

Test Report

Electromagnetic Compatibility (EMC)

TESTS ACCORDING TO FCC PART 15 B AND INDUSTRY CANADA REQUIREMENTS

Equipment Under Test: Welding Camera

Model: C300

Type: -

Manufacturer: Cavitar Ltd.
Kuokkamaantie 4 A
FI-33800 Tampere
Finland

Customer: Cavitar Ltd.
Kuokkamaantie 4 A
FI-33800 Tampere
Finland

FCC Rule Part: FCC CFR 47 Part 15 Subpart B (2019), Class A
IC Rule Part: ICES-003 Issue 6 (update 2019), Class A

Date: 18 November 2020

Issued by:

A handwritten signature in blue ink, appearing to read 'Henri Mäki'.

Henri Mäki
Testing Engineer

Date:

18 November 2020

Checked by:

A handwritten signature in blue ink, appearing to read 'R. Repo'.

Rauno Repo
Senior EMC/RF Specialist

TABLE OF CONTENTS

TABLE OF CONTENTS	2
GENERAL REMARKS	3
Disclaimer	3
RELEASE HISTORY.....	4
PRODUCT DESCRIPTION	5
Equipment Under Test (EUT)	5
General description	5
Samples and modifications.....	5
Ports and cables	6
Peripherals	6
TEST CONDITIONS	7
EUT Test Conditions During EMC-Testing.....	7
Operation modes	7
Emission Measurement Uncertainty	8
SUMMARY OF TESTING	8
EMISSION TEST RESULTS	9
Conducted Emissions In The Frequency Range 150 kHz – 30 MHz.....	9
Radiated Emissions In The Frequency Range 30 – 5000 MHz.....	11
TEST EQUIPMENT	14
Conducted Emissions	14
Radiated Emissions	14

GENERAL REMARKS**Disclaimer**

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

RELEASE HISTORY

Version	Changes	Issued
1.0	Initial release	18 November 2020

PRODUCT DESCRIPTION**Equipment Under Test (EUT)**

EUT information			
General Product Description	Welding Camera		
Trademark	Cavitar Welding Camera		
Model	C300		
Type	-		
Serial number	5640345		
Power input port type	Sensor unit: DC, Power supply: AC		
Rated voltage	Sensor unit: 24 V _{DC} , Power supply: 100 – 240 V _{AC}		
Rated current	Sensor unit: 0.5 A, Power supply: 0.22 – 0.55 A		
Rated frequency	Sensor unit: DC, Power supply: 47 – 63 Hz		
Rated power	Sensor unit: 12 W, Power supply: 25 W		
EUT Highest operation freq.	600 MHz		
Hardware Version (if any)	Sensor Unit v1.3		
Software Version (if any)	PC software: Cavitar Capture v4.0		
Mechanical size of the EUT	Height: 45 mm	Width: 30 mm	Length: 99 mm
Parallel models	The working distance can be either fixed (default) or adjustable (150...300 mm), and the housing material can be either anodized aluminium (default) or stainless steel.		

The EUT was tested as a tabletop unit.

General description

The equipment under test is a welding camera for monitoring various welding processes, including MIG, MAG, and TIG processes.

Samples and modifications

No.	Name	Description
1	Sample 1	Normal sample

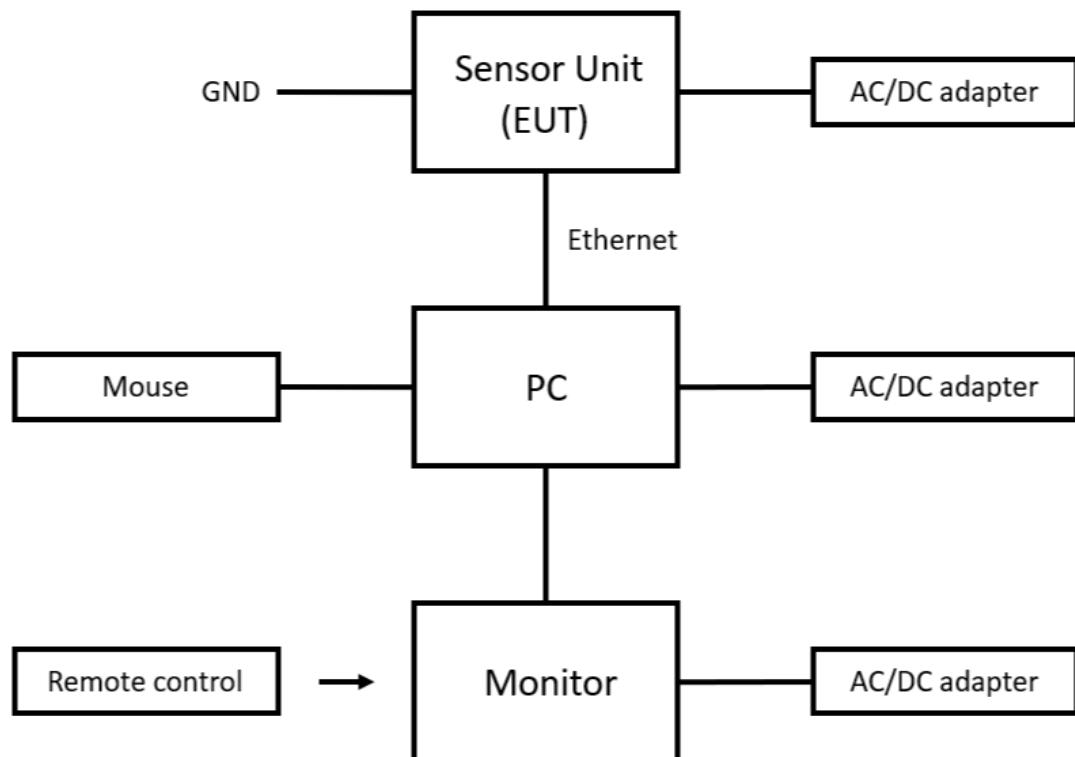
Ports and cables

Port name and purpose	Connected from-to	Length (max)	Type	Shielded
Mains	to AC/DC power supply	2 m	L/N/PE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
DC power	AC/DC power supply – sensor unit	10 m	M8	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
Gigabit Ethernet	sensor unit – PC	10 m	CAT6A	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No

Peripherals

Peripheral	Description / Usage
AC/DC adapter	Sinpro SPU25A-108 / Powering the EUT (supplied by the customer)
PC	Intel BKNUC8v5PNK / PC with Cavitar Software for controlling and monitoring the camera (supplied by the customer)
AC/DC adapter	FSP090-DBBN3 / Powering the peripheral PC (supplied by the customer)
Monitor	Samsung T24E310EX / Connected to the peripheral PC (supplied by the laboratory)
Remote control	Samsung AA59-00741A / Controlling the peripheral monitor (supplied by the laboratory)
AC/DC adapter	Samsung A3514_FPN / Powering the peripheral monitor (supplied by the laboratory)
Mouse	Logitech RX250 M-BAD58B / Controlling to the peripheral PC (supplied by the laboratory)

TEST CONDITIONS


EUT Test Conditions During EMC-Testing

Configuration of the EUT was made to correspond to the actual assembling conditions as far as possible. During testing heat sinks were attached to two sides of the EUT.

The EUT was monitored with peripheral PC using software provided by the manufacturer.

During testing the power supply voltage and frequency was 120 V / 60 Hz.

The test conditions were proposed by the customer.

Figure 1: Test setup blocking diagram

Operation modes

During the tests the EUT was in the following operation modes:

Mode	Description
1	The camera and the laser inside the sensor unit were ON. The camera was capturing and the laser was illuminating images with maximum camera capture rate (100 frames/s).

Emission Measurement Uncertainty

The uncertainties comply with CISPR 16-4-2 ed.2 requirements ($U_{lab} < U_{cispr}$).

SUMMARY OF TESTING

Test Specification	Description of Test	Result
FCC CFR 47 15/B §15.107, ICES-003 §6.1	Conducted emissions, Class A	PASS
FCC CFR 47 15/B §15.109, ICES 003 §6.2	Radiated emissions, Class A	PASS

Decision rule used for the emission tests are defined in standard CISPR 16-4-2 / EN 55016-4-2 clause 4.2

Test Facility

Testing Laboratory / address: FCC designation number: FI0002 ISED CAB identifier: T004	SGS Fimko Ltd Takomotie 8 FI-00380, HELSINKI FINLAND
Test Site:	<input type="checkbox"/> K10LAB, ISED Canada registration number: 8708A-1 <input checked="" type="checkbox"/> K5LAB, ISED Canada registration number: 8708A-2 <input type="checkbox"/> T10LAB

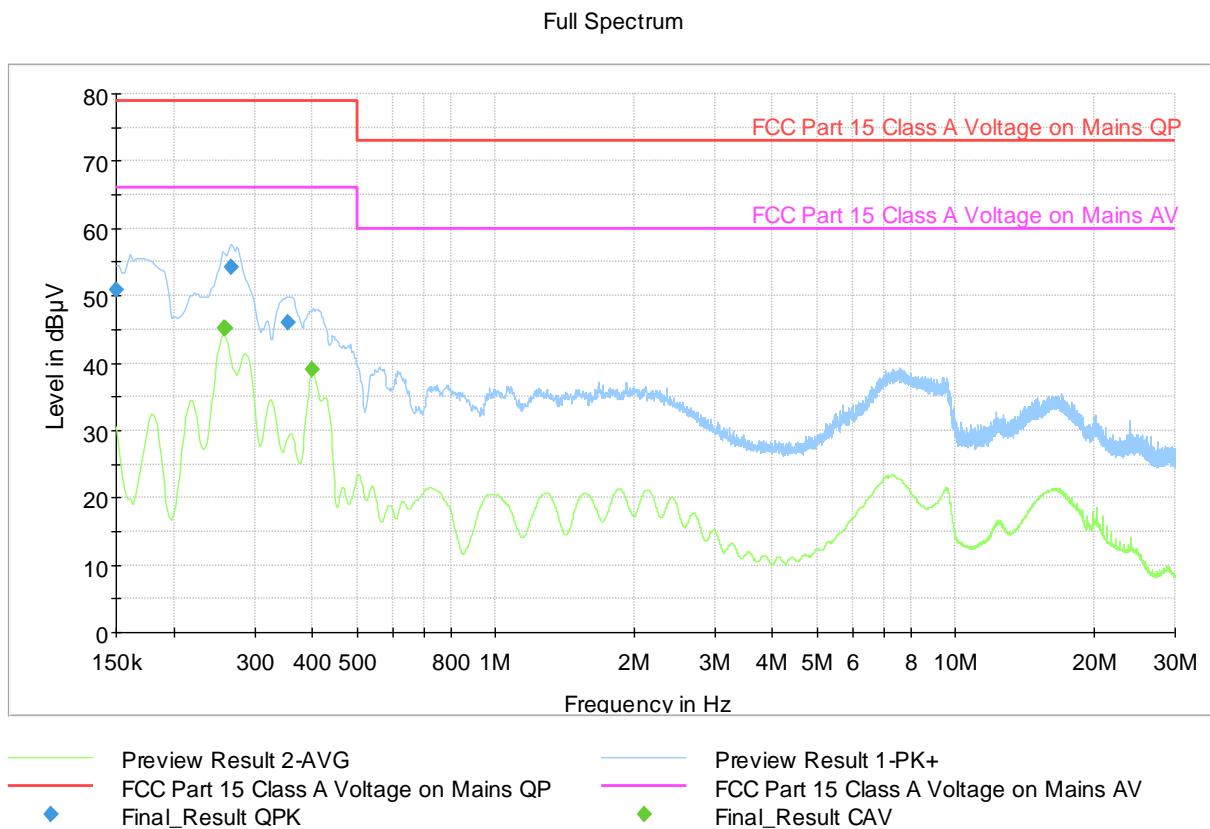
EMISSION TEST RESULTS**Conducted Emissions In The Frequency Range 150 kHz – 30 MHz**

Standard: ANSI C63.4 (2014)
Tested by: RRE
Date: 6 November 2020
Humidity: 27 %RH
Temperature: 23 °C
Barometric pressure: 1009 mbar
Measurement uncertainty: ± 2.9 dB Level of confidence 95 % (k = 2)

FCC Rule: 15.107(a)

ICES-003: 6.1

Test Plan


Conducted disturbance voltage was measured with an artificial mains network from 150 kHz to 30 MHz with a resolution bandwidth of 9 kHz. Measurements were carried out with peak and average detectors from the phase(s) and neutral lines of the power supply cable.

The EUT was working as described in the section “EUT Test Conditions”.

Class A limits:

Frequency of emission (MHz)	Conducted limit (dBμV)	
	Quasi-peak	Average
0.15 – 0.5	79	66
0.5 – 30	73	60

Test results

Figure 2: The measured curves with peak-detector and average detector

Final measurements from the worst frequencies

Table 1: Final measurement from the worst frequencies

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	Corr. (dB)
0.150000	50.88	---	79.00	28.12	15x1s	9.000	N	9.6
0.258250	---	45.10	66.00	20.90	15x1s	9.000	N	9.6
0.258750	---	45.23	66.00	20.77	15x1s	9.000	N	9.6
0.266000	54.17	---	79.00	24.83	15x1s	9.000	N	9.6
0.354250	46.08	---	79.00	32.92	15x1s	9.000	N	9.6
0.400500	---	38.95	66.00	27.05	15x1s	9.000	N	9.7

Correction factor (dB) in the final result tables contains the sum of the transducers (cables + LISN). QuasiPeak and Average values are the measured values corrected with the correction factor.

Radiated Emissions In The Frequency Range 30 – 5000 MHz

Standard:	ANSI C63.4 (2014)
Tested by:	RRE
Date:	6 November 2020
Humidity:	27 %RH
Temperature:	23 °C
Barometric pressure:	1009 mbar
Measurement uncertainty:	± 4.9 dB (30 – 200 MHz) Level of confidence 95 % (k = 2). ± 4.1 dB (200 – 1 000 MHz) ± 4.3 dB (1 – 5 GHz)

FCC Rule: 15.109(a)**ICES-003: 6.2****Test plan**

The radiated emission measurements were done within a semi anechoic screened chamber. Additional floor absorbers were used on the floor between the EUT and receiving antenna in radiated emission test above 1 GHz. The EUT was placed on a table 0.8 m above the reflecting ground plane. The measurement distance was 3 meters. The worst interferences were determined during measurements by rotating the turntable and adjusting the antenna height. The measurements were done in horizontal and vertical antenna polarizations. The supply voltage to the turntable was fed through the filter.

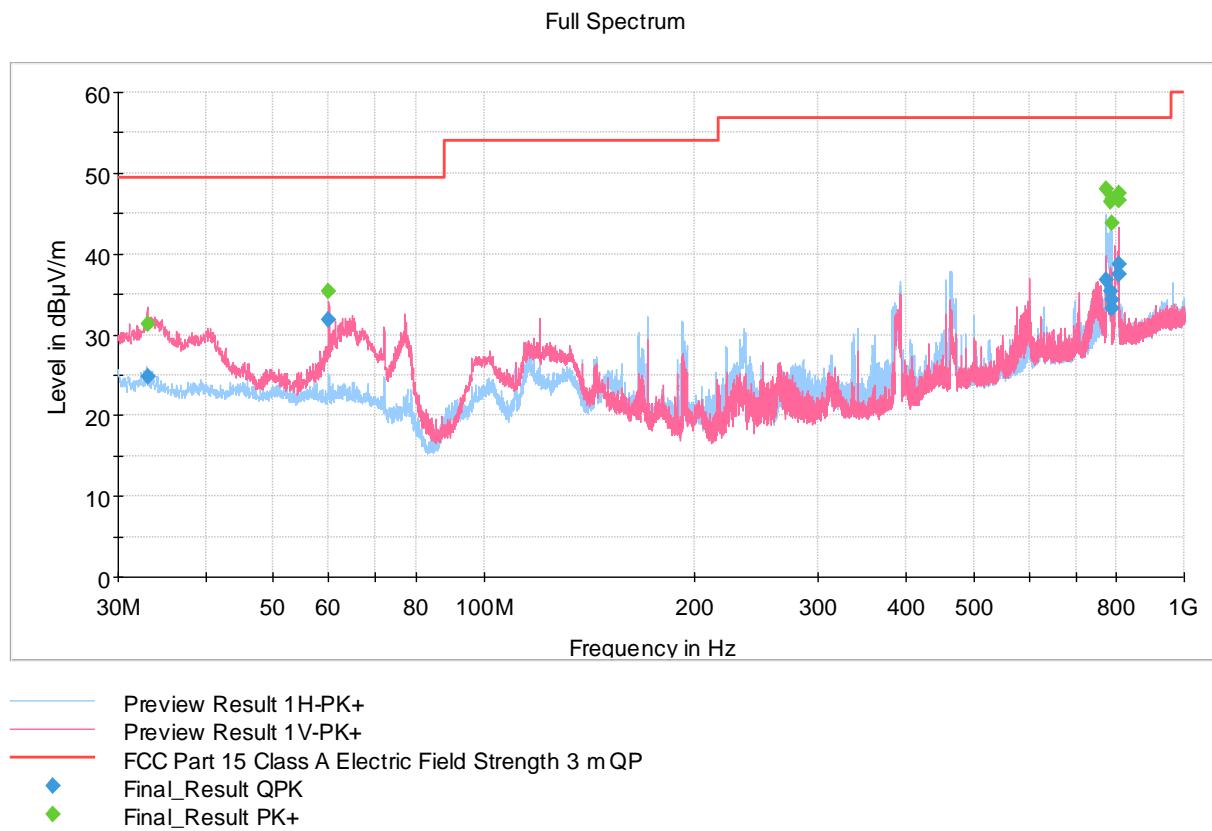
The EUT was working as described in the section “EUT Test Conditions”.

Radiated measurement settings**Preliminary testing (30 – 1000 MHz):**

Turntable movement:	20 ° step
Turntable position:	10 ° to 350 °
Antenna movement:	1.5 m step
Antenna height:	1.0 m to 4.0 m
Antenna polarization:	Vertical and horizontal

Final testing (30 – 1000 MHz):

Turntable movement:	Continuous
Turntable position:	± 30 °
Antenna movement:	Continuous
Antenna height:	± 0.75 m
Antenna polarization:	Vertical and horizontal


Preliminary testing (1 – 5 GHz):

Turntable movement:	15 ° step
Turntable position:	0 ° to 345 °
Antenna movement:	1.0 m step
Antenna height:	1.0 m to 4.0 m
Antenna polarization:	Vertical and horizontal

Final testing (1 – 5 GHz):

Turntable movement:	Continuous
Turntable position:	± 7.5 °
Antenna movement:	Continuous
Antenna height:	± 0.50 m
Antenna polarization:	Vertical and horizontal

Measured Quasi-Peak Values In The Frequency Range 30 – 1000 MHz

Figure 3: Measured curve with peak-detector. Final peak results (green tags) are only informative.

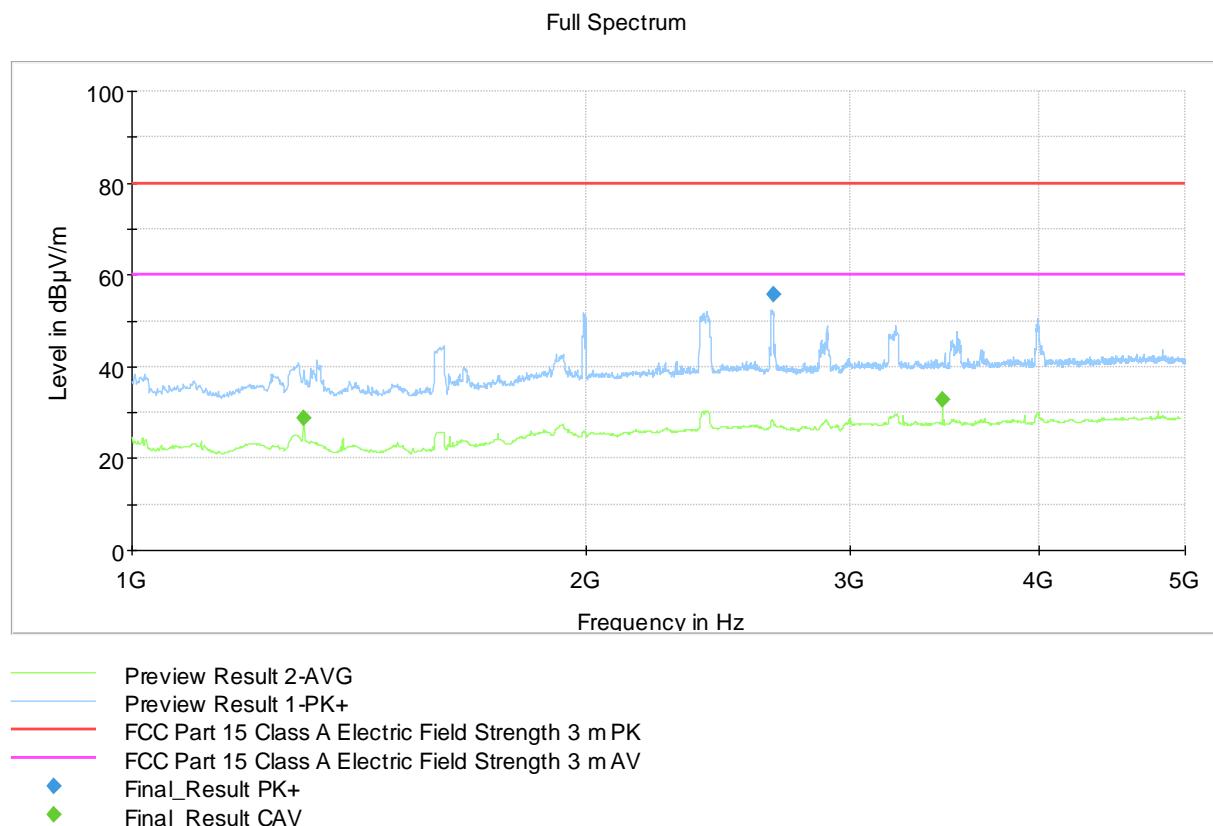

Final measurements from the worst frequencies

Table 2: Final quasi-peak measurement from the worst frequencies

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.030000	24.84	49.49	24.65	15x1s	120.000	128.0	V	51.0	16.6
60.000000	31.90	49.47	17.57	15x1s	120.000	108.0	V	160.0	17.9
774.220000	36.73	56.86	20.13	15x1s	120.000	100.0	H	332.0	29.7
785.660000	35.40	56.86	21.46	15x1s	120.000	108.0	H	327.0	29.7
786.470000	34.28	56.86	22.58	15x1s	120.000	115.0	H	324.0	29.7
787.340000	33.20	56.86	23.66	15x1s	120.000	253.0	H	216.0	29.8
805.160000	38.77	56.86	18.09	15x1s	120.000	100.0	V	301.0	29.9
805.600000	37.52	56.86	19.34	15x1s	120.000	100.0	V	287.0	29.9

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables). QuasiPeak values are measured values corrected with the correction factor.

Measured Peak and Average Values In The Frequency Range 1 – 5 GHz

Figure 4: Measured curve with peak and average detector.

Final measurements from the worst frequencies

Table 3: Final peak and average measurement from the worst frequencies

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1300.025000	---	28.71	60.00	31.29	15x1s	1000.000	118.0	H	347.0	0.3
2663.125000	55.88	---	80.00	24.12	15x1s	1000.000	350.0	V	8.0	4.1
3449.825000	---	32.67	60.00	27.33	15x1s	1000.000	109.0	V	296.0	4.7

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

TEST EQUIPMENT**Conducted Emissions**

DESCRIPTION	MANUFACTURER	MODEL	IDENTIFIER	CAL. DATE	CAL. DUE
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv. 10679	2020-07-20	2021-07-20
LISN	ROHDE & SCHWARZ	ENV216	inv. 9611	2020-03-03	2021-03-03
LISN	ROHDE & SCHWARZ	ESH3-Z5	inv. 8019	2020-05-19	2021-05-19
POWER SUPPLY	CALIFORNIA INSTR.	5001 iX Series II	inv. 7826	NCR	-
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-

Radiated Emissions

DESCRIPTION	MANUFACTURER	MODEL	IDENTIFIER	CAL. DATE	CAL. DUE
ANTENNA	SCHWARZBECK	VULB 9168	inv. 9963	2019-10-07	2021-10-07
ANTENNA	EMCO	3117	inv. 7293	2020-03-11	2022-03-11
ANTENNA MAST	MATURO	TAM 4.0E	inv. 10181	NCR	-
ATTENUATOR	PASTERNACK	PE 7004-4 (4dB)	inv. 10126	2019-04-01	2021-04-01
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv. 10679	2020-07-20	2021-07-20
MAST & TURNTABLE CONTROLLER	MATURO	NCD	inv. 10183	NCR	-
POWER SUPPLY	CALIFORNIA INSTR.	5001 iX Series II	inv. 7826	NCR	-
RF PREAMPLIFIER	CIAO	CA118-3123	inv. 10278	2020-10-09	2021-10-09
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
TURNTABLE	MATURO	DS430 UPGRADED	inv. 10182	NCR	-

NCR = No calibration required

END OF REPORT