

FCC Part 15C Test Report

FCC ID: 2AXE4-SK96S

Applicant: Dongguan Jizhi Electronic Technology Co., Ltd.

Address: Building H, Fasite Industry Park, No. 89, Liyatang Industry Zone, Lincun, Tangxia Town Dongguan, China

Manufacturer: Dongguan Jizhi Electronic Technology Co., Ltd.

Address: Building H, Fasite Industry Park, No. 89, Liyatang Industry Zone, Lincun, Tangxia Town Dongguan, China

EUT: USB+Bluetooth 2 mode Keyboard

Trade Mark:

Model Number: SK96S, AK96S, GK96S, JK-176

Date of Receipt: Aug. 02, 2021

Test Date: Aug. 03, 2021 - Aug. 17, 2021

Date of Report: Aug. 18, 2021

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

Applicable Standards: FCC PART 15 C 15.247
ANSI C63.10:2013

Test Result: Pass

Report Number: DL-20210817038E

Prepared (Test Engineer): Pxing Huang

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above-mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	9
2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	9
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
3 . EMC EMISSION TEST	11
3.1 CONDUCTED EMISSION MEASUREMENT	11
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	11
3.1.2 TEST PROCEDURE	11
3.1.3 DEVIATION FROM TEST STANDARD	11
3.1.4 TEST SETUP	12
3.1.5 EUT OPERATING CONDITIONS	12
3.1.6 TEST RESULTS	12
3.2 RADIATED EMISSION MEASUREMENT	15
3.2.1 RADIATED EMISSION LIMITS	15
3.2.2 TEST PROCEDURE	16
3.2.3 DEVIATION FROM TEST STANDARD	16
3.2.4 TEST SETUP	16
3.2.5 EUT OPERATING CONDITIONS	17
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	18
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	19
3.2.8 TEST RESULTS (1GHZ~25GHZ)	21
3.3 RADIATED BAND EMISSION MEASUREMENT	22
3.3.1 TEST REQUIREMENT:	22
3.3.2 TEST PROCEDURE	22
3.3.3 DEVIATION FROM TEST STANDARD	22
3.3.4 TEST SETUP	23
3.3.5 EUT OPERATING CONDITIONS	23
4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	25
4.1 LIMIT	25
4.1.1 TEST SETUP	25
4.1.2 TEST PROCEDURE	25

Table of Contents	Page
4.1.3 DEVIATION FROM STANDARD	25
4.1.4 TEST RESULT	26
5. PEAK OUTPUT POWER	31
5.1 APPLIED PROCEDURES / LIMIT	31
5.1.1 TEST PROCEDURE	31
5.1.2 DEVIATION FROM STANDARD	31
5.1.3 TEST SETUP	31
5.1.4 EUT OPERATION CONDITIONS	31
5.1.5 TEST RESULTS	32
6. NUMBER OF HOPPING CHANNEL	35
6.1 APPLIED PROCEDURES / LIMIT	35
6.1.1 TEST PROCEDURE	35
6.1.2 DEVIATION FROM STANDARD	35
6.1.3 TEST SETUP	35
6.1.4 EUT OPERATION CONDITIONS	35
6.1.5 TEST RESULTS	35
7. BANDWIDTH TEST	37
7.1 APPLIED PROCEDURES / LIMIT	37
7.1.1 TEST PROCEDURE	37
7.1.2 DEVIATION FROM STANDARD	37
7.1.3 TEST SETUP	37
7.1.4 EUT OPERATION CONDITIONS	37
7.1.5 TEST RESULTS	38
8. HOPPING CHANNEL SEPARATION MEASUREMENT	41
8.1 APPLIED PROCEDURES / LIMIT	41
8.1.1 TEST PROCEDURE	41
8.1.2 DEVIATION FROM STANDARD	41
8.1.3 TEST SETUP	41
8.1.4 EUT OPERATION CONDITIONS	41
8.1.5 TEST RESULTS	41
9. DWELL TIME OF OCCUPANCY	43
9.1 APPLIED PROCEDURES / LIMIT	43
9.1.1 TEST PROCEDURE	43
9.1.2 DEVIATION FROM STANDARD	43
9.1.3 TEST SETUP	43
9.1.4 EUT OPERATION CONDITIONS	43
9.1.5 TEST RESULTS	44
10. ANTENNA REQUIREMENT	47

Table of Contents

	Page
10.1 STANDARD REQUIREMENT	47
10.2 EUT ANTENNA	47
11. TEST SEUUP PHOTO	48
12. EUT PHOTO	48

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.209(a)	Radiated Spurious Emission	PASS	
15.205	Restricted Band Edge	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(1)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(1)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247 (d)	Conducted Unwanted Emissions and Bandedge	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

FCC Test Firm Registration Number: 854456

Designation Number: CN1307

IC Registered No.:CN0118

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$ providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	$\pm 2.56\text{dB}$
2	RF power, conducted	$\pm 0.42\text{dB}$
3	Spurious emissions, conducted	$\pm 2.76\text{dB}$
4	All emissions, radiated(<1G)	$\pm 3.65\text{dB}$
5	All emissions, radiated(>1G)	$\pm 4.89\text{dB}$
6	Temperature	$\pm 0.5^\circ\text{C}$
7	Humidity	$\pm 2\%$

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	USB+Bluetooth 2 mode Keyboard
Model No.:	SK96S
Sample ID:	DL-20210817038E-1#
Serial No.:	AK96S, GK96S, JK-176
Model Difference	PCB board, circuit, structure and internal of these model(s) are the same, Only model number is different for these model.
Operation Frequency:	2402~2480MHz
Channel numbers:	79 Channels
Channel separation:	1/2/3M
Modulation technology:	GFSK, $\pi/4$ -DQPSK, 8-DPSK
Antenna Type:	PCB Antenna
Antenna gain:	0dBi
Power supply:	DC 3.7V by battery (4000mAh); Charging input: DC 5V
Battery Information:	Model: XHP5044130 Nominal Voltage: 3.7V Nominal Capacity: 4000mAh/14.8Wh Charging Limit Voltage: 4.2V

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. The EUT's all information provided by client.

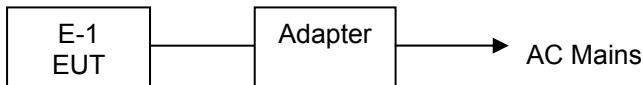
2.

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
~	~	~	~	~	~
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2441	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
~	~	~	~	~	~
14	2416	41	2443	68	2470
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

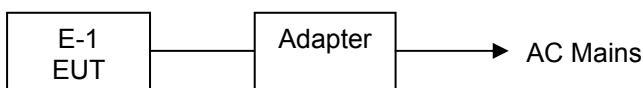
2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description		
Mode 1	CH00	GFSK, $\pi/4$ DQPSK, 8DPSK	
Mode 2	CH39		
Mode 3	CH78		
Mode 4	Link Mode		
For Conducted & Radiated Emission			
Final Test Mode	Description		
Mode 1	CH00	GFSK, $\pi/4$ DQPSK, 8DPSK	
Mode 2	CH39		
Mode 3	CH78		
Mode 4	Link Mode		


Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.



2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Spurious Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	USB+Bluetooth 2 mode Keyboard	SK96S	N/A	EUT
AE	Notebook	B40-80	MP07F6JD	AE
AE	Adapter	MCS-0501000US	N/A	AE

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) For detachable type I/O cable should be specified the length in cm in «Length» column.

2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

Test software Version	Test program: BT3GMD-B47P-V1.1		
Frequency	2402 MHz	2441 MHz	2480 MHz
Power Setting of Software	10	10	10

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 6db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Dec. 07, 2020	Dec. 06, 2021
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Dec. 07, 2020	Dec. 06, 2021
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Dec. 07, 2020	Dec. 06, 2021
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Dec. 07, 2020	Dec. 06, 2021
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Dec. 07, 2020	Dec. 06, 2021
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Dec. 07, 2020	Dec. 06, 2021
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Dec. 07, 2020	Dec. 06, 2021
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Dec. 07, 2020	Dec. 06, 2021
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Dec. 07, 2020	Dec. 06, 2021
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Dec. 07, 2020	Dec. 06, 2021
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Dec. 07, 2020	Dec. 06, 2021
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Dec. 07, 2020	Dec. 06, 2021
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Dec. 07, 2020	Dec. 06, 2021
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Dec. 07, 2020	Dec. 06, 2021
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Dec. 07, 2020	Dec. 06, 2021
16	D.C. Power Supply	LongWei	PS-305D	010964729	Dec. 07, 2020	Dec. 06, 2021

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	843 Shielded Room	ChengYu	843 Room	843	Nov. 25, 2019	Nov. 24, 2022
2	EMI Receiver	R&S	ESR	101421	Dec. 07, 2020	Dec. 06, 2021
3	LISN	R&S	ENV216	102417	Dec. 07, 2020	Dec. 06, 2021
4	843 Cable 1#	ChengYu	CE Cable	001	Dec. 07, 2020	Dec. 06, 2021

Other

Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

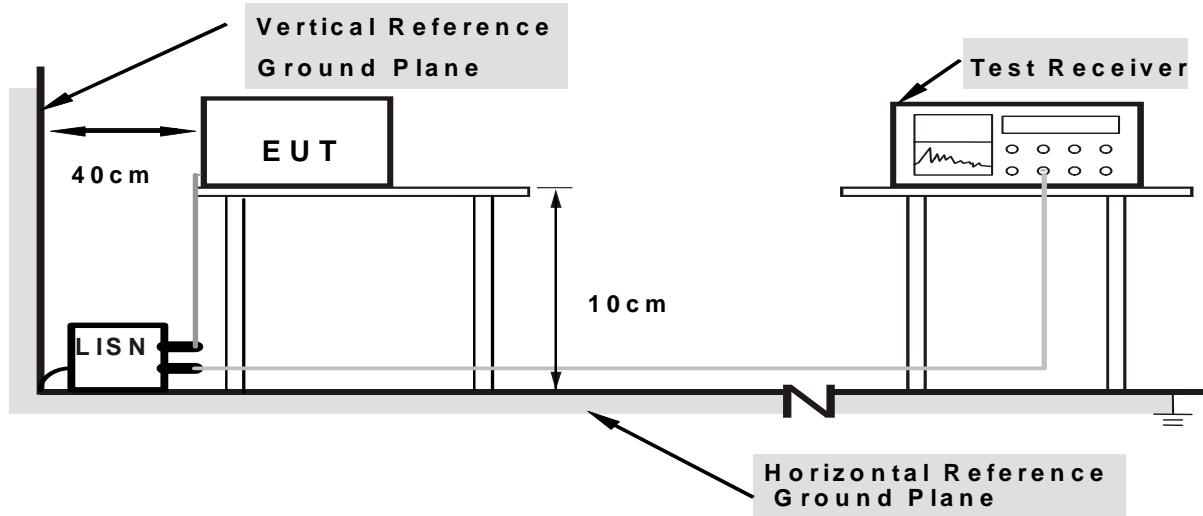
FREQUENCY (MHz)	Limit (dBuV)		Standard
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

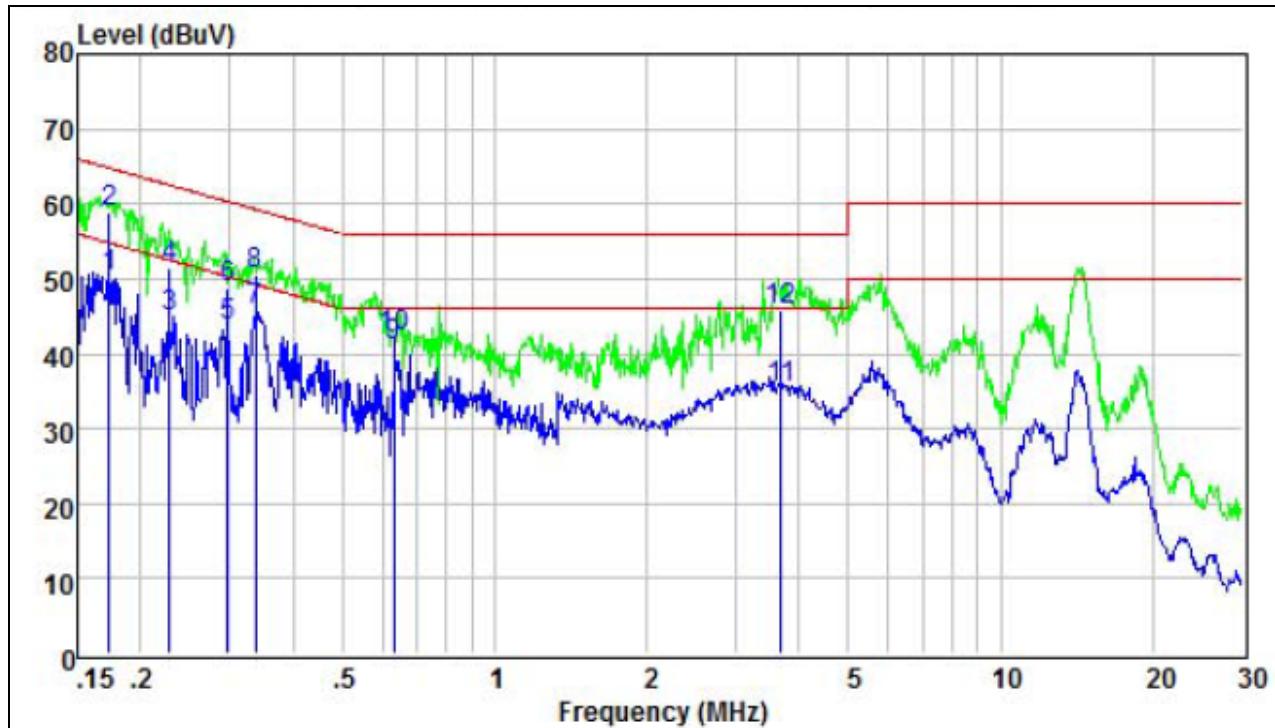
3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

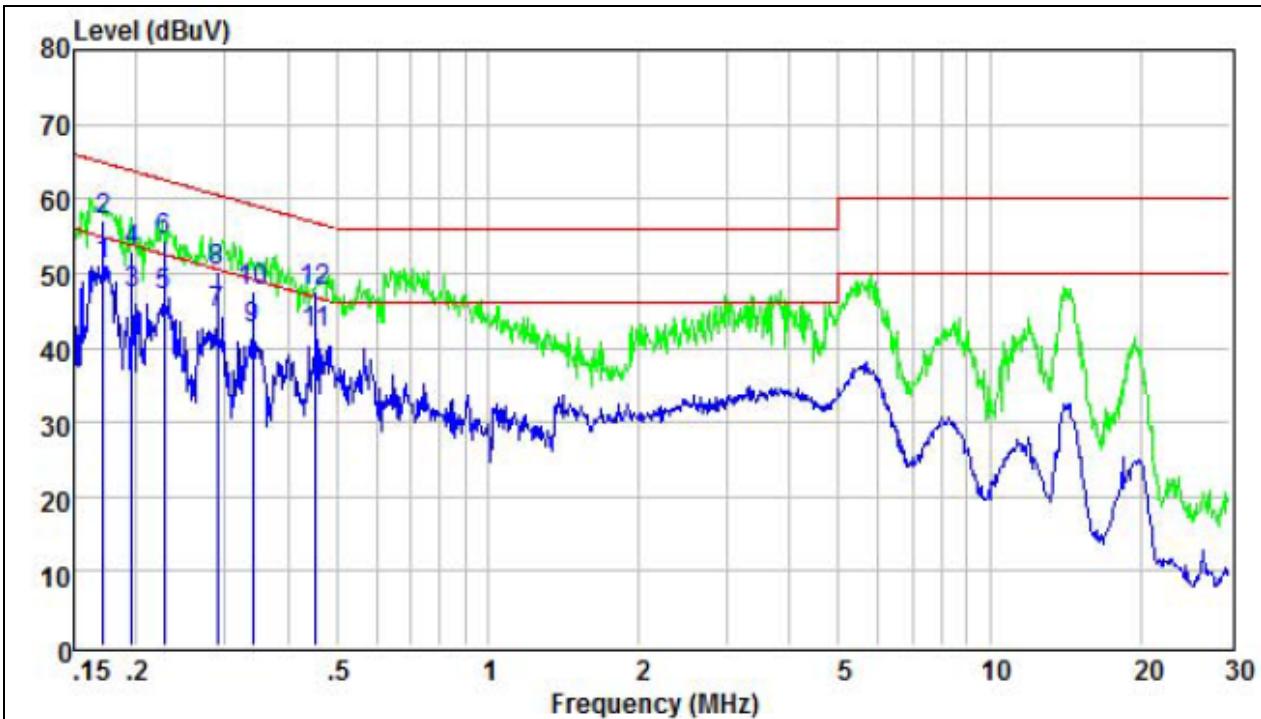
3.1.5 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

Temperature:	25 °C	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4


Remark:

Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

Freq	Read	LISN	Cable	Limit	Over	Over	
	Level	Factor	Loss				Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB
1	0.17	40.71	9.45	0.01	50.17	54.81	-4.64 Average
2	0.17	49.44	9.45	0.01	58.90	64.81	-5.91 QP
3	0.23	35.50	9.47	0.01	44.98	52.52	-7.54 Average
4	0.23	41.99	9.47	0.01	51.47	62.52	-11.05 QP
5	0.30	34.23	9.48	0.01	43.72	50.32	-6.60 Average
6	0.30	39.26	9.48	0.01	48.75	60.32	-11.57 QP
7	0.34	36.19	9.48	0.01	45.68	49.27	-3.59 Average
8	0.34	41.01	9.48	0.01	50.50	59.27	-8.77 QP
9	0.63	31.39	9.50	0.01	40.90	46.00	-5.10 Average
10	0.63	32.79	9.50	0.01	42.30	56.00	-13.70 QP
11	3.68	25.74	9.57	0.01	35.32	46.00	-10.68 Average
12	3.68	36.26	9.57	0.01	45.84	56.00	-10.16 QP

Temperature:	25 °C	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Remark:

Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

Freq	Read	LISN	Cable	Limit	Over	Over	
	Level	Factor	Loss				Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB
1	0.17	41.63	9.37	0.01	51.01	54.90	-3.89 Average
2	0.17	47.82	9.37	0.01	57.20	64.90	-7.70 QP
3	0.20	38.00	9.38	0.01	47.39	53.80	-6.41 Average
4	0.20	43.58	9.38	0.01	52.97	63.80	-10.83 QP
5	0.23	37.46	9.39	0.01	46.86	52.57	-5.71 Average
6	0.23	45.10	9.39	0.01	54.50	62.57	-8.07 QP
7	0.29	35.24	9.40	0.01	44.65	50.54	-5.89 Average
8	0.29	40.98	9.40	0.01	50.39	60.54	-10.15 QP
9	0.34	32.99	9.40	0.01	42.40	49.18	-6.78 Average
10	0.34	38.03	9.40	0.01	47.44	59.18	-11.74 QP
11	0.45	32.43	9.41	0.01	41.85	46.80	-4.95 Average
12	0.45	38.18	9.41	0.01	47.60	56.80	-9.20 QP

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	25GHz
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

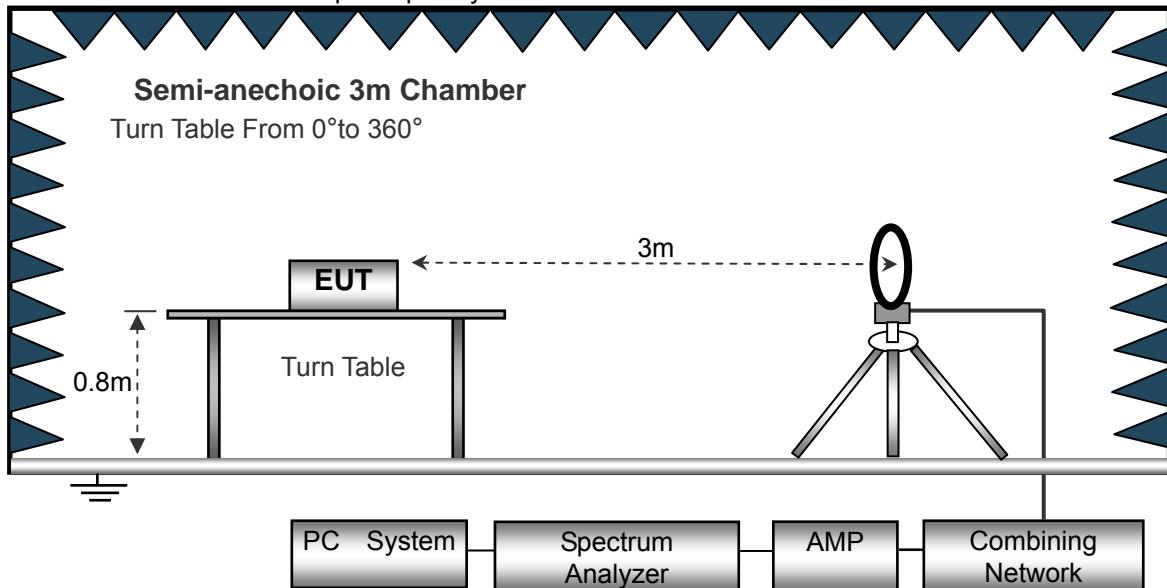
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

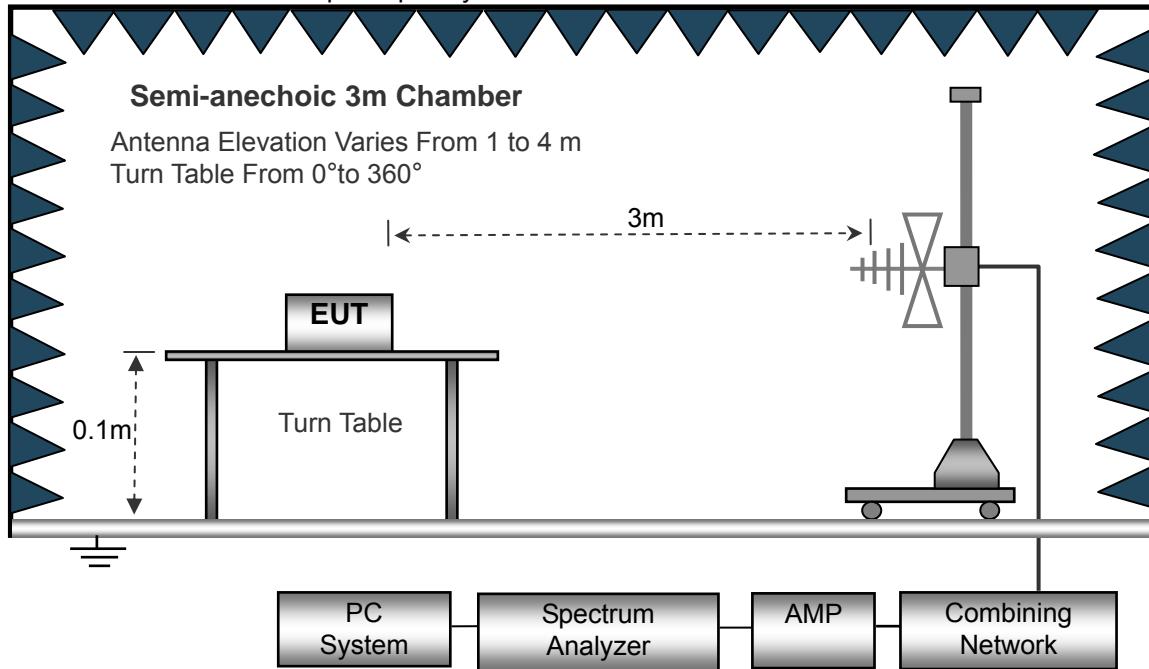
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.1 metre to 0.1 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

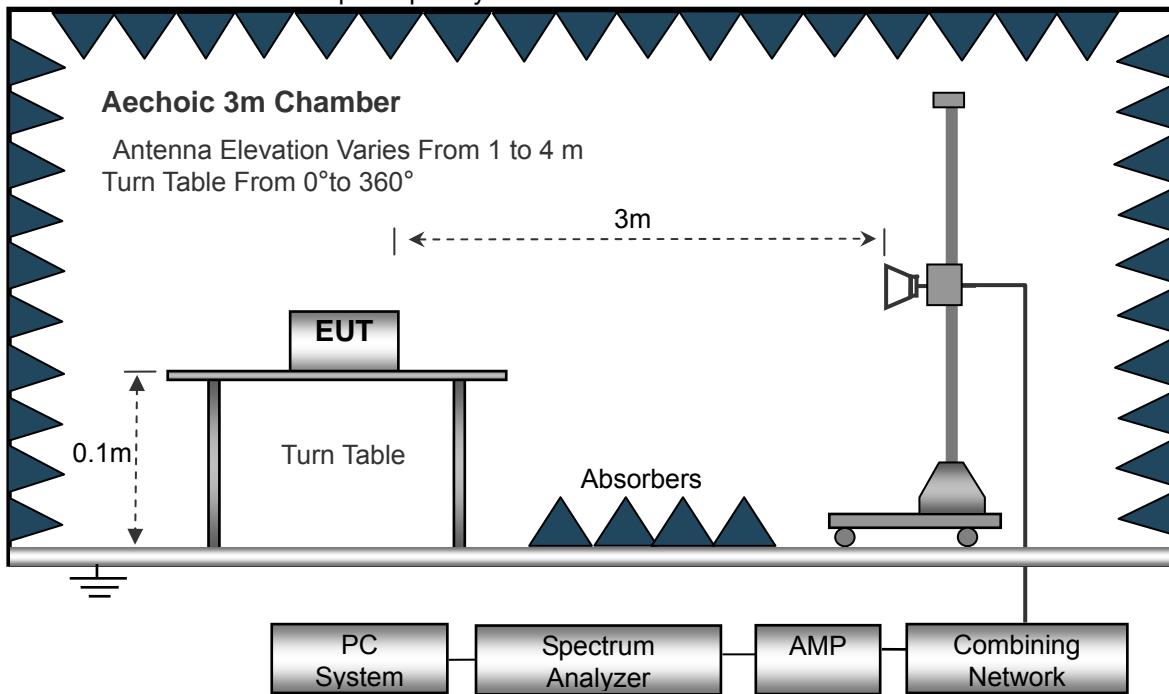
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD


No deviation

3.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

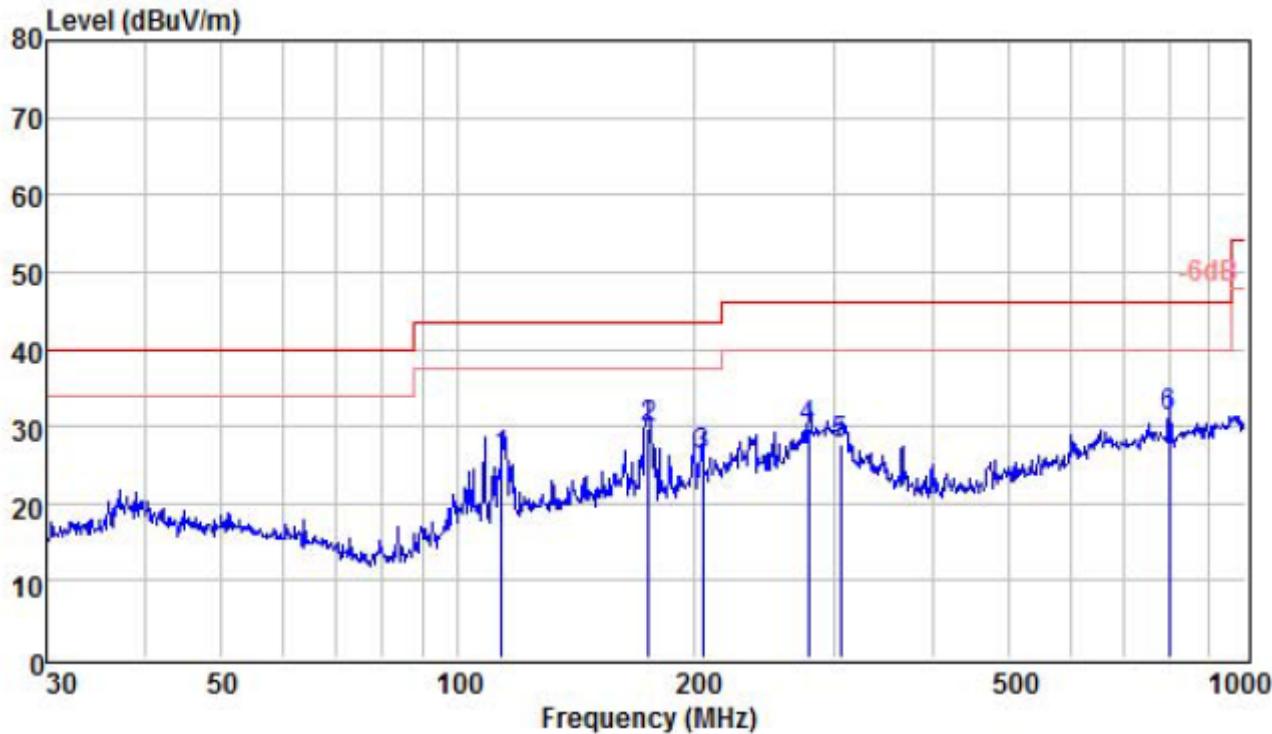
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)

Temperature:	20°C	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 4	Polarization :	--

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
--	--	--	--	PASS
--	--	--	--	PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

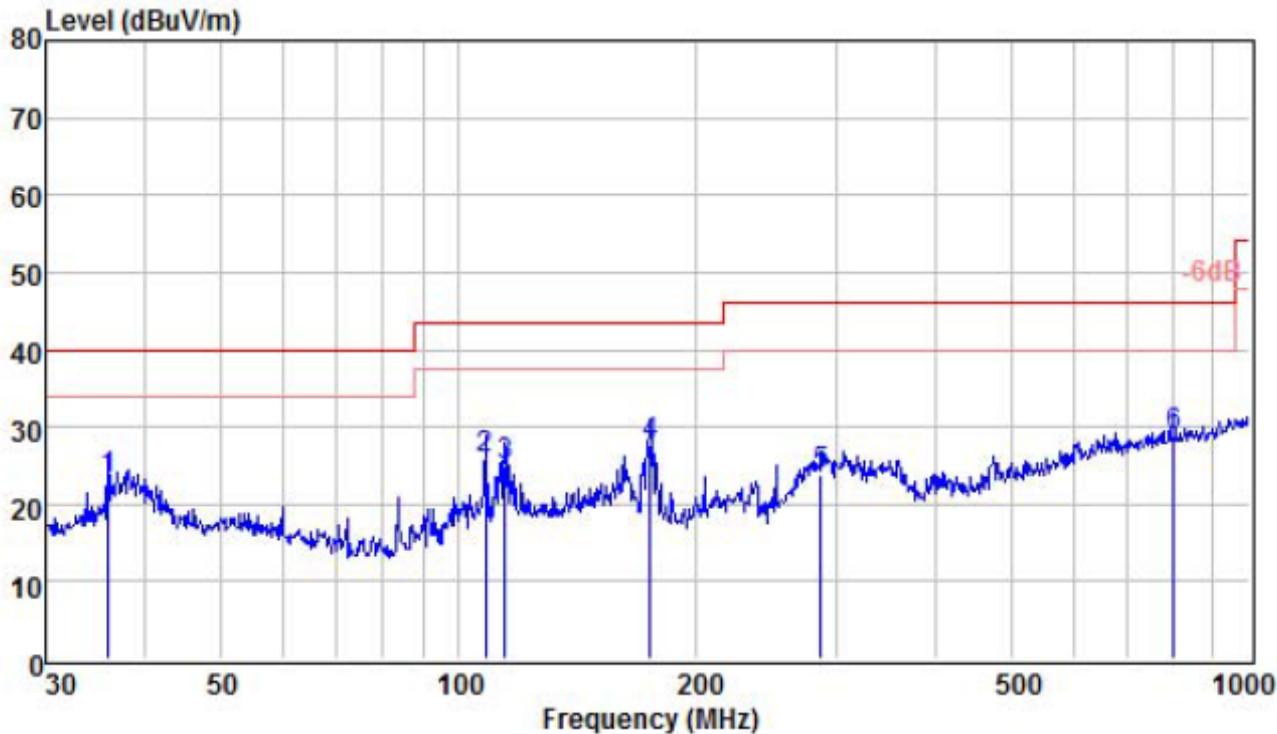

Distance extrapolation factor = $40 \log(\text{specific distance}/\text{test distance})$ (dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)

Temperature:	26°C	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Horizontal
Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 4		

Freq	ReadAntenna		Cable		Limit	Over	Remark
	Freq	Level	Factor	Loss	Level	Line	Limit
	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB
1	113.71	12.18	12.91	0.83	25.92	43.50	-17.58 QP
2	174.42	15.48	13.54	0.87	29.89	43.50	-13.61 QP
3	204.24	15.66	9.74	0.88	26.28	43.50	-17.22 QP
4	279.04	15.45	13.34	0.86	29.65	46.00	-16.35 QP
5	305.68	12.66	14.00	0.88	27.54	46.00	-18.46 QP
6	798.98	7.31	21.70	2.19	31.20	46.00	-14.80 QP


Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Limit – Level;

Temperature:	26°C	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 4		

Freq	Read	Antenna	Cable	Limit	Over	Over	
	Level	Factor	Loss				Remark
	MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB
1	36.00	10.00	12.95	0.39	23.34	40.00	-16.66 QP
2	107.89	12.81	12.22	0.83	25.86	43.50	-17.64 QP
3	114.51	11.14	13.00	0.83	24.97	43.50	-18.53 QP
4	174.42	13.39	13.54	0.87	27.80	43.50	-15.70 QP
5	286.98	9.42	13.57	0.85	23.84	46.00	-22.16 QP
6	801.79	4.95	21.73	2.19	28.87	46.00	-17.13 QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Limit – Level;

3.2.8 TEST RESULTS (1GHZ~25GHZ)

GFSK Worst Case

Polar (H/V)	Frequency (MHz)	Meter Reading (dBuV)	Pre-amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Detector Type
operation frequency:2402									
V	4804.00	67.76	50.64	6.78	31.25	55.15	74.00	-18.85	PK
V	4804.00	55.34	50.64	6.78	31.25	42.73	54.00	-11.27	AV
V	7206.00	66.55	49.95	7.11	36.53	60.24	74.00	-13.76	PK
V	7206.00	54.80	49.95	7.11	36.53	48.49	54.00	-5.51	AV
V	16132.00	48.97	51.56	11.36	41.57	50.34	74.00	-23.66	PK
H	4804.00	66.83	50.64	6.78	31.25	54.22	74.00	-19.78	PK
H	4804.00	55.44	50.64	6.78	31.25	42.83	54.00	-11.17	AV
H	7206.00	69.76	49.95	7.11	36.53	63.45	74.00	-10.55	PK
H	7206.00	53.67	49.95	7.11	36.53	47.36	54.00	-6.64	AV
H	16132.00	48.93	51.56	11.36	41.57	50.30	74.00	-23.70	PK
operation frequency:2441									
V	4882.00	67.53	50.69	6.83	31.37	55.04	74.00	-18.96	PK
V	4882.00	55.15	50.69	6.83	31.37	42.66	54.00	-11.34	AV
V	7323.00	69.41	49.99	7.22	36.53	63.17	74.00	-10.83	PK
V	7323.00	53.46	49.99	7.22	31.25	41.94	54.00	-12.06	AV
V	16132.00	48.80	51.56	11.36	41.57	50.17	74.00	-23.83	PK
H	4882.00	66.61	50.69	6.83	31.37	54.12	74.00	-19.88	PK
H	4882.00	55.25	50.69	6.83	31.37	42.76	54.00	-11.24	AV
H	7323.00	69.50	49.99	7.22	36.53	63.26	74.00	-10.74	PK
H	7323.00	53.57	49.99	7.22	31.25	42.05	54.00	-11.95	AV
H	16132.00	48.76	51.56	11.36	41.57	50.13	74.00	-23.87	PK
operation frequency:2480									
V	4960.00	68.01	50.86	6.86	31.41	55.42	74.00	-18.58	PK
V	4960.00	55.55	50.86	6.86	31.41	42.96	54.00	-11.04	AV
V	7440.00	69.19	50.14	7.27	36.58	62.90	74.00	-11.10	PK
V	7440.00	53.34	50.14	7.27	31.28	41.75	54.00	-12.25	AV
V	16132.00	49.16	51.56	11.36	41.57	50.53	74.00	-23.47	PK
H	4960.00	67.08	50.86	6.86	31.41	54.49	74.00	-19.51	PK
H	4960.00	55.65	50.86	6.86	31.41	43.06	54.00	-10.94	AV
H	7440.00	67.43	50.14	7.27	36.58	61.14	74.00	-12.86	PK
H	7440.00	55.37	50.14	7.27	31.28	43.78	54.00	-10.22	AV
H	16132.00	49.12	51.56	11.36	41.57	50.49	74.00	-23.51	PK

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,
Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.3 RADIATED BAND EMISSION MEASUREMENT

3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

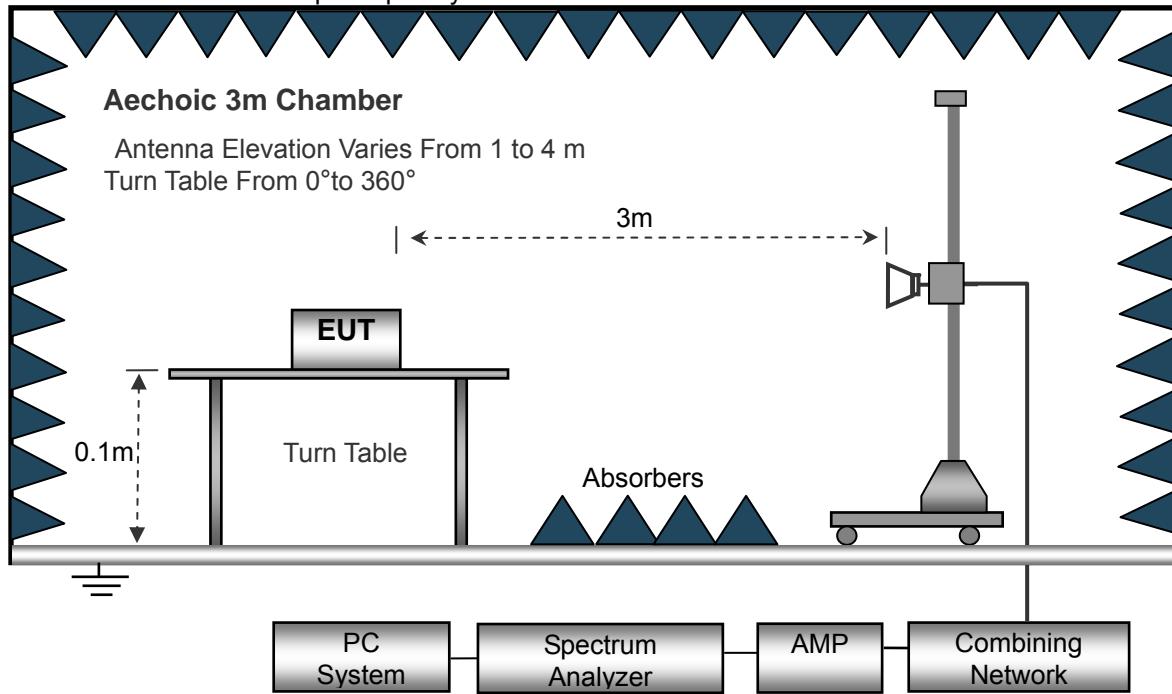
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

3.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.6 TEST RESULT

PASS

Remark: All modes of GFSK, π/4 DQPSK, 8DPSK were tested, only the worst result of GFSK was reported as below.

Polar (H/V)	Frequency	Meter Reading	Pre-amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2402									
V	2390.00	76.44	52.12	2.73	27.38	54.43	74.00	-19.57	PK
V	2390.00	65.19	52.12	2.73	27.38	43.18	54.00	-10.82	AV
V	2400.00	76.65	52.16	2.78	27.41	54.68	74.00	-19.32	PK
V	2400.00	64.78	52.16	2.78	27.41	42.81	54.00	-11.19	AV
H	2390.00	76.73	52.12	2.73	27.38	54.72	74.00	-19.28	PK
H	2390.00	65.22	52.12	2.73	27.38	43.21	54.00	-10.79	AV
H	2400.00	76.60	52.16	2.78	27.41	54.63	74.00	-19.37	PK
H	2400.00	65.16	52.16	2.78	27.41	43.19	54.00	-10.81	AV

Polar (H/V)	Frequency	Meter Reading	Pre-amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2480									
V	2483.50	76.65	52.23	2.86	27.44	54.72	74.00	-19.28	PK
V	2483.50	65.43	52.23	2.86	27.44	43.50	54.00	-10.50	AV
V	2500.00	76.59	52.26	2.88	27.49	54.70	74.00	-19.30	PK
V	2500.00	64.89	52.26	2.88	27.49	43.00	54.00	-11.00	AV
H	2483.50	76.77	52.23	2.86	27.44	54.84	74.00	-19.16	PK
H	2483.50	65.47	52.23	2.86	27.44	43.54	54.00	-10.46	AV
H	2500.00	76.39	52.26	2.88	27.49	54.50	74.00	-19.50	PK
H	2500.00	65.73	52.26	2.88	27.49	43.84	54.00	-10.16	AV

Remark:

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

4.1 LIMIT

Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

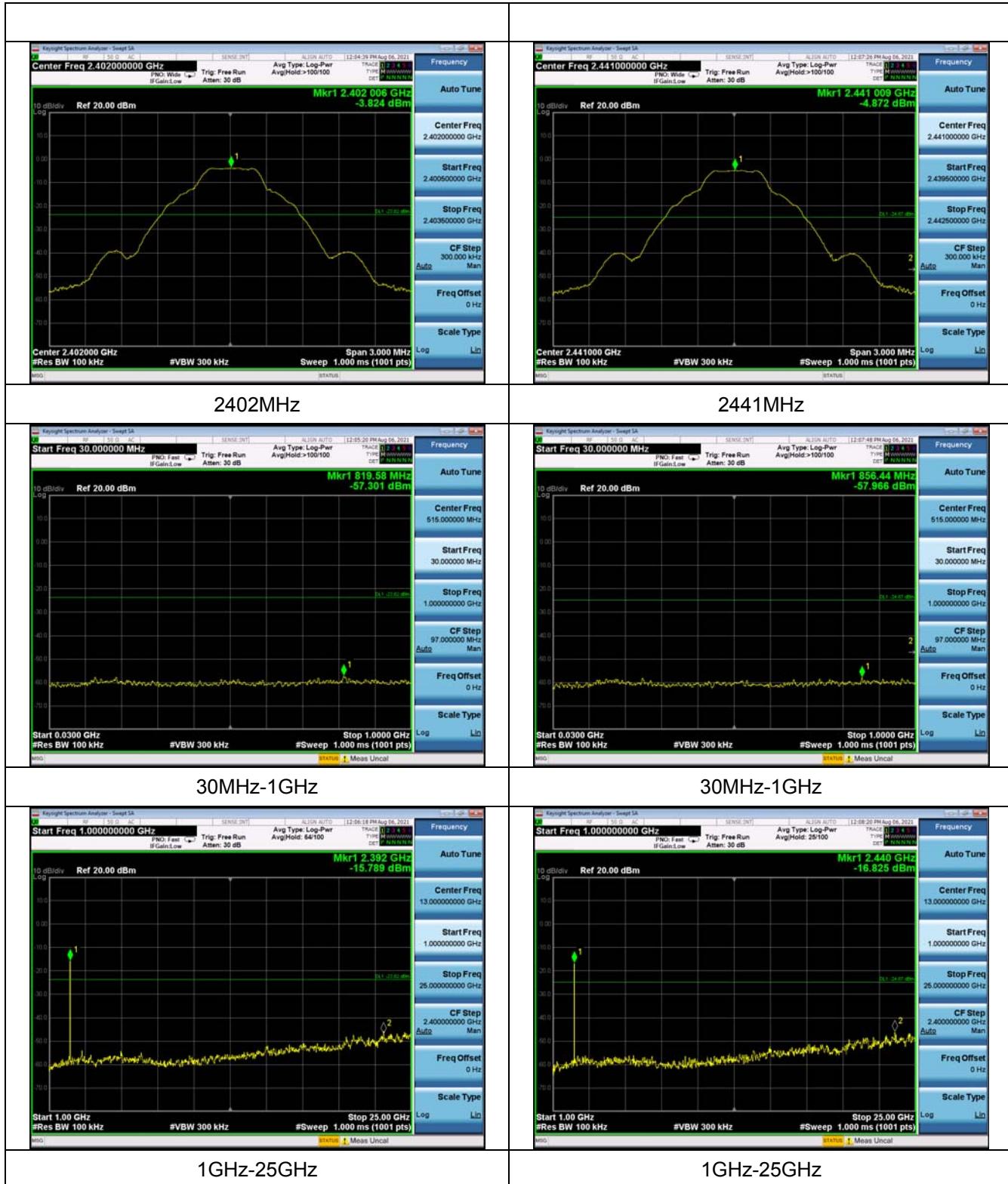
4.1.1 TEST SETUP

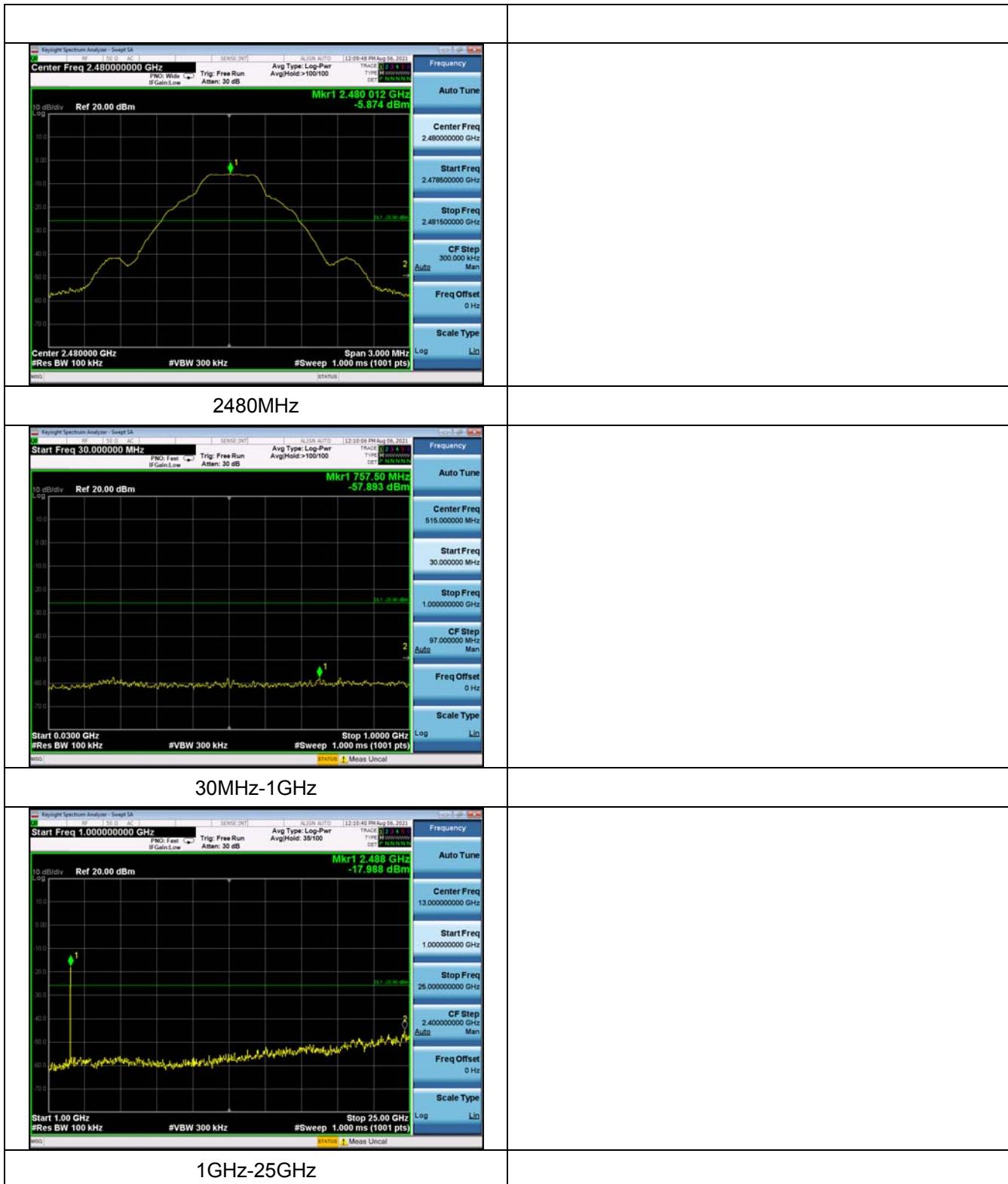
4.1.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

4.1.3 DEVIATION FROM STANDARD

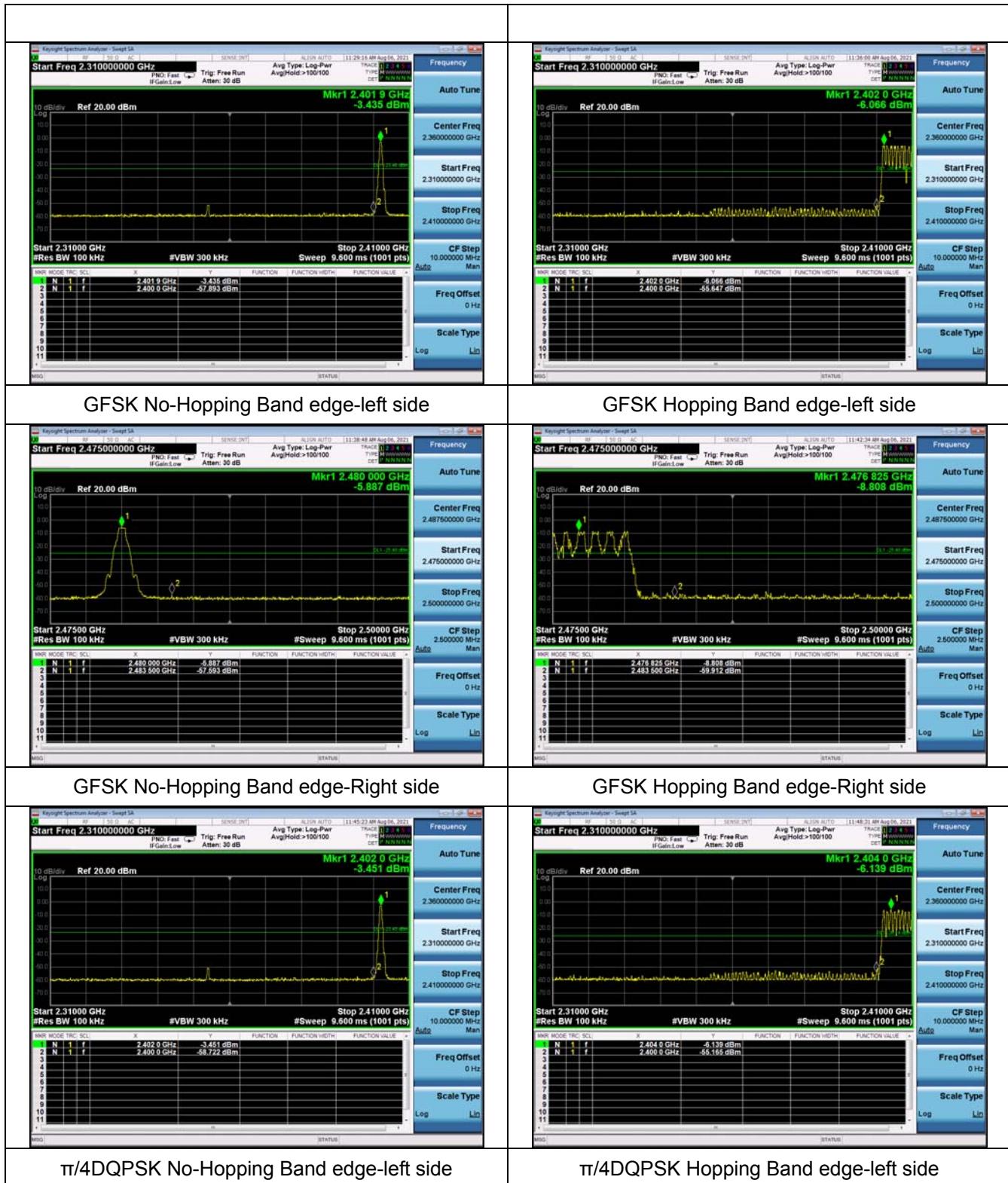

No deviation.



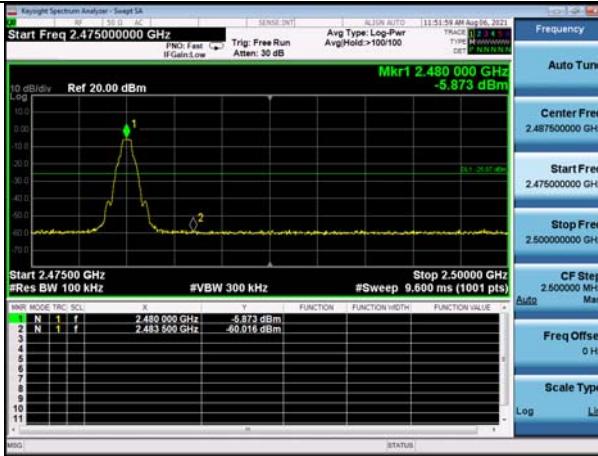
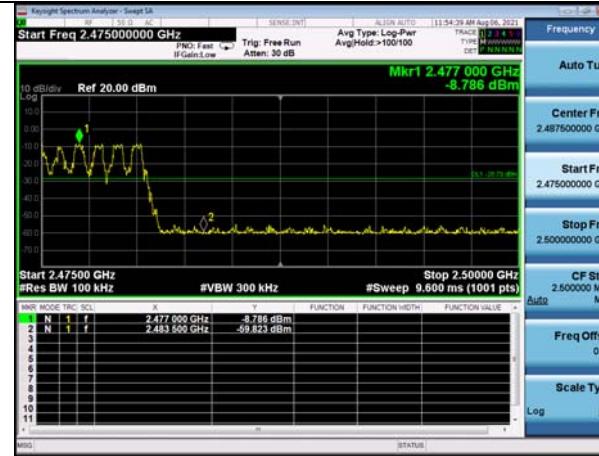
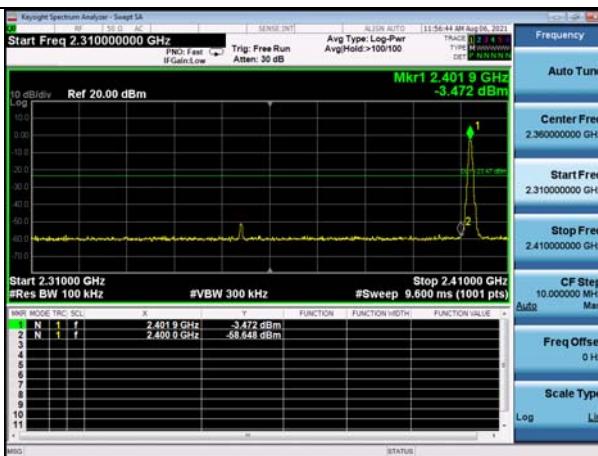
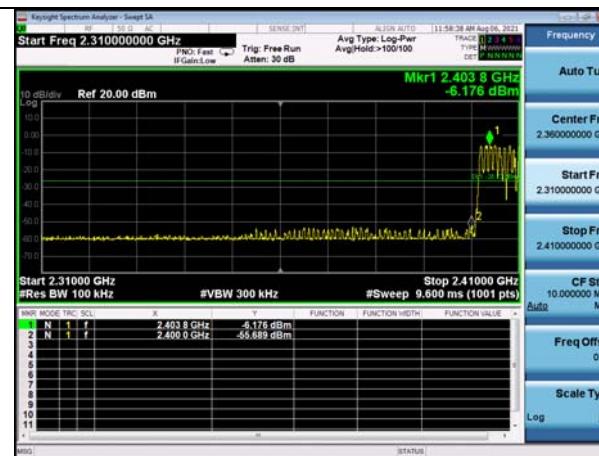
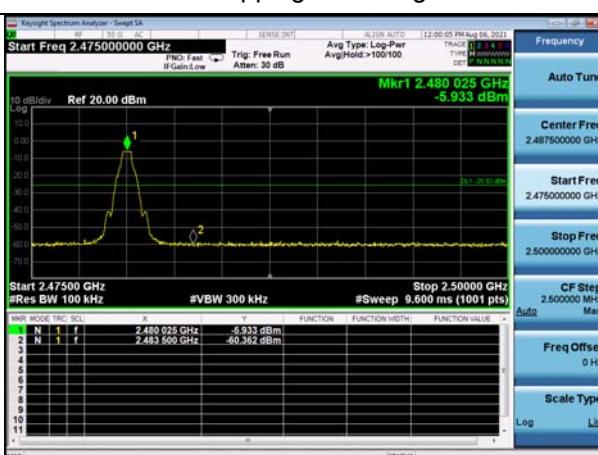
4.1.4 TEST RESULT

Remark: Spurious Emission all modes of GFSK, $\pi/4$ DQPSK, 8DPSK were tested, only the worst result of GFSK was reported as below:

GFSK mode:



Conducted band edge

Test result

Pass

Modulation		Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result
GFSK	Non-hopping	Left Band	54.458	20	Pass
		Right Band	51.706	20	Pass
	hopping	Left Band	49.581	20	Pass
		Right Band	51.104	20	Pass
$\pi/4$ DQPSK	Non-hopping	Left Band	55.271	20	Pass
		Right Band	54.143	20	Pass
	hopping	Left Band	49.026	20	Pass
		Right Band	51.037	20	Pass
8DPSK	Non-hopping	Left Band	55.167	20	Pass
		Right Band	54.429	20	Pass
	hopping	Left Band	49.513	20	Pass
		Right Band	51.188	20	Pass

<p>$\pi/4$DQPSK No-Hopping Band edge-Right side</p>	<p>$\pi/4$DQPSK Hopping Band edge-Right side</p>
<p>8DPSK No-Hopping Band edge-left side</p>	<p>8DPSK Hopping Band edge-left side</p>
<p>8DPSK No-Hopping Band edge-Right side</p>	<p>8DPSK Hopping Band edge-Right side</p>

5. PEAK OUTPUT POWER

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (b)(i)	Peak Output Power	30Bm or 20.96dBm	2400-2483.5	PASS

5.1.1 TEST PROCEDURE

- The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- Spectrum Setting : RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

VBW \geq RBW

Sweep = auto

Detector function = peak

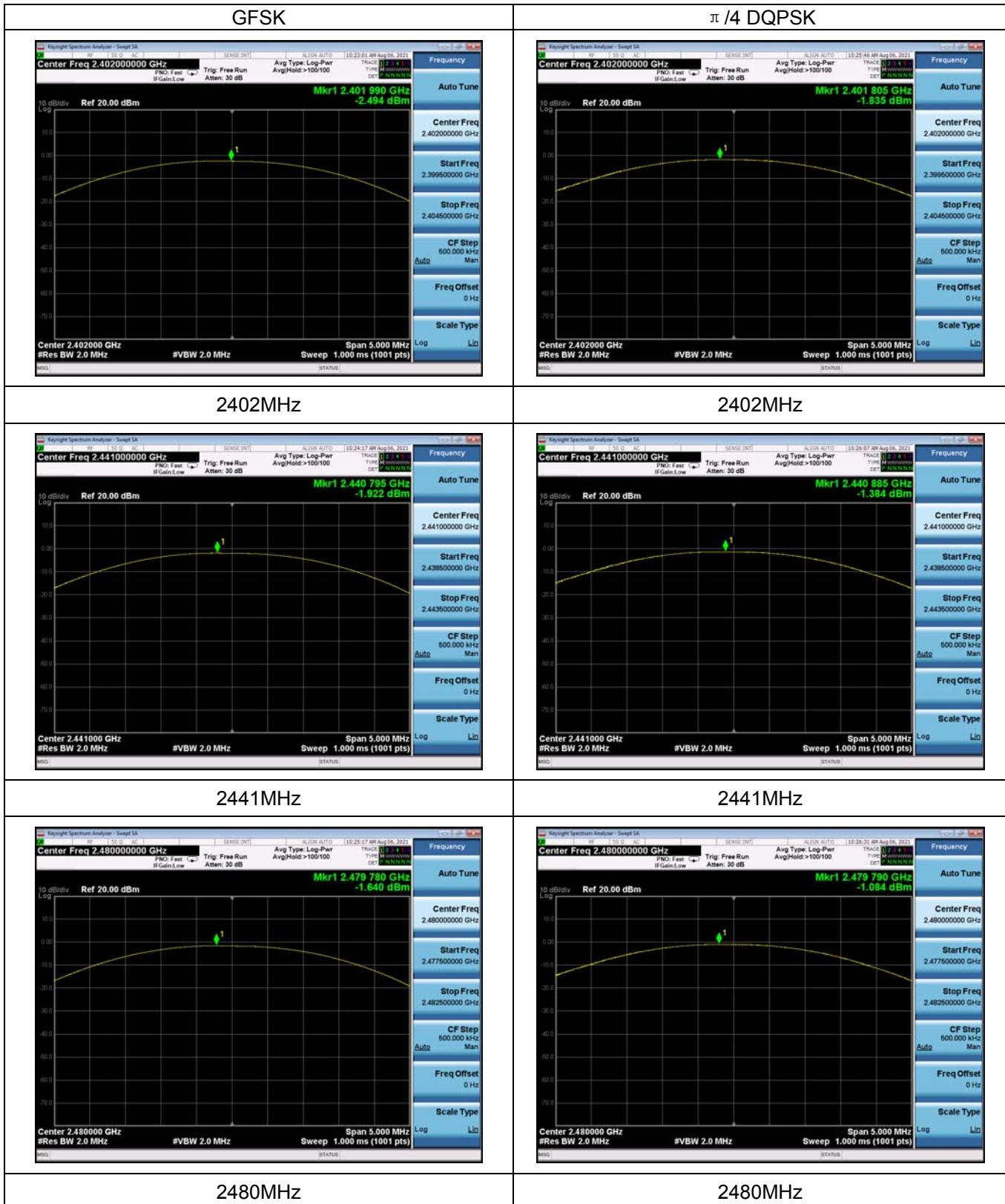
Trace = max hold

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

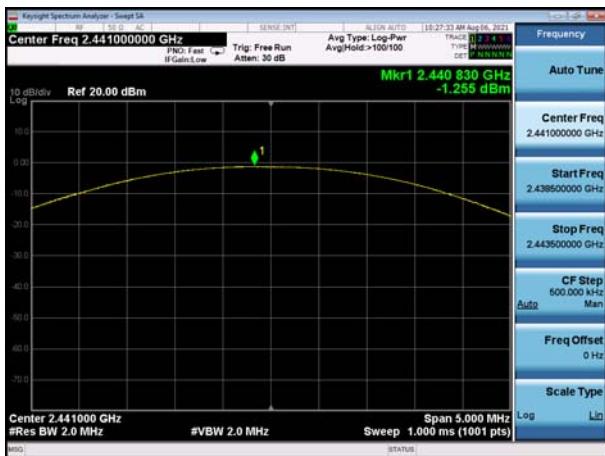
5.1.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS


Temperature:	25 °C	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00/ CH39 /CH78 (1M/2M/3Mbps Mode)		

Mode	Test Channel	Peak Output Power (dBm)	LIMIT (dBm)
GFSK	CH00	-2.494	20.96
	CH39	-1.922	20.96
	CH78	-1.640	20.96
$\pi/4$ DQPSK	CH00	-1.835	20.96
	CH39	-1.384	20.96
	CH78	-1.084	20.96
8DPSK	CH00	-1.706	20.96
	CH39	-1.255	20.96
	CH78	-0.969	20.96



8DPSK

2402MHz

2441MHz

2480MHz

6. NUMBER OF HOPPING CHANNEL

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	= the frequency band of operation
RB	$RBW \geq 1\% \text{ of the span}$
VB	$VBW \geq RBW$
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


6.1.1 TEST PROCEDURE

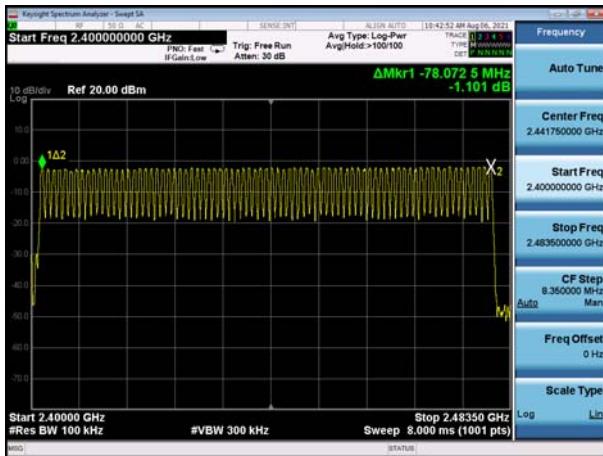
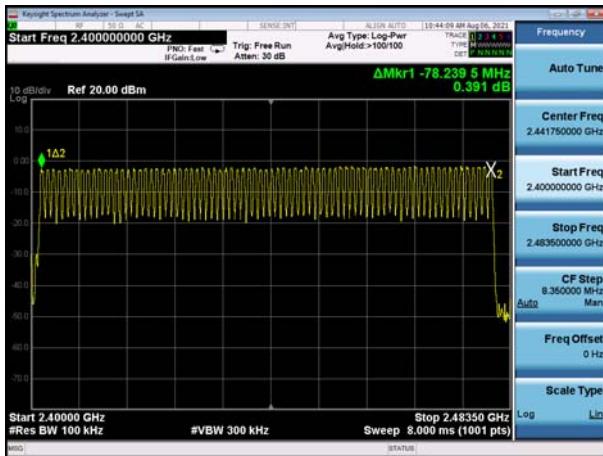
- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

6.1.2 DEVIATION FROM STANDARD

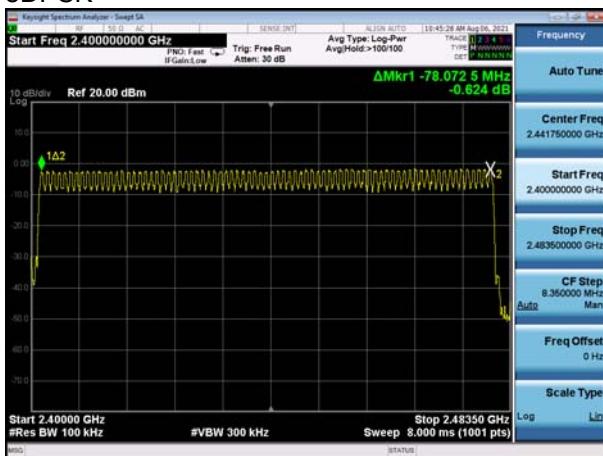
No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS



The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 TEST RESULTS


Test Mode :	Hopping Mode	
Number of Hopping Channel	GFSK	79
	$\pi/4$ DQPSK	79
	8DPSK	79

GFSK

 $\pi/4$ DQPSK

8DPSK

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C	
Section	Test Item
15.247(a)(1)	Bandwidth

7.1.1 TEST PROCEDURE

1. Set RBW = 30 kHz.
2. Set the video bandwidth (VBW) \geq RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 TEST RESULTS

	Frequency (MHz)	20dB Bandwidth (MHz)	Result
GFSK	2402	1.093	Pass
	2441	1.033	Pass
	2480	0.950	Pass
$\pi/4$ DQPSK	2402	1.091	Pass
	2441	1.036	Pass
	2480	1.034	Pass
8DPSK	2402	1.093	Pass
	2441	1.035	Pass
	2480	1.032	Pass

8DPSK

2402MHz

2441MHz

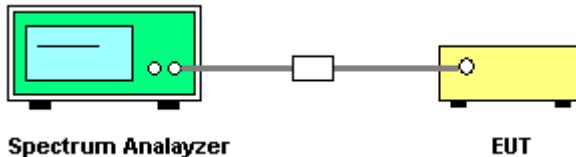
2480MHz

8. HOPPING CHANNEL SEPARATION MEASUREMENT

8.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	100 kHz (Channel Separation)
VB	300 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


8.1.1 TEST PROCEDURE

- The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were utilised for channel separation measurement.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.1.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V

Test Mode	Ch. Separation (MHz)	Limit (MHz)	Result
GFSK	1.002	0.689	Complies
$\pi/4$ DQPSK	1.000	0.690	Complies
8DPSK	1.172	0.690	Complies


GFSK

π/4DPSK

8DPSK

9. DWELL TIME OF OCCUPANCY

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

9.1.1 TEST PROCEDURE

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
2. Set spectrum analyzer span = 0Hz;
3. Set RBW = 1MHz and VBW = 3MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g.. data rate. modulation format. etc.). repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

9.1.2 DEVIATION FROM STANDARD

No deviation.

9.1.3 TEST SETUP

9.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.1.5 TEST RESULTS

GFSK DH5 mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2402MHz	DH5	311.47	400	Pass
2441MHz	DH5	311.47	400	Pass
2480MHz	DH5	311.47	400	Pass

Remarks:

The test period: $T = 0.4 \text{ Second/Channel} \times 79 \text{ Channel} = 31.6 \text{ s}$

Test channel: as blow

CH:2402MHz time slot=2.920(ms)*(1600/ (6*79))*31.6=311.47ms

CH:2441MHz time slot=2.920(ms)*(1600/ (6*79))*31.6=311.47ms

CH:2480MHz time slot=2.920(ms)*(1600/ (6*79))*31.6=311.47ms

$\pi/4$ -DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2402MHz	2DH5	313.60	400	Pass
2441MHz	2DH5	311.47	400	Pass
2480MHz	2DH5	313.60	400	Pass

Remarks:

The test period: $T = 0.4 \text{ Second/Channel} \times 79 \text{ Channel} = 31.6 \text{ s}$

Test channel: as blow

CH:2402MHz time slot=2.940(ms)*(1600/ (6*79))*31.6=313.60ms

CH:2441MHz time slot=2.920(ms)*(1600/ (6*79))*31.6=311.47ms

CH:2480MHz time slot=2.940(ms)*(1600/ (6*79))*31.6=313.60ms

8-DPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2480MHz	3DH5	311.47	400	Pass
2480MHz	3DH5	313.60	400	Pass
2480MHz	3DH5	313.60	400	Pass

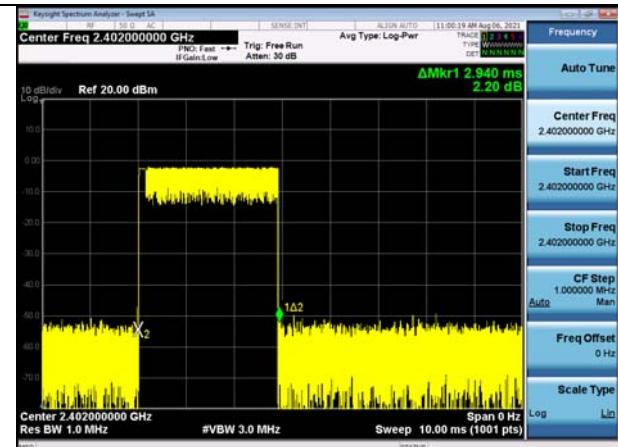
Remarks:

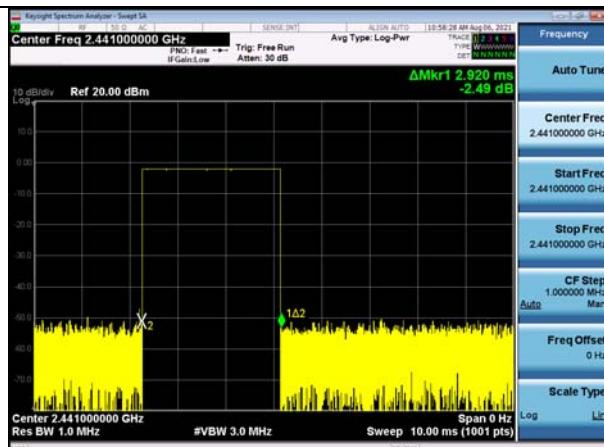
The test period: $T = 0.4 \text{ Second/Channel} \times 79 \text{ Channel} = 31.6 \text{ s}$

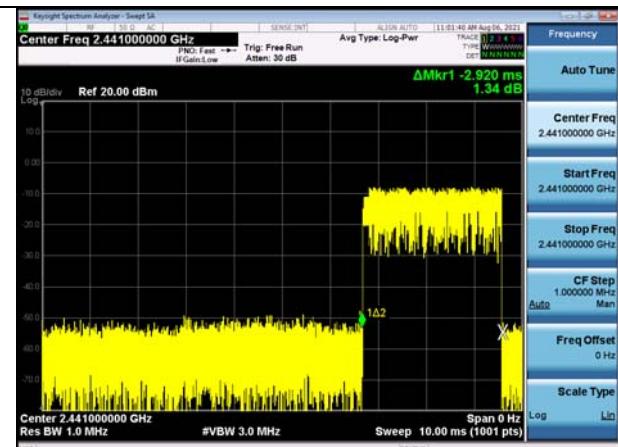
Test channel: as blow

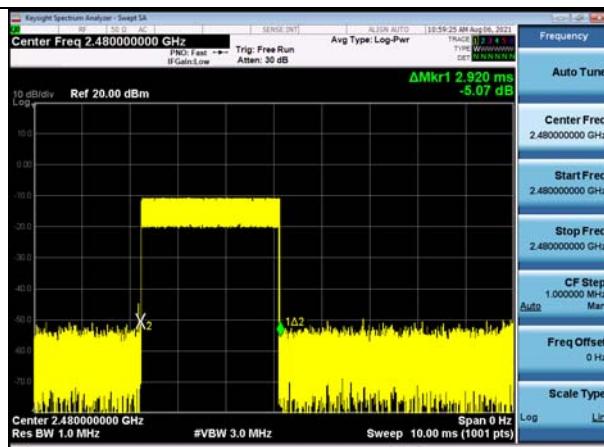
CH:2402MHz time slot=2.920(ms)*(1600/ (6*79))*31.6=311.47ms

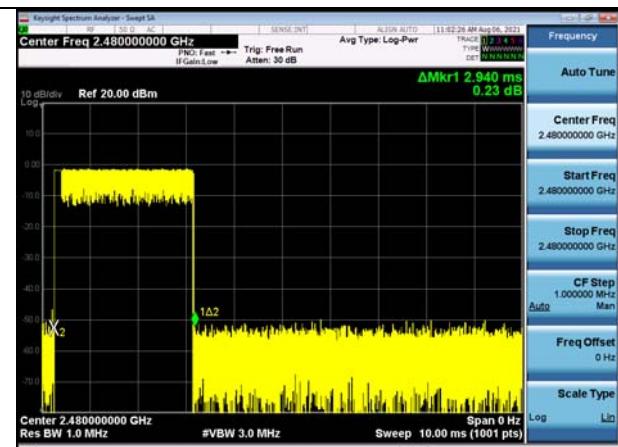
CH:2441MHz time slot=2.940(ms)*(1600/ (6*79))*31.6=313.60ms


CH:2480MHz time slot=2.940(ms)*(1600/ (6*79))*31.6=313.60ms

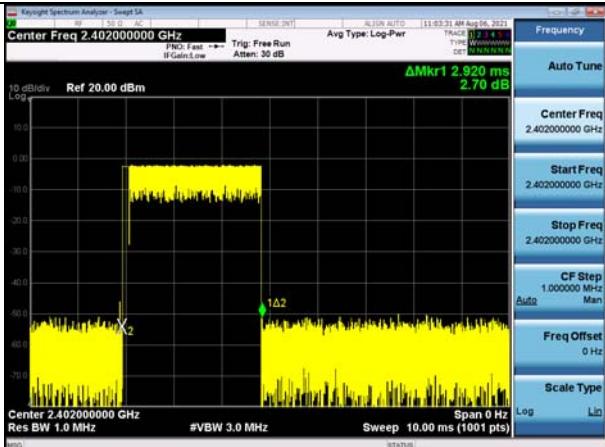

GFSK

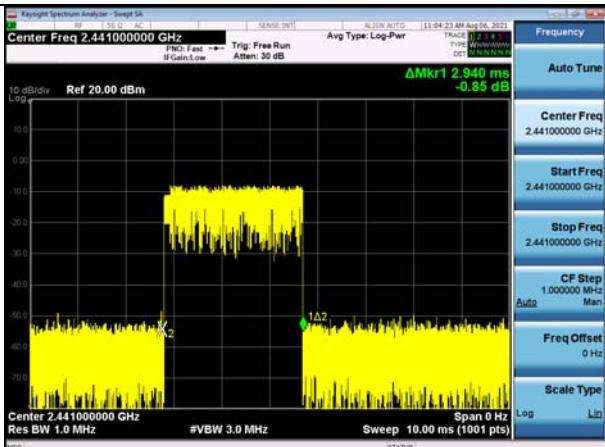

π/4-DQPSK

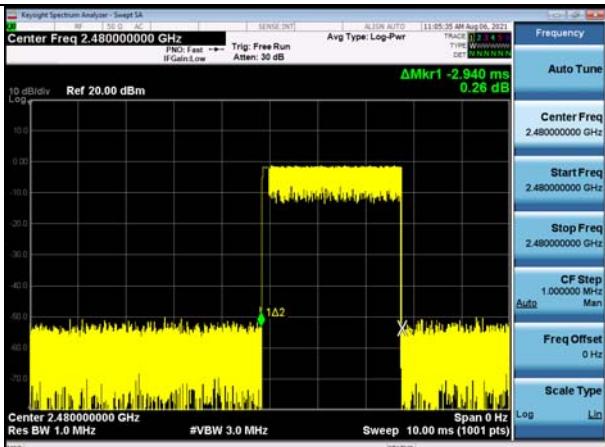

2402MHz


2402MHz

2441MHz


2441MHz

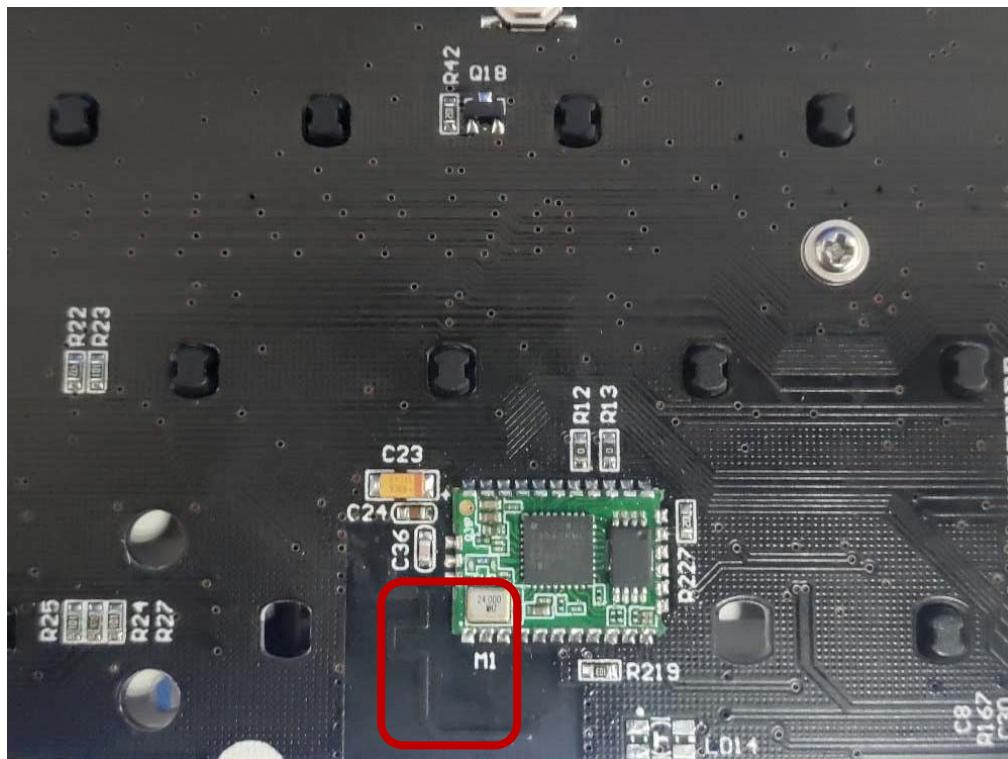

2480MHz


8-DPSK

2402MHz

2441MHz

2480MHz


10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is PCB antenna,. It comply with the standard requirement.

11. TEST SEUUP PHOTO

Reference to the appendix I for details.

12. EUT PHOTO

Reference to the appendix II for details.

***** END OF REPORT *****