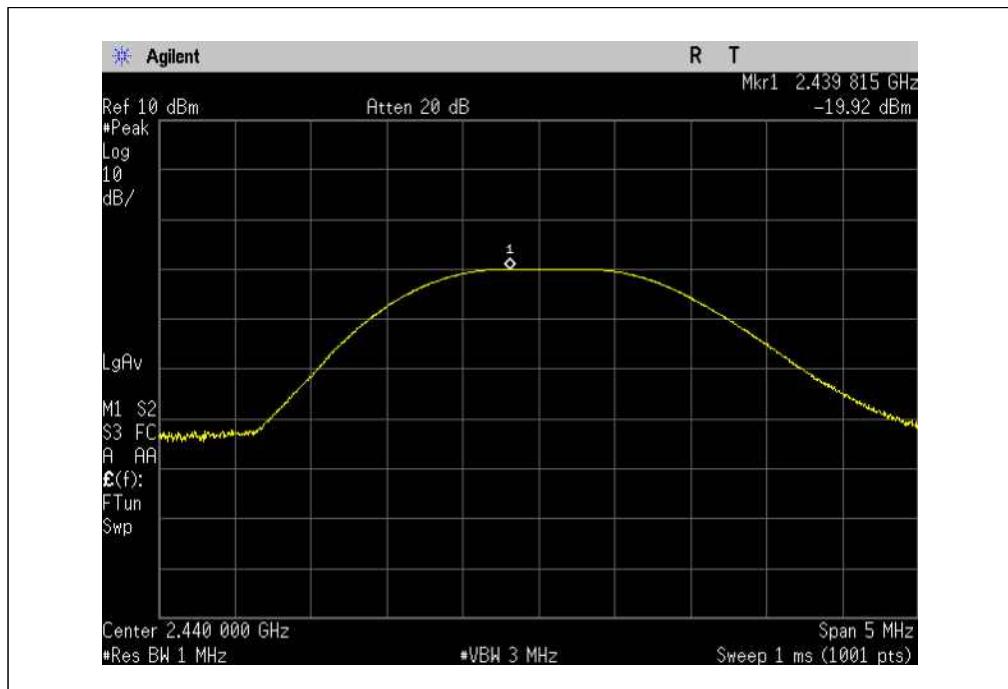
- 1) Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer:
 - a) Set $RBW \geq DTS$ bandwidth
 - b) Set the video bandwidth ($VBW \geq 3 \times RBW$).
 - c) Set span $\geq 3 \times RBW$.
 - d) Sweep time = auto couple.
 - e) Detector = Peak.
 - f) Trace mode = max hold.
 - g) Allow the trace to stabilize.
 - h) Use peak marker function to determine the peak amplitude level.

4.4.5. Test Result

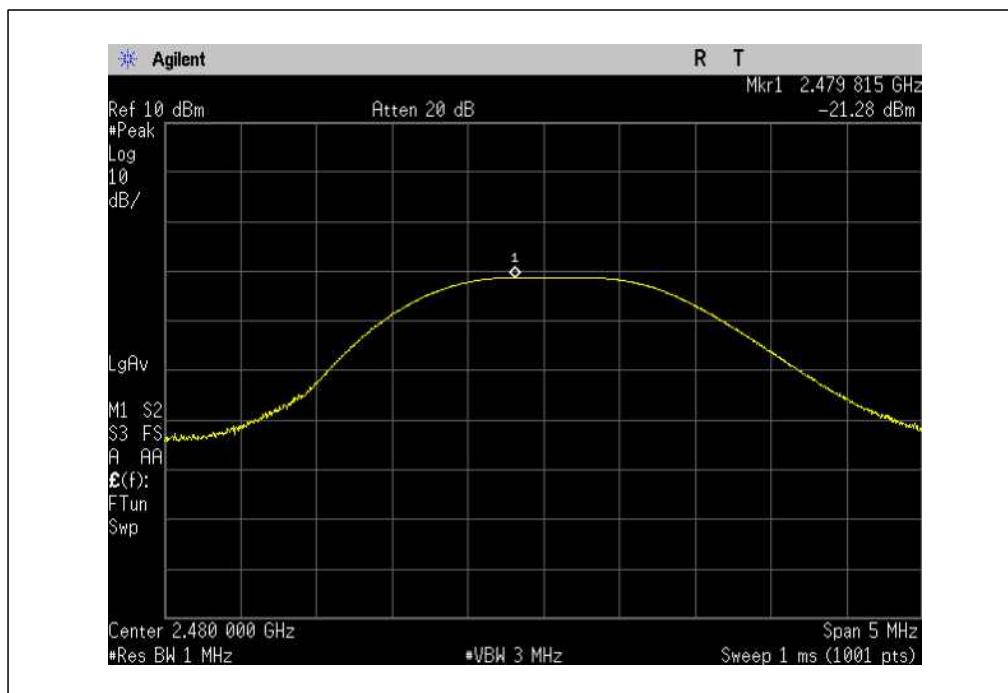
BLE mode


Test Channel	Frequency (MHz)	Measured Channel Power (dBm)	Measured Channel Power (mW)	Limit (mW)	Result
Low	2 402	-21.22	0.01	1000.00	Pass
Middle	2 440	-19.92	0.01	1000.00	Pass
High	2 480	-21.28	0.01	1000.00	Pass

This unit does meet the FCC requirements.


Please refer to the following test plots:

For BLE


Low Channel(2 402 MHz):

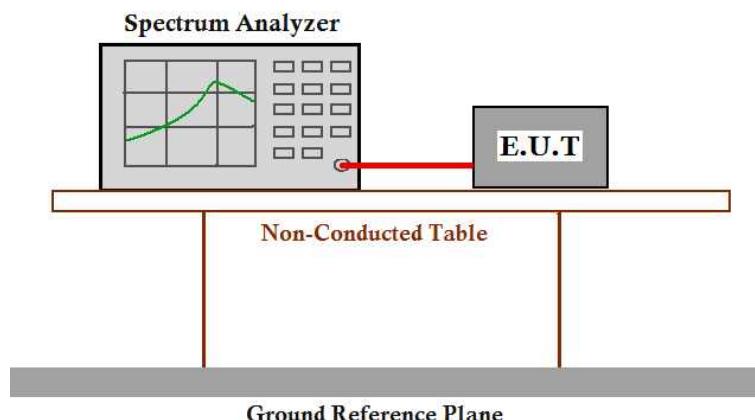
Middle Channel(2 440 MHz):

High Channel(2 480 MHz):

4.5. Peak Power Spectral Density

4.5.1. Requirement

FCC Part 15 C section 15.247


(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

4.5.2. Test Method

KDB 558074 D01 v05 and ANSI C63.10

4.5.3. Test Configuration

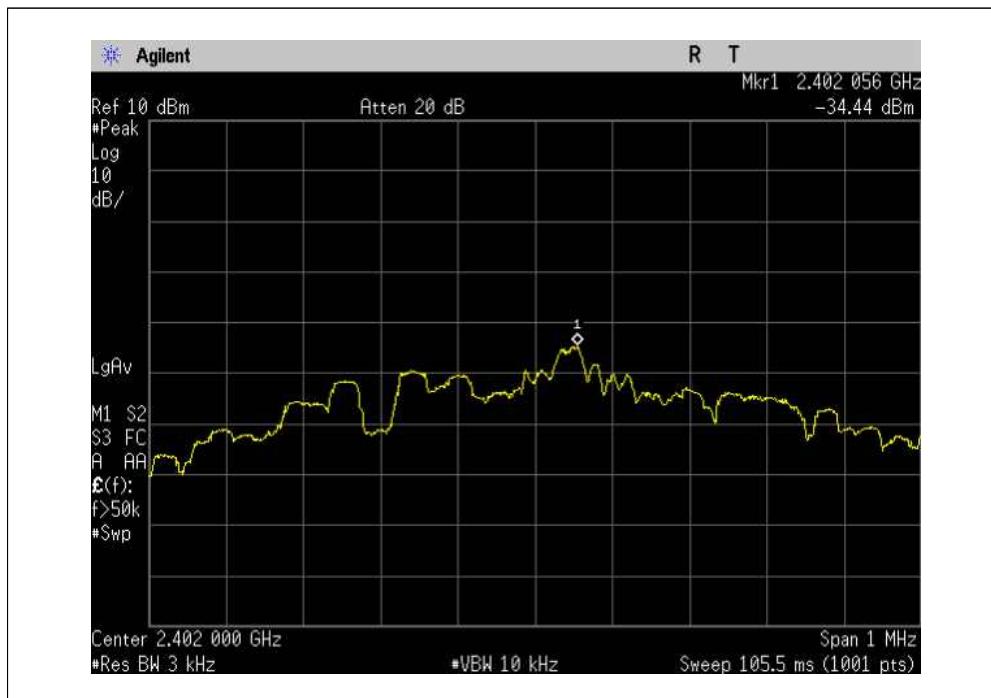
4.5.4. Test Procedure

- 1) Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer:
 - a) Set analyzer center frequency to DTS channel center frequency.
 - b) Set the span to 1.5 times the DTS bandwidth.
 - c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - d) Set the VBW $\geq 3 \times \text{RBW}$.
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

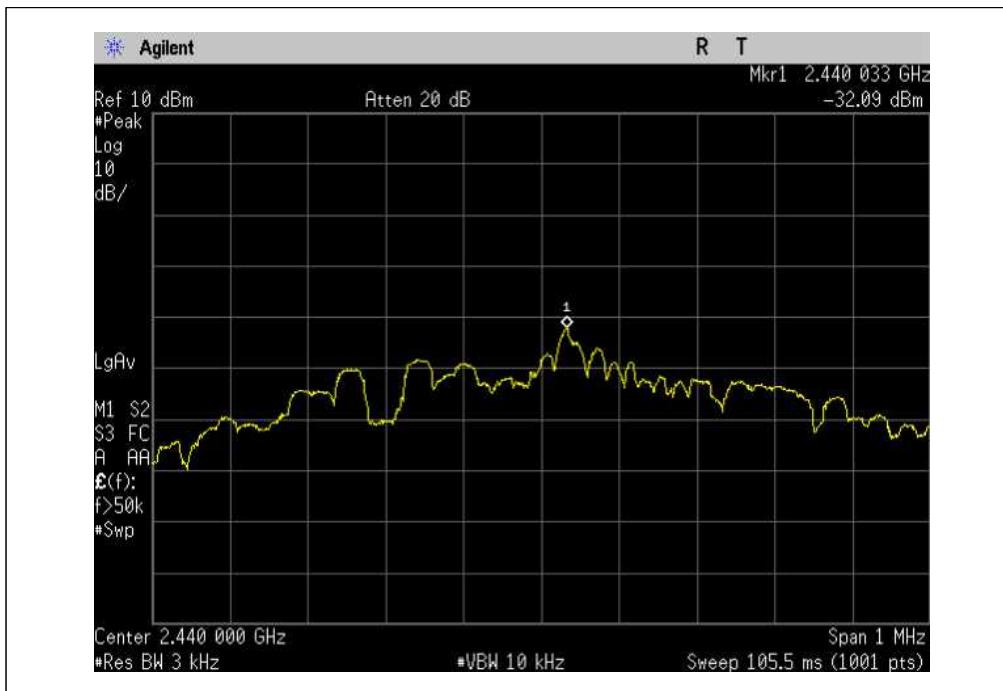
j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

4.5.5. Test Result

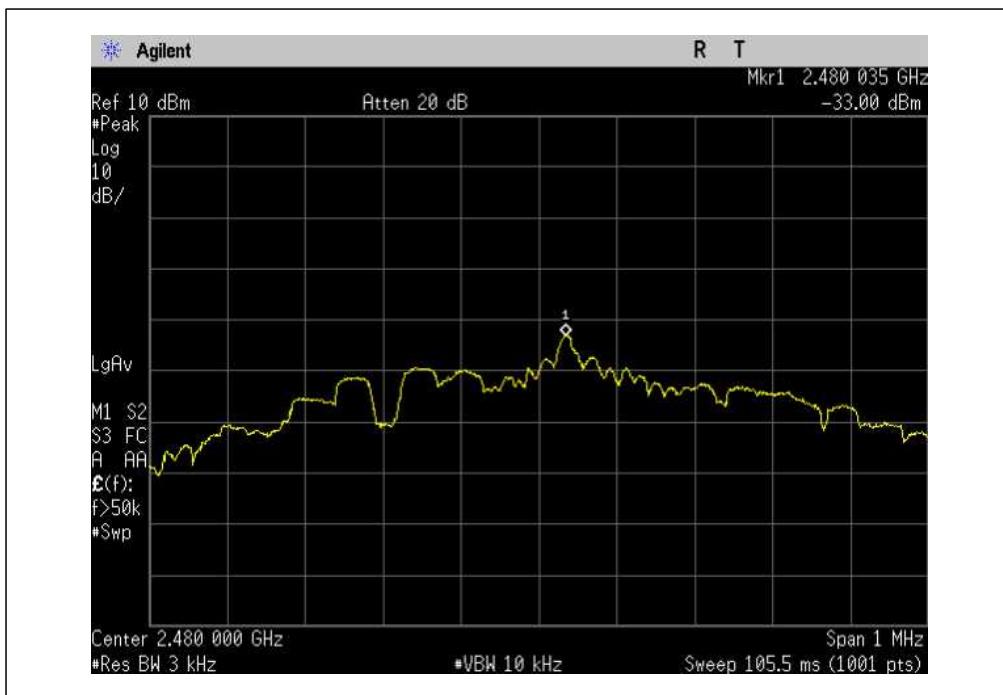
BLE mode:


Test Channel	Frequency (MHz)	Measured Peak Power Spectral Density (dBm/3 kHz)	Limit (dBm/3 kHz)	Result
Low	2 402	-34.44	8	Pass
Middle	2 441	-35.09	8	Pass
High	2 480	-33.00	8	Pass

This unit does meet the FCC requirements.


Please refer to the following test plots:

For BLE

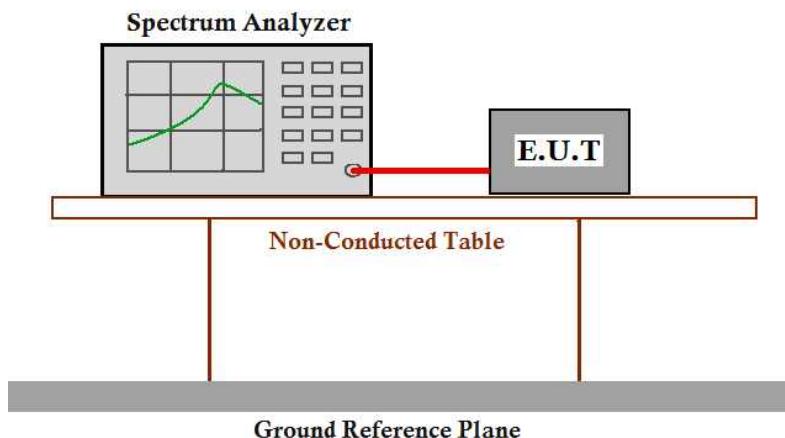

Low Channel(2 402 MHz):

Middle Channel(2.440 MHz):

High Channel(2.480 MHz):

4.6. Conducted Spurious Emissions

4.6.1. Requirement


FCC Part15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

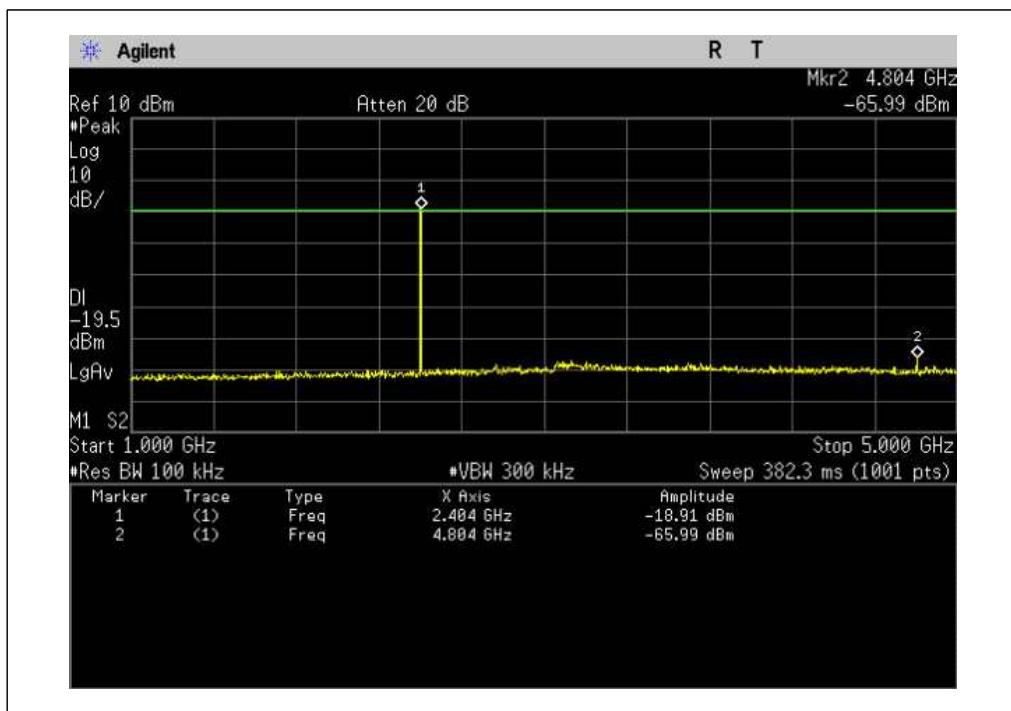
4.6.2. Test Method

KDB 558074 D01 v03r05 and ANSI C63.10

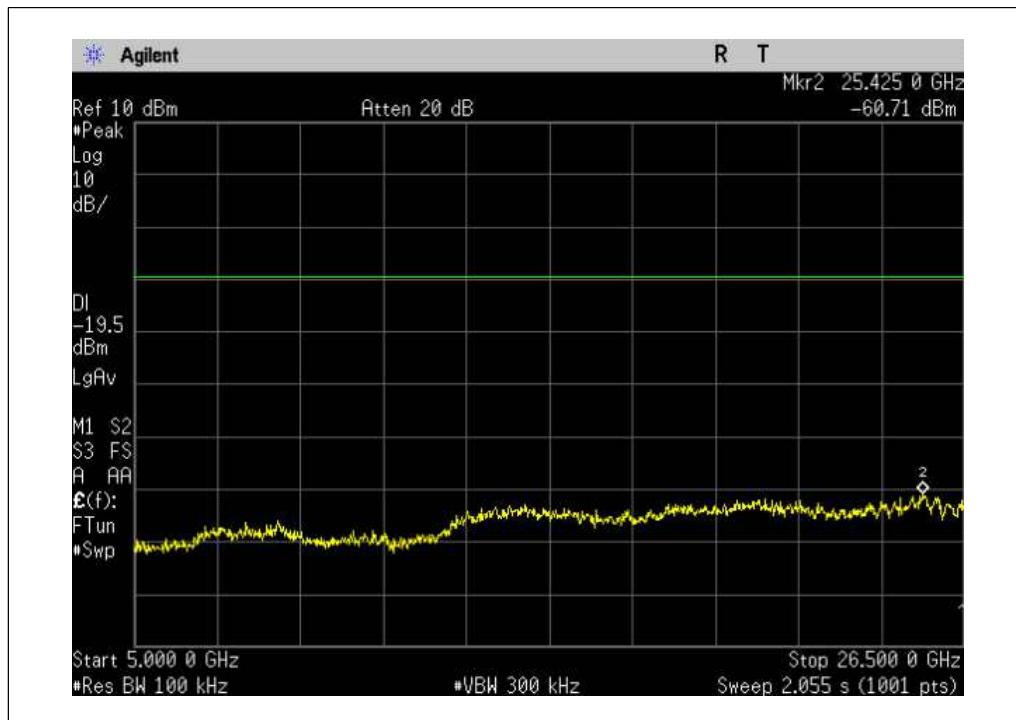
4.6.3. Test Configuration

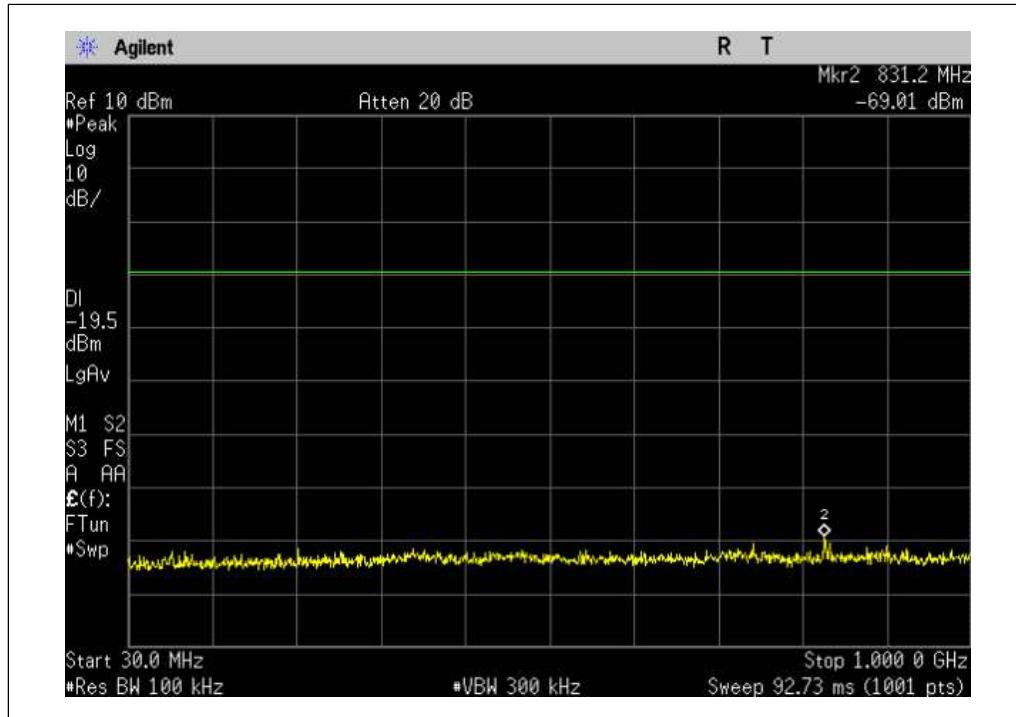


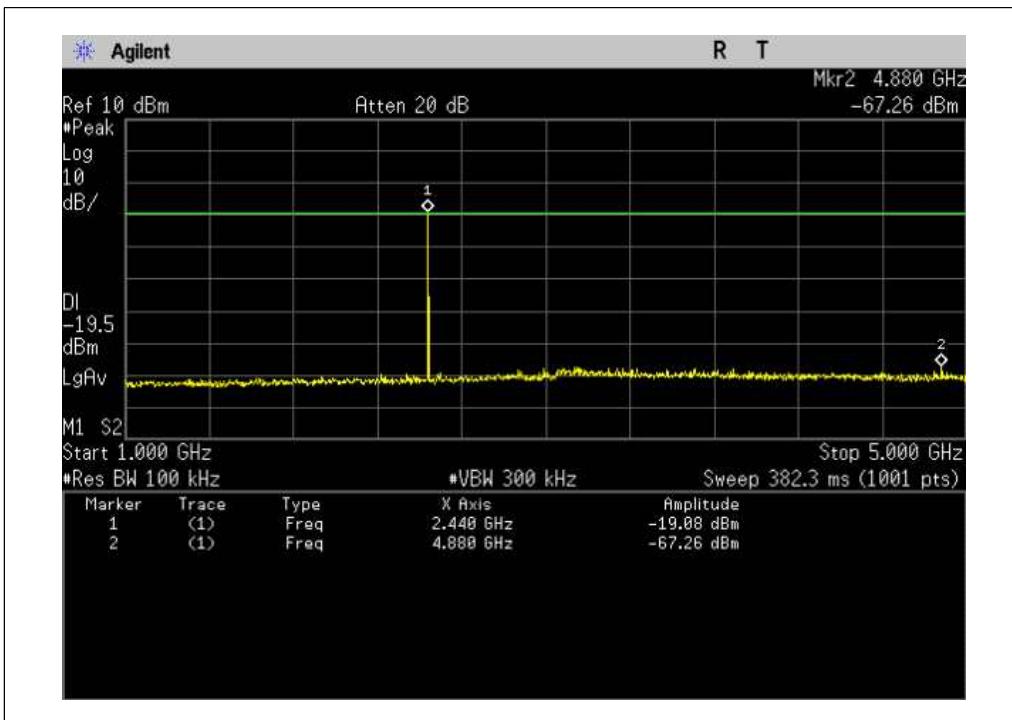
4.6.4. Test Procedure

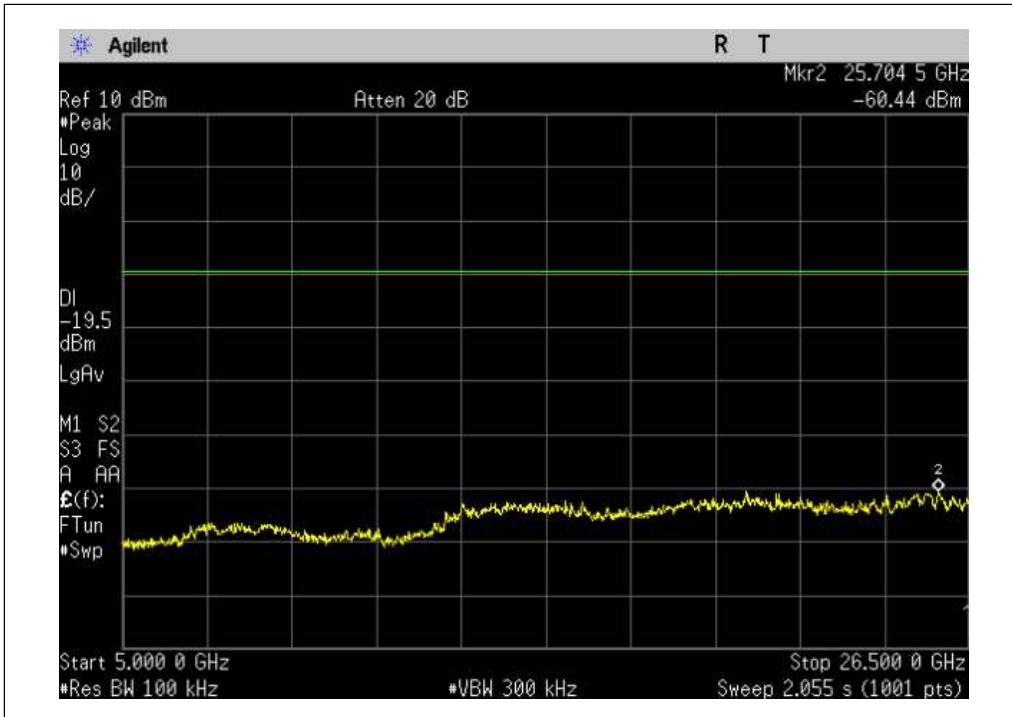

- 1) Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer:
 - a) Set the RBW = 100 kHz.
 - b) Set the VBW = 300 kHz.
 - c) Detector = peak.
 - d) Sweep time = auto couple.
 - e) Trace mode = max hold.
 - f) Scan up through 10th harmonic.

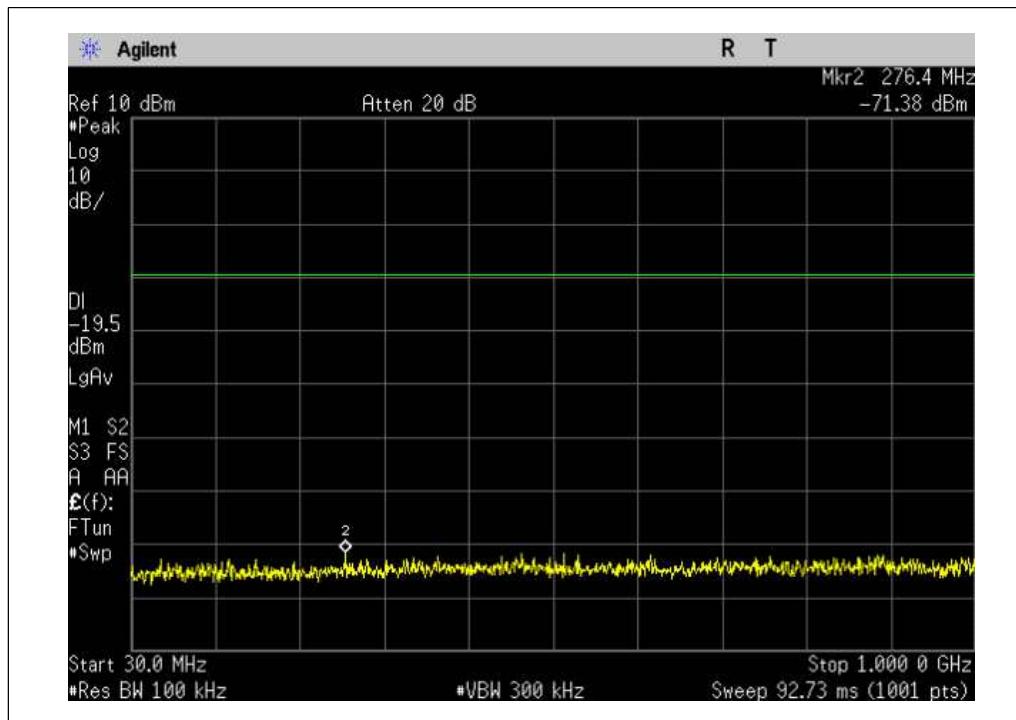
4.6.5. Test Result

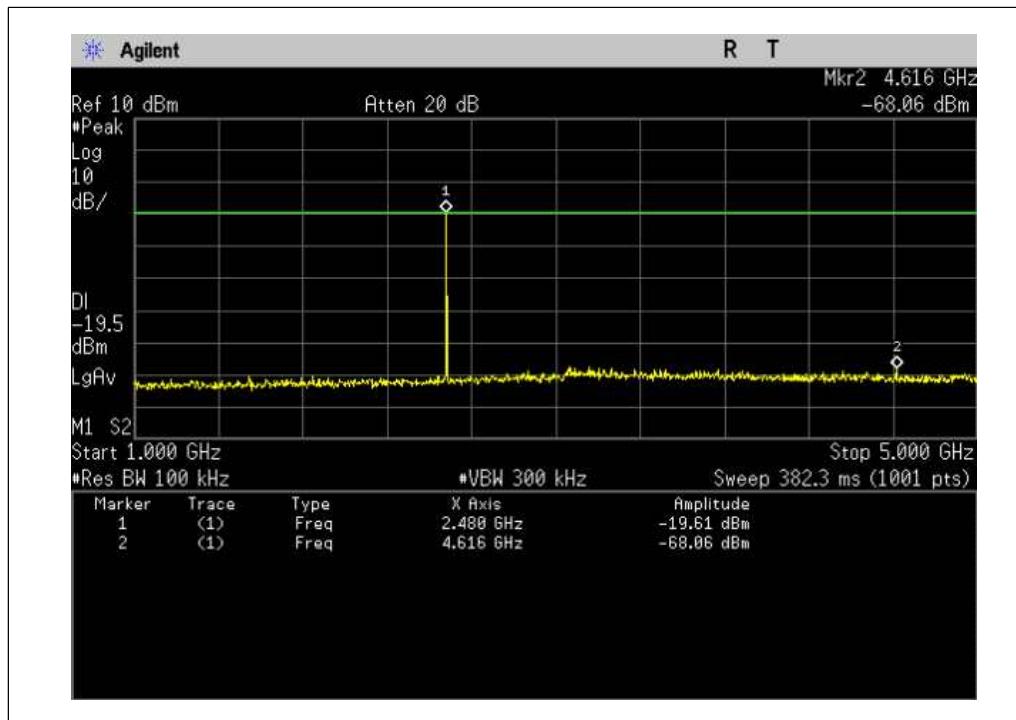

Low Channel(2 402 MHz) : 30 MHz to 1 GHz

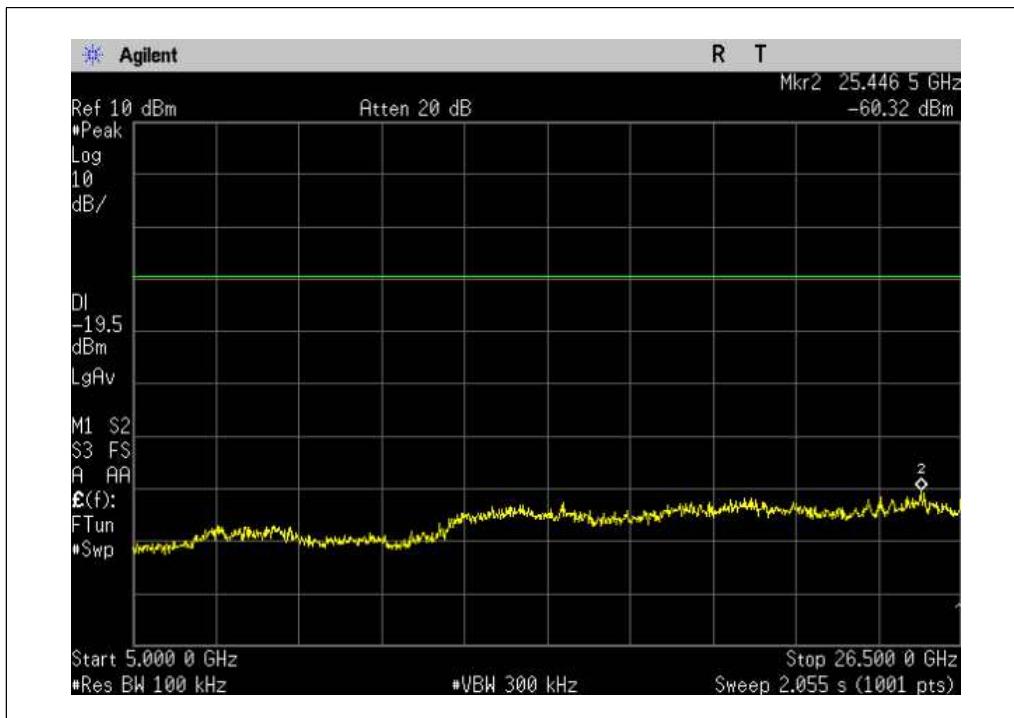

Low Channel(2 402 MHz) : 1 GHz to 5 GHz


Low Channel(2 402 MHz) : 5 GHz to 26.5 GHz


Middle Channel(2 440 MHz) : 30 MHz to 1 GHz


Middle Channel(2 440 MHz) : 1 GHz to 5 GHz


Middle Channel(2 440 MHz) : 5 GHz to 26.5 GHz


High Channel(2 480 MHz) : 30 MHz to 1 GHz

High Channel(2 480 MHz) : 1 GHz to 5 GHz

High Channel(2 480 MHz) : 5 GHz to 26.5 GHz

4.7. Radiated Spurious Emission

4.7.1. Requirement

FCC Part15 C section 15.247

(d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limited specified in Section 15.209(a) (see Section 15.205(c)).

4.7.2. Test Method

ANSI C63.10

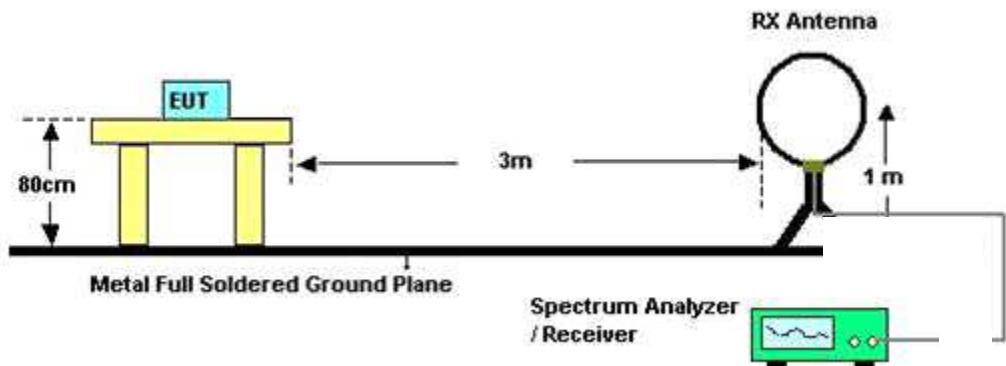
1) Test site

Measurement Distance : 3 m (Semi-Anechoic Chamber)

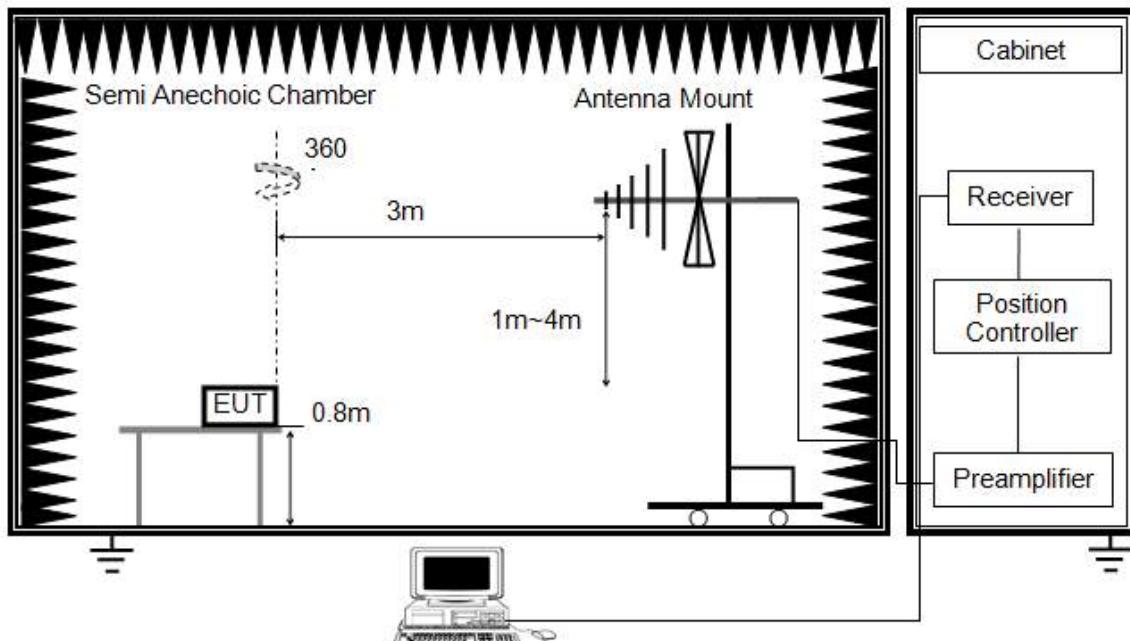
2) Receiver setup

Frequency	Detector	RBW	VBW	Remark
30 MHz~1 GHz	Quasi-peak	120 KHz	300 KHz	Quasi-peak Value
Above 1 GHz	Peak	1 MHz	3 MHz	Peak Value
	RMS	1 MHz	3 MHz	Average Value

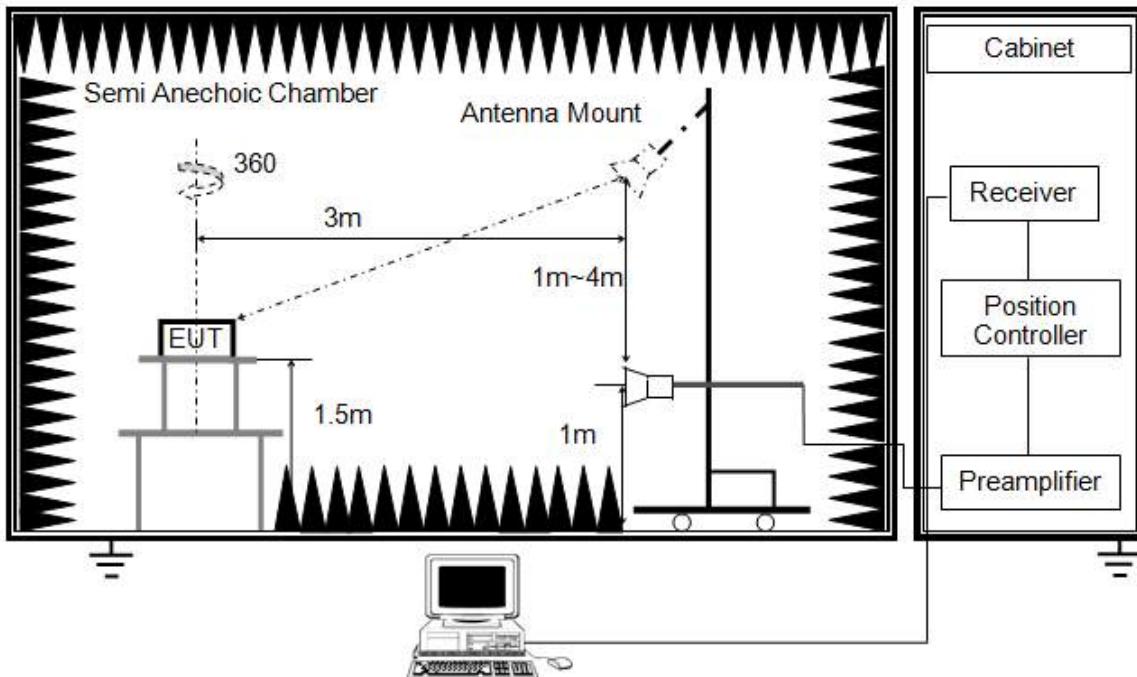
3) Limit


Frequency	Limit(dB _μ N/m @ 3m)	Remark
30 MHz ~ 88 MHz	40.0	Quasi-peak Value
88 MHz ~ 216 MHz	43.5	Quasi-peak Value
216 MHz ~ 960 MHz	46.0	Quasi-peak Value
960 MHz ~ 1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
	74.0	Peak Value

4) Test Frequency Range


30 MHz ~ 26.5 GHz

4.7.3. Test Configuration


1) 9 kHz to 30 MHz emissions:

2) 30 MHz to 1 GHz emissions:

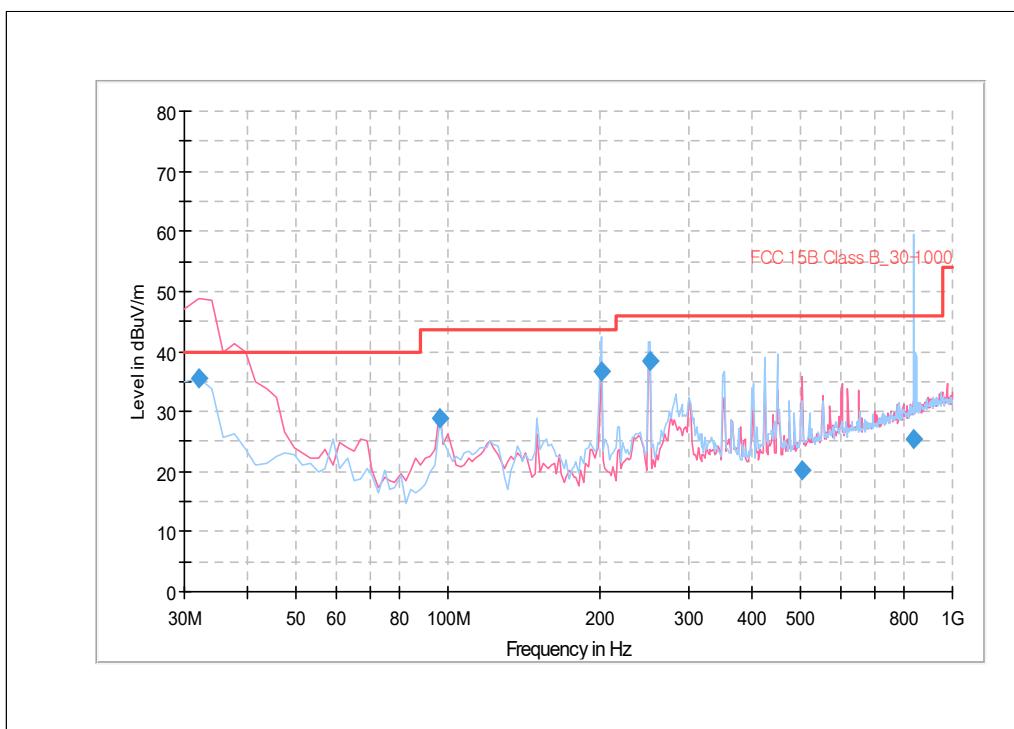
3) 1 GHz to 26.5 GHz emissions:

4.7.4. Test Procedure

- 1) The EUT is placed on a turntable. For below 1 GHz, the EUT is 0.8 m above ground plane; For above 1 GHz, the EUT is 1.5m above ground plane.
- 2) The turn turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3 m away from the receiving antenna, which is move from 1m to 4 m to find out the maximum emissions. The spectrum was investigated from the lowest radio highest fundamental frequency or to 40 GHz, whichever is lower.
- 4) Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5) And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6) Repeat above procedures until the measurements for all frequencies are complete.

4.7.5. Test Result

1) Test at low Channel (2 402 MHz) in transmitting status


a) 9 kHz ~ 30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

The measurements with active loop antenna were greater than 20 dB below the limit, so the test data were not recorded in the test report.

b) 30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Horizontal and Vertical:

Level (dB μ V/m)

Quasi-peak measurement

Frequency (MHz)	Detect Mode	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
31.94	QP	V	35.65	40.00	4.35
96.09	QP	V	28.86	43.50	14.64
201.06	QP	H	36.62	43.50	6.88
251.60	QP	H	38.35	46.00	7.65
504.31	QP	V	20.25	46.00	25.75
838.66	QP	H	25.41	46.00	20.59

* Remark:

- 1) The Emission Level values are included "Correction Factor"
- 2) Correction Factor = "Antenna Factor" + "Cable Loss" - "Amp. Gain"

c) 1~26.5 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1 579.16	H	41.79	74.00	32.21
1 715.43	V	42.13	74.00	31.87
4 815.63	H	49.96	74.00	24.04
4 917.84	V	50.70	74.00	23.30
14 695.39	H	54.12	74.00	19.88
15 002.00	V	53.82	74.00	20.18

* Remark:

- 1) The Emission Level values are included “Correction Factor”
- 2) Correction Factor = “Antenna Factor” + “Cable Loss” - “Amp. Gain”
- 3) As shown in Section, for frequencies above 1 000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 4) The test only perform the EUT in transmitting status since the test frequencies were over 1 GHz only required transmitting status.

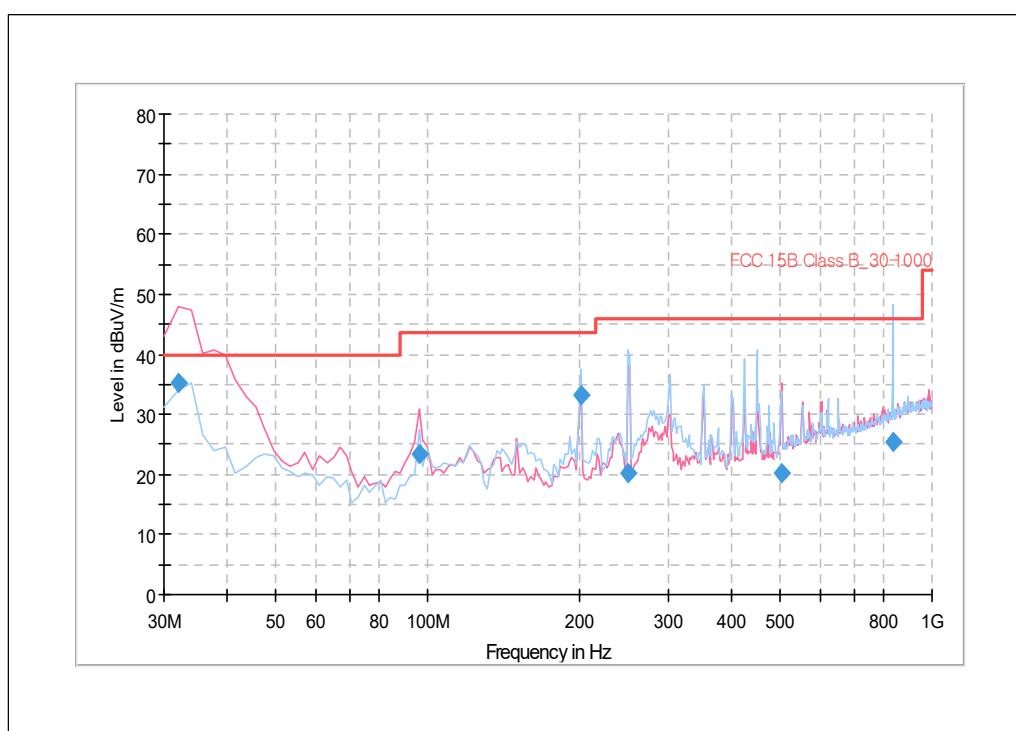
Average Measurement:

Frequency (MHz)	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1 579.16	H	29.03	54.00	24.97
1 715.43	V	29.62	54.00	24.38
4 815.63	H	37.11	54.00	16.89
4 917.84	V	40.07	54.00	13.93
14 695.39	H	41.25	54.00	12.75
15 002.00	V	41.71	54.00	12.29

* Remark:

- 1) The Emission Level values are included “Correction Factor”
- 2) Correction Factor = “Antenna Factor” + “Cable Loss” - “Amp. Gain”
- 3) As shown in Section, for frequencies above 1 000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 4) The test only perform the EUT in transmitting status since the test frequencies were over 1 GHz only required transmitting status.

2) Test at middle Channel (2 440 MHz) in transmitting status


a) 9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

The measurements with active loop antenna were greater than 20 dB below the limit, so the test data were not recorded in the test report.

b) 30 MHz ~ 1 GHz Spurious Emissions. Quasi-Peak Measurement

Horizontal and Vertical:

Level (dB μ V/m)

Quasi-peak measurement

Frequency (MHz)	Detect Mode	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
31.94	QP	V	35.37	40.00	4.63
96.09	QP	V	23.53	43.50	19.97
201.06	QP	H	33.08	43.50	10.42
249.66	QP	H	20.12	46.00	25.88
504.31	QP	V	20.20	46.00	25.80
838.66	QP	H	25.41	46.00	20.59

* Remark:

- 1) The Emission Level values are included "Correction Factor"
- 2) Correction Factor = "Antenna Factor" + "Cable Loss" - "Amp. Gain".

c) 1~26.5 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1 613.23	H	41.95	74.00	32.05
1 681.36	V	42.39	74.00	31.61
11 152.30	H	53.30	74.00	20.71
11 424.85	V	53.04	74.00	20.96
14 422.85	V	53.42	74.00	20.58
14 831.66	H	53.59	74.00	20.41

* Remark:

- 1) The Emission Level values are included “Correction Factor”
- 2) Correction Factor = “Antenna Factor” + “Cable Loss” - “Amp. Gain”
- 3) As shown in Section, for frequencies above 1 000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 4) The test only perform the EUT in transmitting status since the test frequencies were over 1 GHz only required transmitting status.

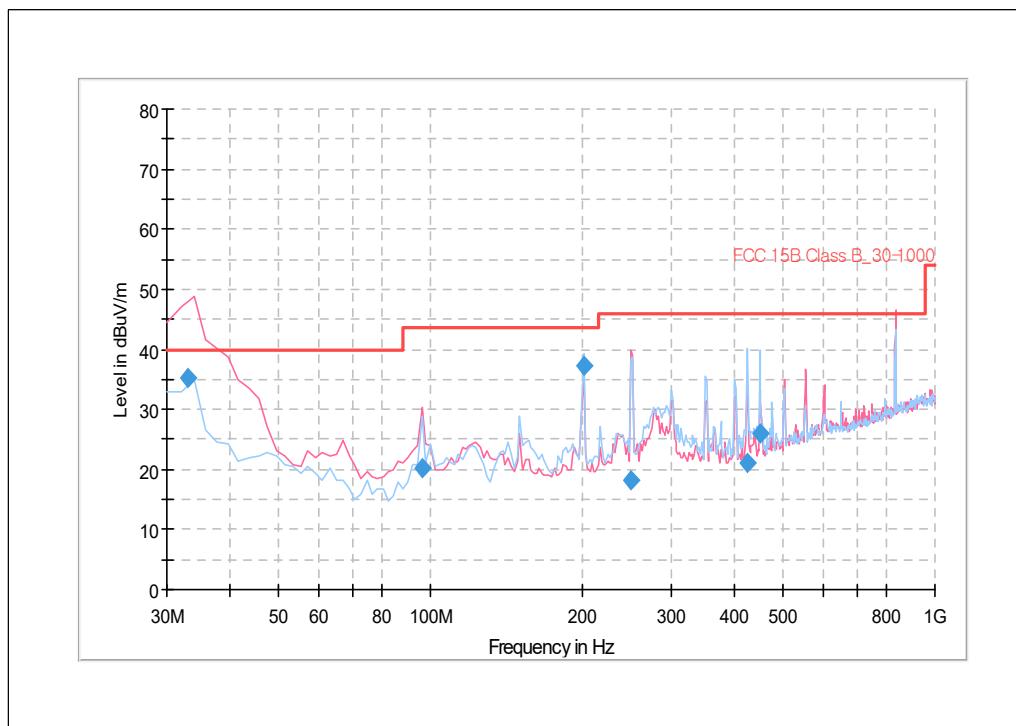
Average Measurement:

Frequency (MHz)	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1 613.23	H	28.92	54.00	25.08
1 681.36	V	29.27	54.00	24.73
11 152.30	H	39.65	54.00	14.35
11 424.85	V	42.51	54.00	11.49
14 422.85	V	41.93	54.00	12.07
14 831.66	H	41.40	54.00	12.60

* Remark:

- 1) The Emission Level values are included “Correction Factor”
- 2) Correction Factor = “Antenna Factor” + “Cable Loss” - “Amp. Gain”
- 3) As shown in Section, for frequencies above 1 000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 4) The test only perform the EUT in transmitting status since the test frequencies were over 1 GHz only required transmitting status.

3) Test at high Channel (2 480 MHz) in transmitting status


a) 9 kHz ~ 30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

The measurements with active loop antenna were greater than 20 dB below the limit, so the test data were not recorded in the test report.

b) 30 MHz ~ 1 GHz Spurious Emissions. Quasi-Peak Measurement

Horizontal and Vertical:

Level (dB μ V/m)

Quasi-peak measurement

Frequency (MHz)	Detect Mode	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
33.00	QP	V	35.11	40.00	4.89
96.09	QP	V	20.27	43.50	23.23
201.06	QP	H	37.15	43.50	6.35
249.66	QP	V	18.08	46.00	27.92
424.61	QP	H	21.15	46.00	24.85
449.88	QP	H	26.03	46.00	19.97

* Remark:

- 1) The Emission Level values are included "Correction Factor"
- 2) Correction Factor = "Antenna Factor" + "Cable Loss" - "Amp. Gain".

c) 1~26.5 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

Frequency (MHz)	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1 579.16	H	41.24	74.00	32.76
1 647.29	V	42.51	74.00	31.49
10 300.60	H	52.41	74.00	21.59
10 913.83	V	53.23	74.00	20.77
13 877.76	V	53.44	74.00	20.56
14 831.66	H	53.22	74.00	20.78

* Remark:

- 1) The Emission Level values are included “Correction Factor”
- 2) Correction Factor = “Antenna Factor” + “Cable Loss” - “Amp. Gain”
- 3) As shown in Section, for frequencies above 1 000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 4) The test only perform the EUT in transmitting status since the test frequencies were over 1 GHz only required transmitting status.

Average Measurement:

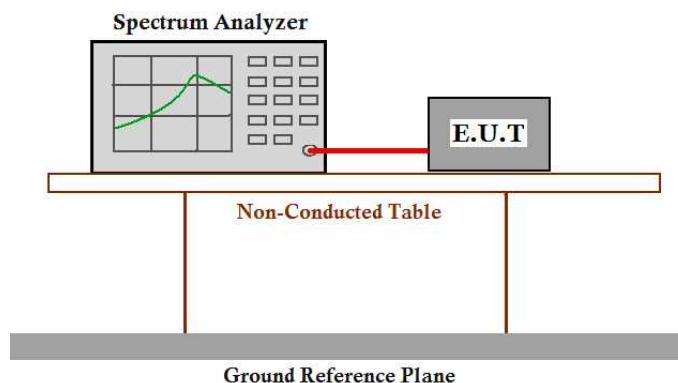
Frequency (MHz)	Polarization (V/H)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
1 579.16	H	28.70	54.00	25.30
1 647.29	V	29.41	54.00	24.59
10 300.60	H	41.60	54.00	12.40
10 913.83	V	40.20	54.00	13.80
13 877.76	V	40.78	54.00	13.22
14 831.66	H	41.98	54.00	12.02

* Remark:

- 1) The Emission Level values are included “Correction Factor”
- 2) Correction Factor = “Antenna Factor” + “Cable Loss” - “Amp. Gain”
- 3) As shown in Section, for frequencies above 1 000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 4) The test only perform the EUT in transmitting status since the test frequencies were over 1 GHz only required transmitting status.

4.8. Band Edges Compliance

4.8.1. Requirement


FCC Part15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.8.2. Test Method

KDB 558074 D01 v03r05 and ANSI C63.10

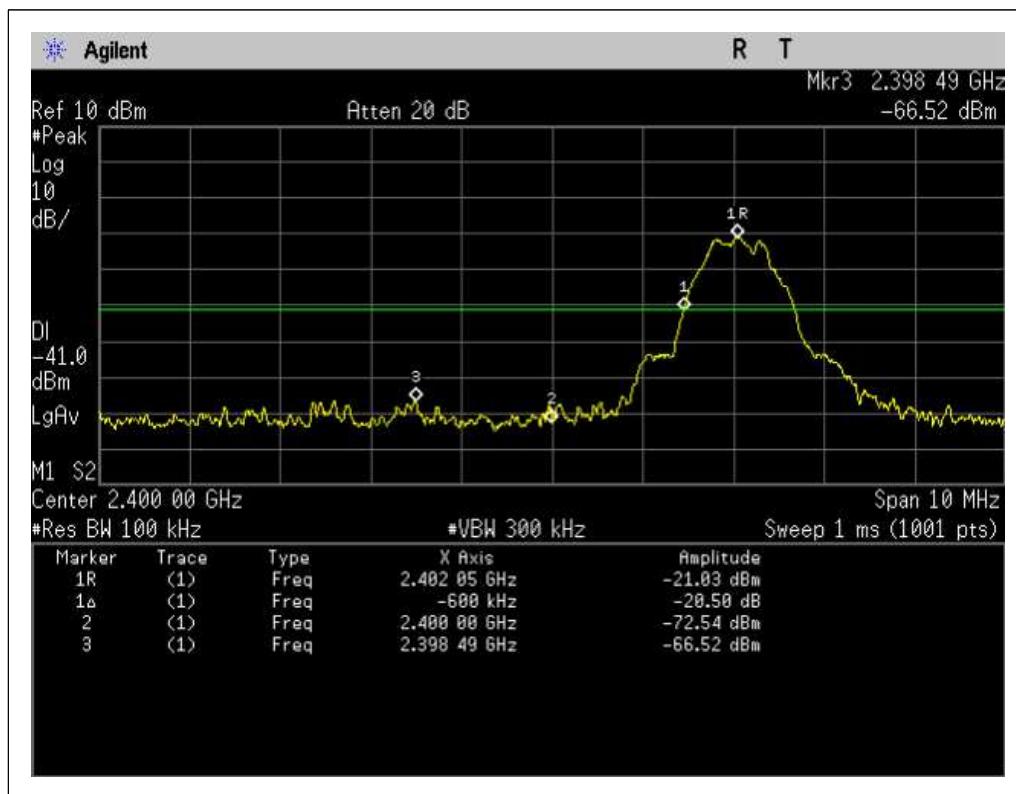
4.8.3. Test Configuration

4.8.4. Test Procedure

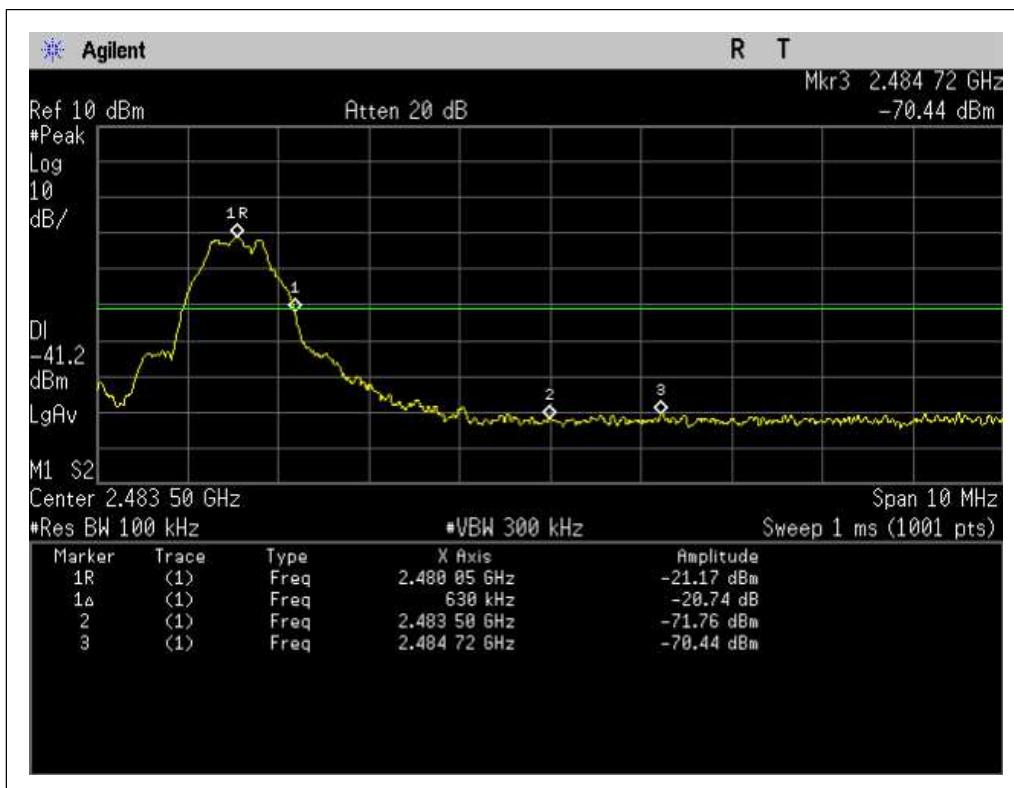
- 1) Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer:
 - a) Set start frequency to DTS channel edge frequency.
 - b) Set stop frequency so as to encompass the spectrum to be examined.
 - c) Set RBW = 100 kHz.
 - d) Set VBW \geq 300 kHz.
 - e) Detector = peak.
 - f) Trace Mode = max hold.

- g) Sweep = auto couple.
- h) Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- i) Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

4.8.5. Test Result


Compare with the output power of the lowest frequency, the Lower Edges attenuated more than 20 dB.

Compare with the output power of the highest frequency, the Upper Edges attenuated more than 20 dB.


Result plot as follows:

BLE mode:

Low Channel(2 402 MHz):

Highest Channel(2 480 MHz):

4.9. Radio Frequency Exposure Procedures

4.9.1. Requirement

According to §15.247(i) and § 1.1307(b)(1) , systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

KDB 447498 D01: Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table:

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	SAR Test Exclusion Threshold (mW)
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1 500	12	24	37	49	61	
1 900	11	22	33	44	54	
2 450	10	19	29	38	48	
3 600	8	16	24	32	40	
5 200	7	13	20	26	33	
5 400	6	13	19	26	32	
5 800	6	12	19	25	31	

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

4.9.2. Conclusion

1) Maximum Measured Transmitter Power:

Channel Frequency (MHz)	Maximum Peak Conducted Output Power		Max Antenna Gain (dBi)	Numeric antenna gain (mW)
	(dBm)	(mW)		
2 440	-19.92	0.01	-3.02	0.50

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]
 $\cdot [\sqrt{f(\text{GHz})}] = 0.01/25 \cdot \sqrt{2.440} = 0.001 \leq 3.0$

Threshold at which no SAR required is 48 mW and ≤ 3.0 for 1-g SAR, Separation distance is 25 mm.

2) Conclusion : The SAR measurement is exempt.

4.10. AC power line conducted emissions

4.10.1. Requirement

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

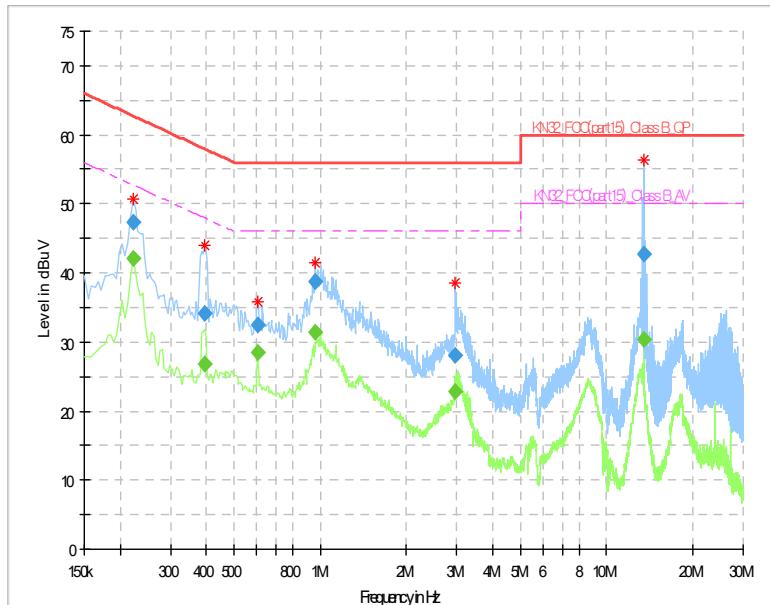
Frequency of emission [MHz]	Conducted limit [dB μV]	
	Quasi-peak	Average
0.15~0.5	66 to 56*	56 to 46*
0.5~5	56	46
5~30	60	50

* Decreases with the logarithm of the frequency.

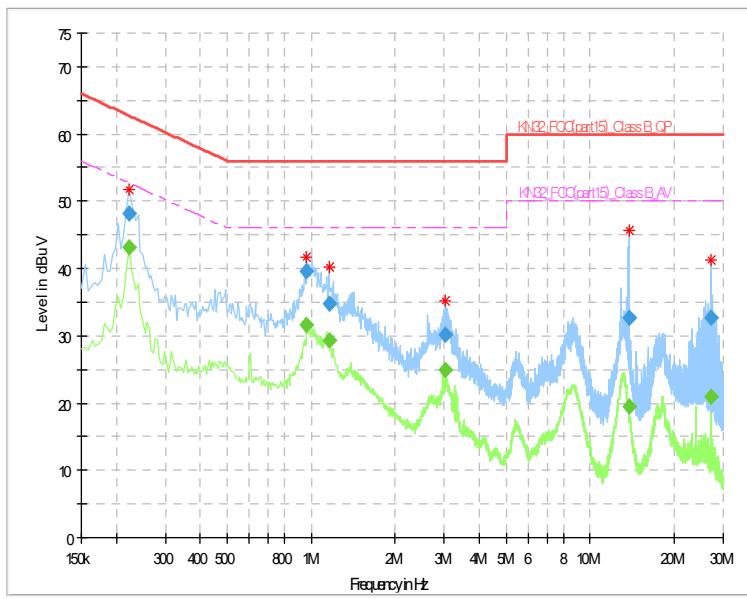
4.10.2. Test Procedure

1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu\text{H}$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

4.10.3. Test Result


Table 8: Measured values of the AC Power Line Conducted Emissions

Frequency [MHz]	Factor		Line	Quasi-Peak			Average		
	LISN [dB]	Cable [dB]		Limit [dB μ V]	Reading [dB μ V]	Results [dB μ V]	Limit [dB μ V]	Reading [dB μ V]	Results [dB μ V]
0.22	9.85	0.09	H	62.74	37.38	47.32	52.74	32.19	42.13
0.22	9.88	0.09	N	62.74	38.30	48.27	52.74	33.08	43.05
0.39	9.84	0.12	H	58.00	24.21	34.17	48.00	16.75	26.71
0.60	9.84	0.13	H	56.00	22.52	32.49	46.00	18.45	28.42
0.96	9.76	0.18	N	56.00	29.69	39.63	46.00	21.73	31.67
0.96	9.74	0.18	H	56.00	28.77	38.69	46.00	21.56	31.48
1.16	9.73	0.18	N	56.00	24.78	34.69	46.00	19.52	29.43
2.97	9.66	0.25	H	56.00	18.17	28.08	46.00	12.83	22.74
3.03	9.68	0.25	N	56.00	20.30	30.23	46.00	15.10	25.03
13.55	9.75	0.57	H	60.00	32.35	42.67	50.00	20.13	30.45
13.77	9.76	0.57	N	60.00	22.27	32.60	50.00	9.13	19.46
27.12	9.80	1.07	N	60.00	21.78	32.65	50.00	10.08	20.95


* Remark: "H": Hot Line, "N": Neutral Line

4.10.4. Plot of the ac power line conducted emissions

4.10.4.1. Plot of the ac power line conducted emissions Hot line

4.10.4.2. Plot of the ac power line conducted emissions Neutral line

