

MPE REPORT

FCC ID: 2AXB8-PATRY

Date of issue: Sept. 16, 2020

Report number: MTi20070917-6E2

Sample description: PARTIER

Model(s): Party-1004

Applicant: RNS Co., Ltd.

Address: #7 10FL, 202dong, 18, Bucheon-ro 198beon-gil, Bucheon-si, Gyeonggi-do, Republic of Korea

Date of test: Aug. 18, 2020 to Sept. 16, 2020

Shenzhen Microtest Co., Ltd.

<http://www.mtitest.com>

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

Tel:(86-755)88850135

Fax: (86-755) 88850136

Web: <http://www.mtitest.com>

E-mail: mti@51mti.com

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

TEST RESULT CERTIFICATION	
Applicant's name:	RNS Co., Ltd.
Address:	#7 10FL, 202dong, 18, Bucheon-ro 198beon-gil, Bucheon-si, Gyeonggi-do, Republic of Korea
Manufacture's name:	RNS Co., Ltd.
Address:	#7 10FL, 202dong, 18, Bucheon-ro 198beon-gil, Bucheon-si, Gyeonggi-do, Republic of Korea
Product name:	PARTIER
Trademark:	PARTIER
Model and/or type reference:	Party-1004
Serial model:	N/A
RF exposure procedures:	KDB 447498 D01 v06

This device described above has been tested by Shenzhen Microtest Co., Ltd and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:

Danny Xu

Sept. 16, 2020

Reviewed by:

Leo Su

Sept. 16, 2020

Approved by:

Tom Xue

Sept. 16, 2020

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

Friis transmission formula: $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot R^2)$

Where

P_d = Power density in mW/cm²

P_{out} = output power to antenna in mW

G = Numeric gain of the antenna relative to isotropic antenna

$\pi = 3.1415926$

R = distance between observation point and center of the radiator in cm(20cm)

P_d the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Measurement Result

Channel Freq. (MHz)	modulation	conducted power	Tune- up power (dBm)	Max		Antenna		Evaluation result (mW/cm ²)	Power density Limits (mW/cm ²)		
				tune-up power		Gain					
				(dBm)	(mW)	(dBi)	Numeric				
2402	GFSK	4.205	5±1	6	3.981	-0.58	0.87	0.0007	1		
2441		4.799	5±1	6	3.981	-0.58	0.87	0.0007	1		
2480		5.493	5±1	6	3.981	-0.58	0.87	0.0007	1		
2402	π/4- DQPSK	3.718	4±1	5	3.162	-0.58	0.87	0.0006	1		
2441		3.985	4±1	5	3.162	-0.58	0.87	0.0006	1		
2480		4.802	4±1	5	3.162	-0.58	0.87	0.0006	1		

Conclusion:

For the max result: $0.0007 \leq 1.0$ for 1g SAR, No SAR is required.

----END OF REPORT----