

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden No.98, Pingxin

North Road, Shangmugu, Pinghu Street, Longgang District, Shenzhen, Guangdong, China

TEST REPORT

47 CFR FCC Part 15 Subpart B (Class B)

Radio Frequency Devices – Unintentional Radiators – Limits and methods of measurement

ANSI C63.4: 2014

American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Report Reference No.: GTS20201103032-1-3

FCC ID.: 2AX35-T5

Compiled by

(position+printed name+signature): File administrators Jimmy Wang

Supervised by

(position+printed name+signature): Test Engineer Aaron Tan

Approved by

(printed name + signature): Manager Jason Hu

Date of issue: Nov.20, 2020

Testing Laboratory Name: Shenzhen Global Test Service Co.,Ltd.

Address: No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name: Shenzhen Mushi Technology Co., Ltd.

Address: Room 701C, Building B, Guanghong Meiju, No.163, Pingxin North Road, Hehua Community, Pinghu Street, Longgang District, Shenzhen

Test specification:

Standard: 47 CFR FCC Part 15 Subpart B (Class B)

ANSI C63.4: 2014

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Walkie Talkie

Trade Mark: N/A

Manufacturer: Shenzhen Beijia Electronic Technology Co., Ltd.

Model/Type reference: T5

Listed Models: B088H1BKDX, B088GQMX45, B07XQ77X9N

Ratings: DC 6.0V

Result: Pass

TEST REPORT

Test Report No. :	GTS20201103032-1-3	Nov.20, 2020 Date of issue
--------------------------	--------------------	-------------------------------

Equipment under Test : Walkie Talkie

Model /Type : T5

Listed Models : B088H1BKDX, B088GQMX45, B07XQ77X9N

Applicant : **Shenzhen Mushi Technology Co., Ltd.**

Address : Room 701C, Building B, Guanghong Meiju, No.163, Pingxin North Road, Hehua Community, Pinghu Street, Longgang District, Shenzhen

Manufacturer : **Shenzhen Beijia Electronic Technology Co., Ltd.**

Address : 201, No. 20 Xinkang 2nd Road, Shatian Community, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Test Result	Pass
--------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1.	<u>TEST STANDARDS</u>	4
2.	<u>SUMMARY</u>	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment Under Test	5
2.4.	Description of Test Modes and Test Frequency	5
2.5.	EUT operation mode	6
2.6.	Block Diagram of Test Setup	6
2.7.	EUT configuration	6
3.	<u>TEST ENVIRONMENT</u>	7
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Environmental conditions	7
3.4.	Test Description	7
3.5.	Statement of the measurement uncertainty	8
3.6.	Equipments Used during the Test	9
4.	<u>TEST CONDITIONS AND RESULTS</u>	10
4.1.	Radiated Emission	10
4.2.	Conducted disturbance	14
4.3.	Radiation Spurious Emissions FOR RECEIVERS	15
4.4.	SANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SANNING RECEIVERS.	18
5.	<u>THE TEST PHOTOS OF THE EUT</u>	19
6.	<u>EXTERNAL AND INTERNAL PHOTOS OF THE EUT</u>	20

1. TEST STANDARDS

The tests were performed according to following standards:

[47 CFR FCC Part 15 Subpart B \(Class B\)](#) Radio Frequency Devices – Unintentional Radiators – Limits and methods of measurement

[ANSI C63.4: 2014](#) American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Oct.18, 2020
Testing commenced on	:	Oct.18, 2020
Testing concluded on	:	Nov.20, 2020

2.2. Product Description

Name of EUT	Walkie Talkie
Model Number	T5
Power Supply	DC 6.0V from battery
Frequency Range	462.5500MHz~462.7250MHz; 462.5625MHz~462.7125MHz; 467.5625MHz~467.7125MHz
Rate Power	0.5W
Modulation Type	FM
Channel Separation	12.5KHz
Antenna Type	Integral antenna
Antennal Gain	-9.7dBi
Sample ID:	GTS20201103032-1-1-1#(Engineer sample) GTS20201103032-1-1-2#(Normal sample)

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	<input type="radio"/>	120V / 60 Hz	<input type="radio"/>	230V / 50Hz
		<input type="radio"/>	12 V DC	<input type="radio"/>	24 V DC
		<input checked="" type="radio"/>	Other (specified in blank below)		

DC 6V

2.4. Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. As, test modes selected as below by the technical parameters of the EUT:

Operation Mode No.	Modulation	Channel Separation	Condition	
			TX	RX
1	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	
2	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>

Frequency list

Channel	Frequency(MHz)	Channel	Frequency(MHz)
---------	----------------	---------	----------------

1	462.5625	12	467.6625
2	462.5875	13	467.6875
3	462.6125	14	467.7125
4	462.6375	15	462.5500
5	462.6625	16	462.5750
6	462.6875	17	462.6000
7	462.7125	18	462.6250
8	467.5625	19	462.6500
9	467.5875	20	462.6750
10	467.6125	21	462.7000
11	467.6375	22	462.7250

Note1: In section 15.31(m), regards to the operating frequency range less than 1MHz, only one point centered in the frequency range of operation selected to measure.

Note2: The line display in grey was the channel selected for test.

2.5. EUT operation mode

Operation mode	
Mode 1	Scanning mode
Mode 2	Scanning stopped/Receiving at CH4
Mode 3	Scanning stopped/Receiving at CH11
Mode 4	Scanning stopped/Receiving at CH19

- is operation mode.
- Pre-scan above all test mode, found below test mode which it was worse case mode.

Test item	Test mode (Worse case mode)
Conducted emission	Mode 1
Radiated emission	Mode 1
Radioation Spurious Emissions for receivers	Mode 2
Scanning receivers and frequency converters used with scanning receivers	Mode 2,Mode3,Mode4

2.6. Block Diagram of Test Setup

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- Supplied by the lab

--	--	--

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

Test item	FCC Rules	Result
Radiated Emission	47 CFR FCC Part 15.107	PASS
Conducted Disturbance	47 CFR FCC Part 15.109	N/A
Antenna Conducted Power for receivers	47 CFR FCC Part 15.111	PASS
Scanning receivers and frequency converters used with scanning receivers	47 CFR FCC Part 15.121(b)	PASS

Remark: N/A means "not applicable".

The measurement uncertainty is not included in the test result.

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.24dB	(1)
Conducted Disturbance	0.15~30MHz	3.12dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

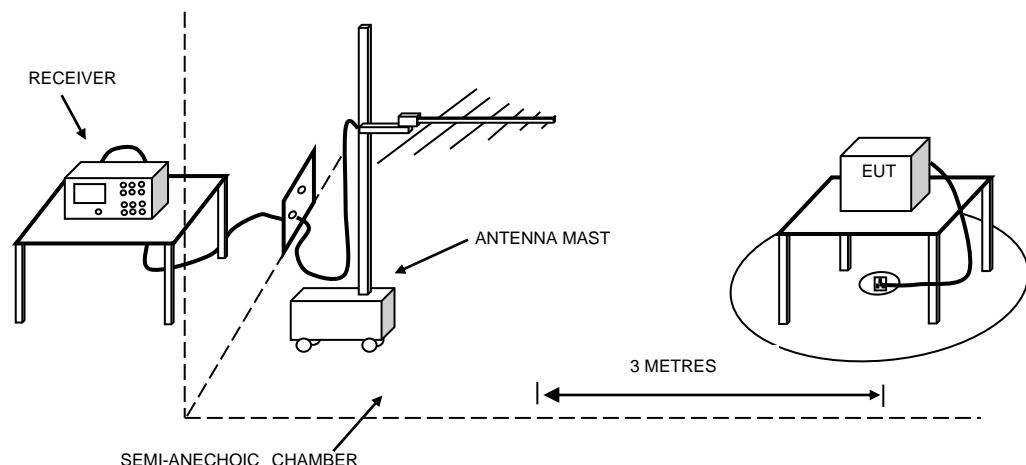
3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2020/09/19	2021/09/18
LISN	R&S	ESH2-Z5	893606/008	2020/09/19	2021/09/18
EMI Test Receiver	R&S	ESPI3	101841-cd	2020/09/19	2021/09/18
EMI Test Receiver	R&S	ESCI7	101102	2020/09/19	2021/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2020/09/19	2021/09/18
Spectrum Analyzer	R&S	FSV40	100019	2020/09/19	2021/09/18
Vector Signal generator	Agilent	N5181A	MY49060502	2020/09/19	2021/09/18
Signal generator	Agilent	E4421B	3610AO1069	2020/09/19	2021/09/18
Climate Chamber	ESPEC	EL-10KA	A20120523	2020/09/19	2021/09/18
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2020/09/19	2021/09/18
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2020/10/11	2021/10/10
Bilog Antenna	Schwarzbeck	VULB9163	000976	2020/05/26	2021/05/25
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020/09/19	2021/09/18
Amplifier	Schwarzbeck	BBV 9743	#202	2020/09/19	2021/09/18
Amplifier	Schwarzbeck	BBV9179	9719-025	2020/09/19	2021/09/18
Amplifier	EMCI	EMC051845B	980355	2020/09/19	2021/09/18
Temperature/Humidity Meter	Gangxing	CTH-608	02	2020/09/19	2021/09/18
High-Pass Filter	K&L	9SH10-2700/X12750-O/O	KL142031	2020/09/19	2021/09/18
High-Pass Filter	K&L	41H10-1375/U12750-O/O	KL142032	2020/09/19	2021/09/18
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2020/09/19	2021/09/18
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2020/09/19	2021/09/18
Data acquisition card	Agilent	U2531A	TW53323507	2020/09/19	2021/09/18
Power Sensor	Agilent	U2021XA	MY5365004	2020/09/19	2021/09/18
Test Control Unit	Tonscend	JS0806-1	178060067	2020/06/19	2021/06/18
Automated filter bank	Tonscend	JS0806-F	19F8060177	2020/06/19	2021/06/18
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/

Note: The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. Radiated Emission


4.1.1. LIMITS OF DISTURBANCE (Class B)

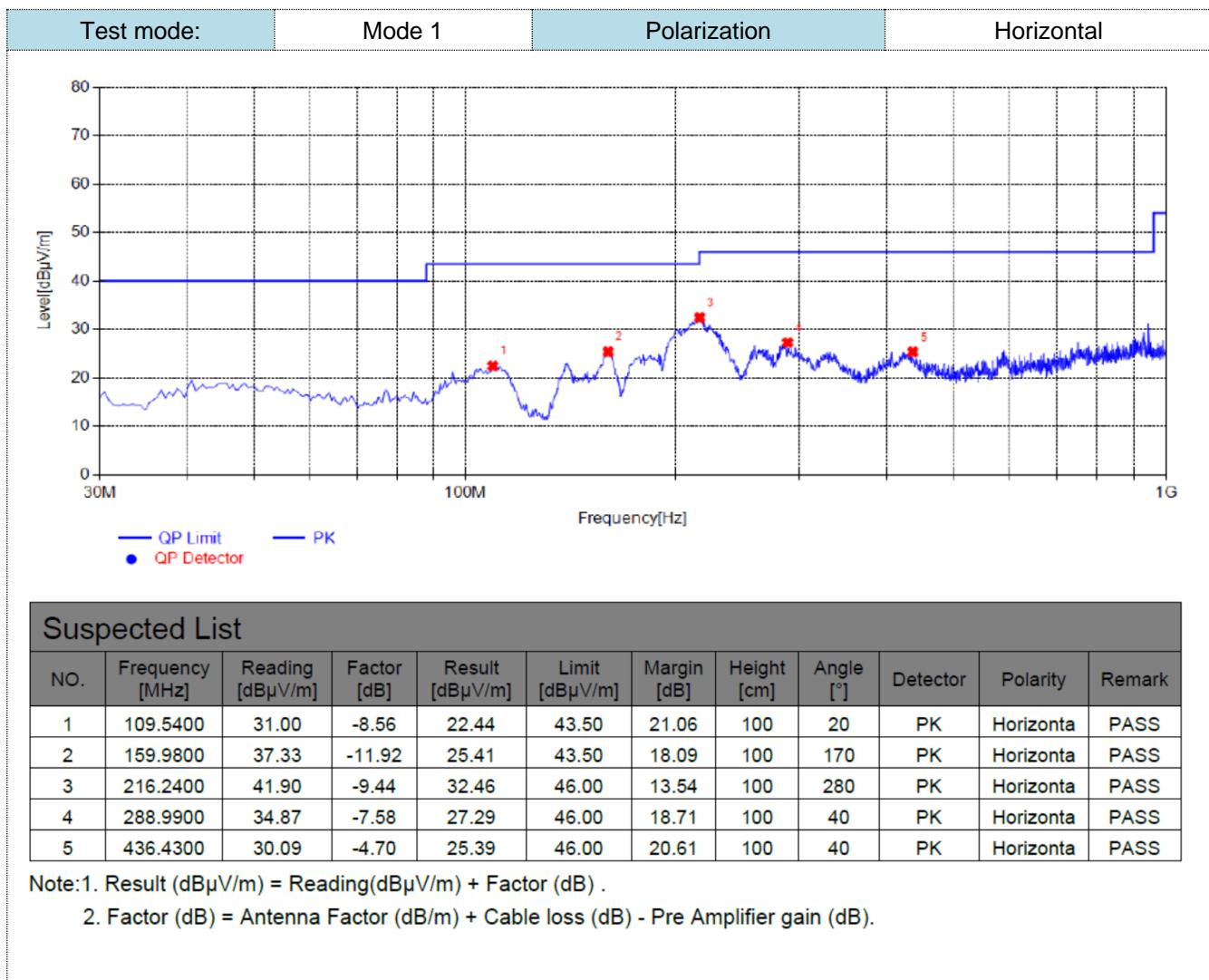
Frequency (MHz)	Distance (Meters)	Field Strengths Limits (dB μ V/m)
30 ~ 88	3	40
88~216	3	43.5
216 ~ 960	3	46
960 ~1000	3	54

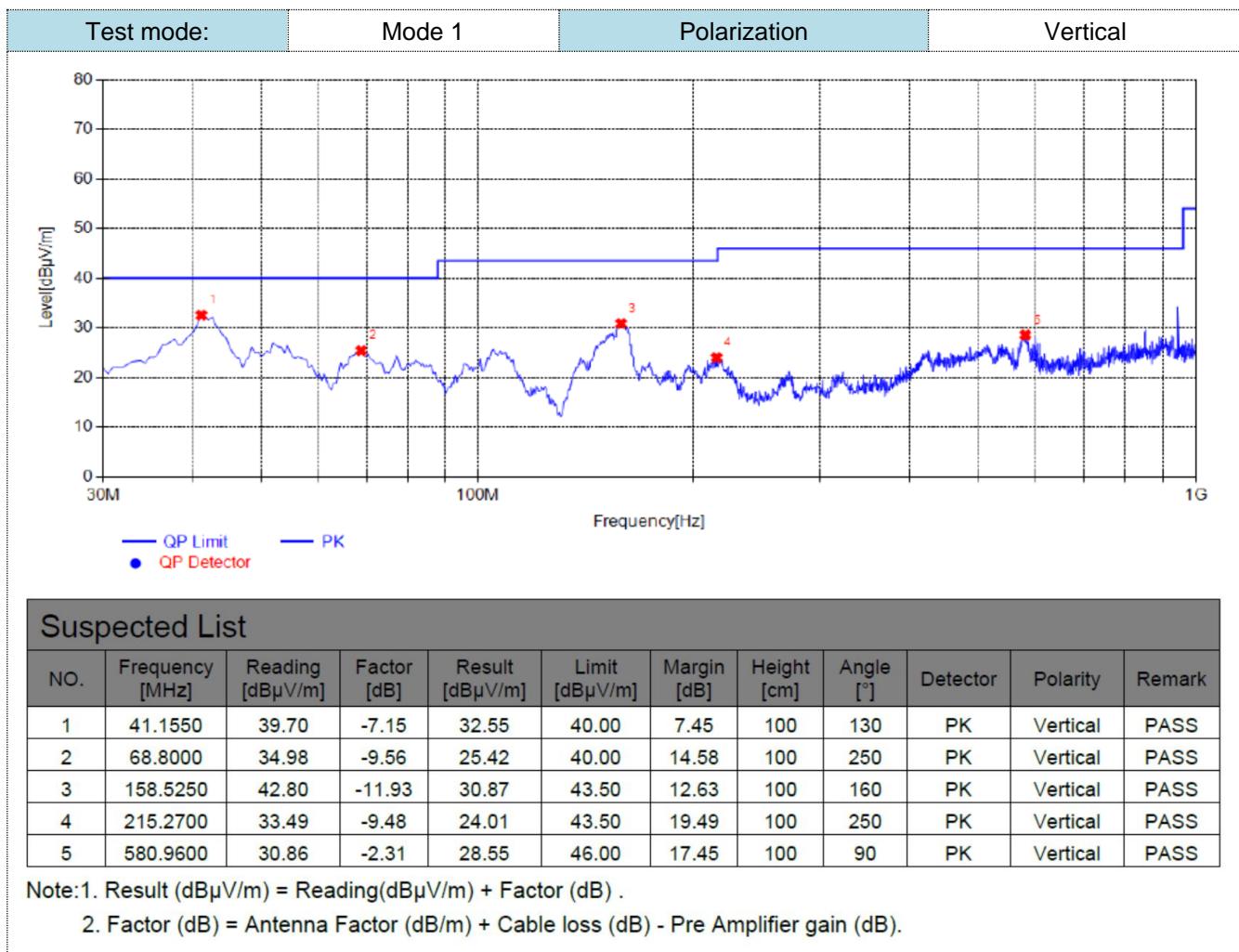
Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

4.1.2. TEST CONFIGURATION

4.1.3. TEST PROCEDURE


EUT is tested in Semi-Anechoic Chamber. EUT is placed on a nonmetal table which is 0.8 meter above a grounded turntable. The turntable can rotate 360 degrees to determine the azimuth of the maximum emission level. EUT is set 3 meters away from the center of receiving antenna. The antenna can move up and down from 1 to 4 meter to find out the maximum emission level. Both horizontal and vertical polarizations of the antenna are set on the test.


4.1.4. CLIMATIC CONDITIONS

- ambient temperature : 24 °C
- relative humidity: 48%
- atmospheric pressure: 960 mbar

4.1.5. TEST RESULTS

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

Test mode:		Mode 1		Polarization		Horizontal	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)		
1149.82	62.26	-3.64	58.62	74	-15.38	peak	
1149.82	46.19	-3.64	42.55	54	-11.45	AVG	
3705.12	58.55	-0.95	57.6	74	-16.4	peak	
3705.12	44.49	-0.95	43.54	54	-10.46	AVG	
---	---	---	---	---	---	---	
---	---	---	---	---	---	---	

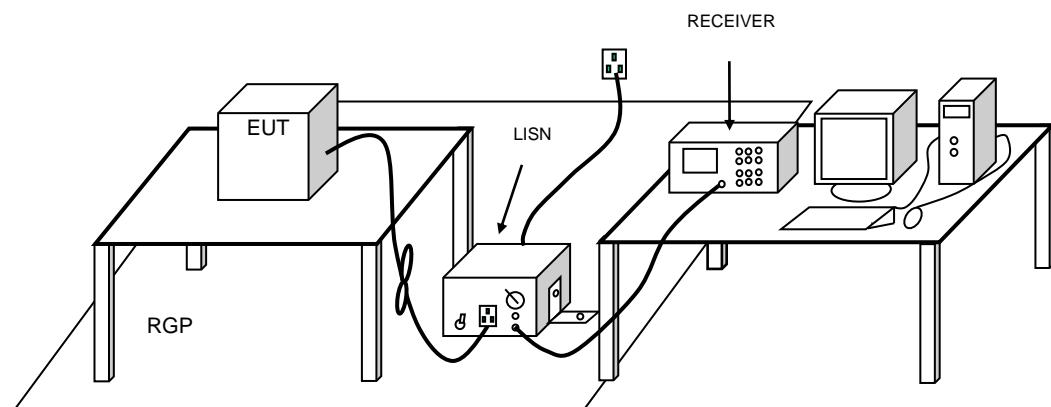
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Test mode:		Mode 1		Polarization		Vertical	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)		
1152.16	61.39	-3.64	57.75	74	-16.25	peak	
1152.16	46.87	-3.64	43.23	54	-10.77	AVG	
3708.31	57.23	-0.95	56.28	74	-17.72	peak	
3708.31	42.01	-0.95	41.06	54	-12.94	AVG	
---	---	---	---	---	---	---	
---	---	---	---	---	---	---	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Notes:

- 1). Measuring frequencies from 9 KHz~5th harmonic


4.2. Conducted disturbance

4.2.1. LIMITS OF DISTURBANCE (Class B)

Frequency Range (MHz)	Limits (dB _u V)	
	Quasi-Peak	Average
0.150~0.500	66~56	56~46
0.500~5.000	56	46
5.000~30.000	60	50

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

4.2.2. TEST CONFIGURATION

4.2.3. TEST PROCEDURE

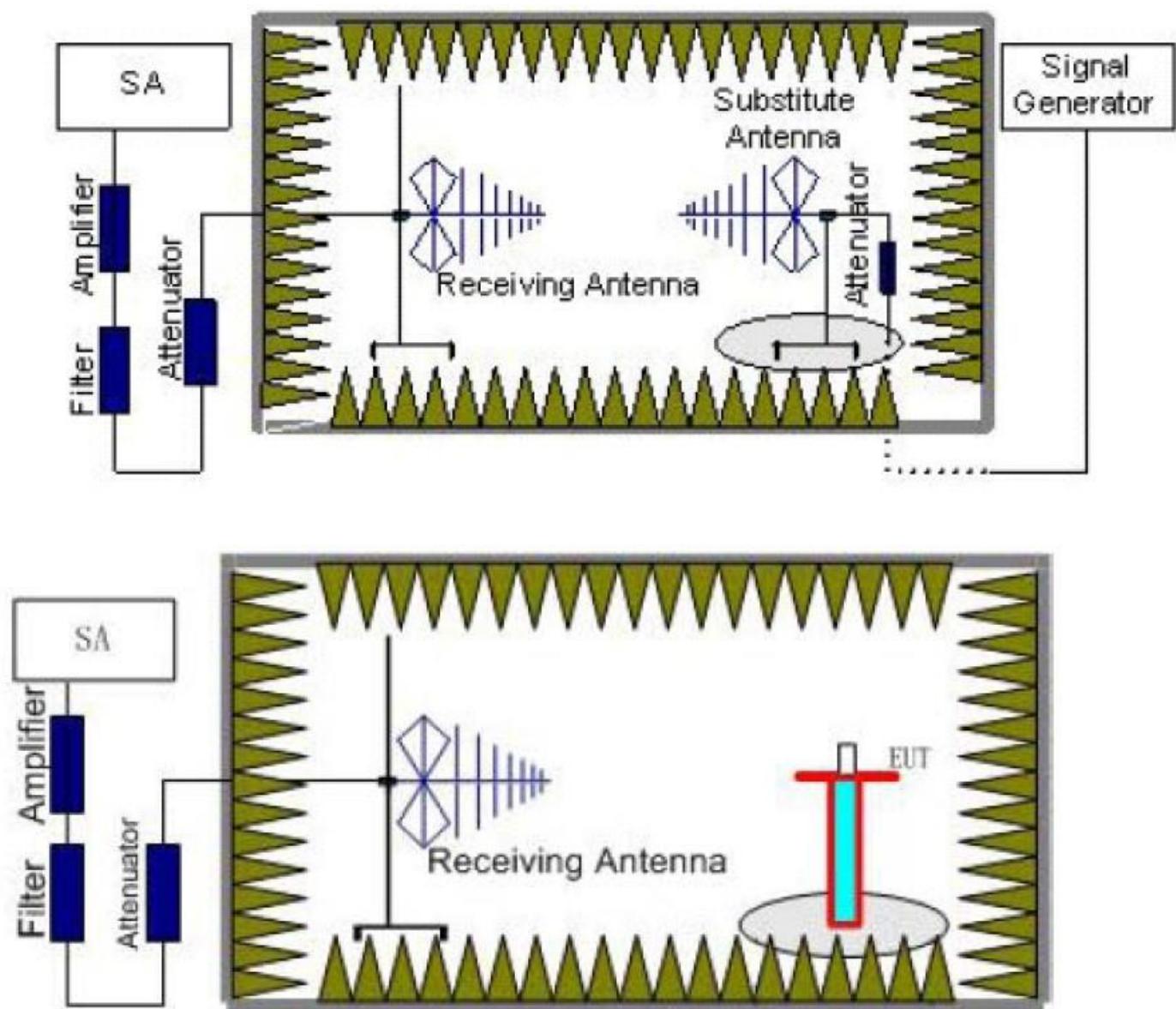
EUT is placed on a nonmetal table which is 0.8 meter (or 0.1 meter for floor-stood equipments) above the grounded reference plane. Connect the power line of the EUT to the LISN. Voltage of the power supply is varied over a range of 0.9 to 1.1 times of the rated voltage in order to check whether the level of disturbance varies considerably with the supply voltage at the selected frequency about 160KHz. Perform an initial measurement on each line with peak detector to identify the frequencies where the maximum disturbances may occur. Then measure and record the maximum disturbances with quasi-peak and average detector.

4.2.4. CLIMATIC CONDITIONS

- ambient temperature : 25 °C
- relative humidity: 52%
- atmospheric pressure: 960 mbar

4.2.5. TEST RESULTS

Note :The EUT is powered by Battery, So this test item is not applicable for the EUT.


4.3. Radiation Spurious Emissions FOR RECEIVERS

4.3.1. LIMITS

The antenna power of the receiver as defined in §15.111 shall not exceed the values given in the following tables

Frequency Range	9 KHz to 2GHz
Limit	2.0 nW (-57 dBm)

4.3.2. TEST CONFIGURATION

4.3.3. TEST PROCEDURE

- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
- A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same

power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

- c. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum 100 kHz below 1GHz and 1MHz above 1GHz, Sweep from 30MHz to the 10th harmonic of the fundamental frequency; and recorded the level of the concerned spurious emission point as (P_r).
- d. The EUT then replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

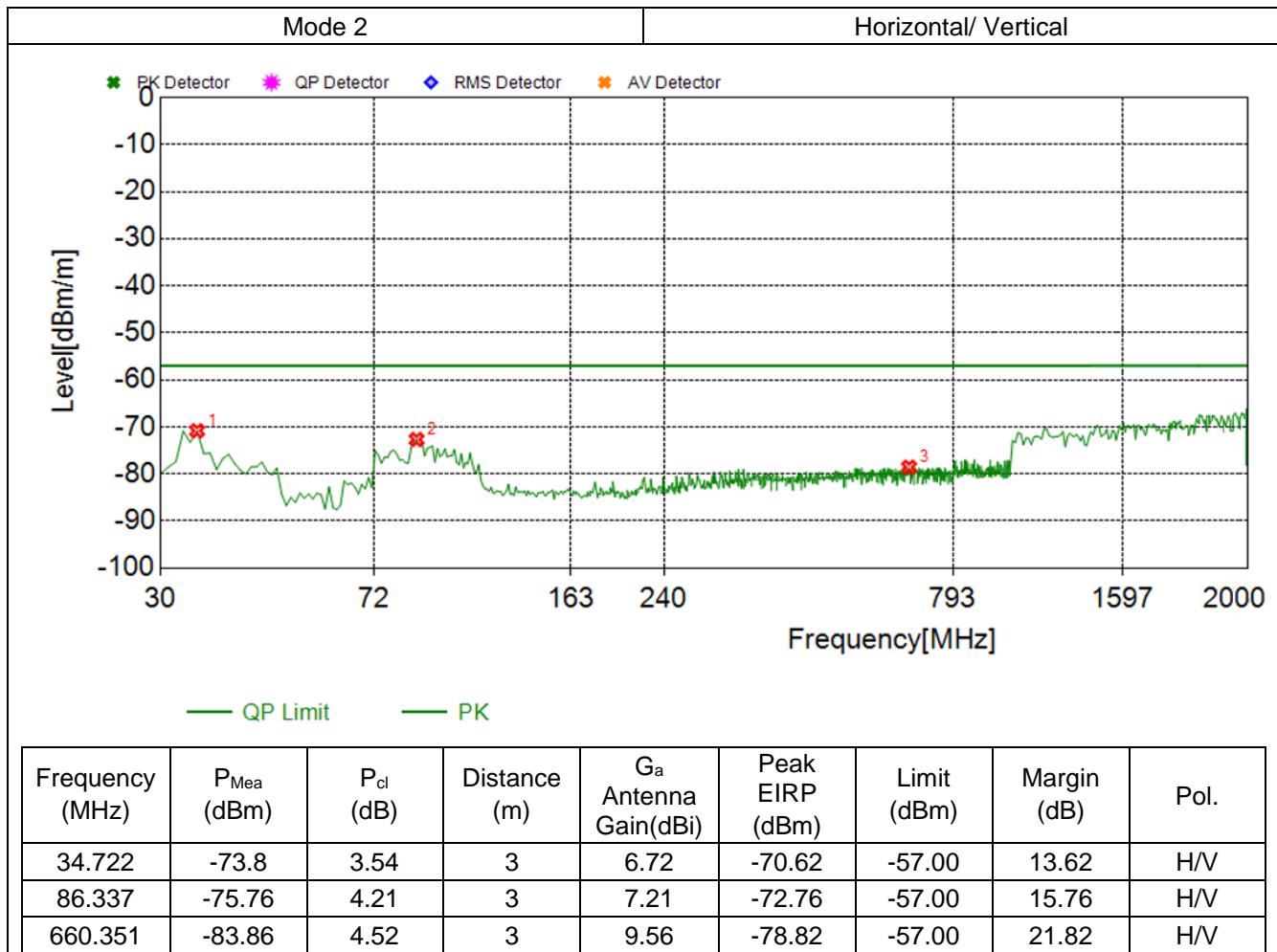
The measurement results are obtained as described below:

$$\text{Power (EIRP)} = P_{Mea} - P_{cl} + G_a$$

Where;

P_{Mea} is the recorded signal generator level

P_{cl} is the cable loss connect between instruments

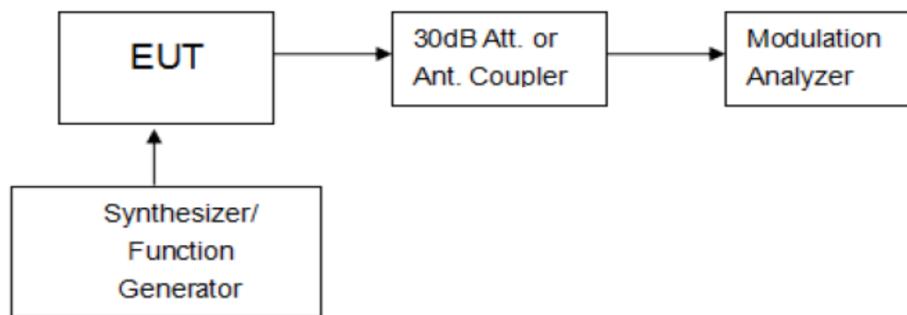

G_a Substitution Antenna Gain

- e. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- f. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi}$.
- g. Test site anechoic chamber refer to ANSI C63.

4.3.4. CLIMATIC CONDITIONS

- ambient temperature : 25 °C
- relative humidity: 52%
- atmospheric pressure: 960 mbar

4.3.5. TEST RESULTS



4.4. SANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SANNING RECEIVERS.

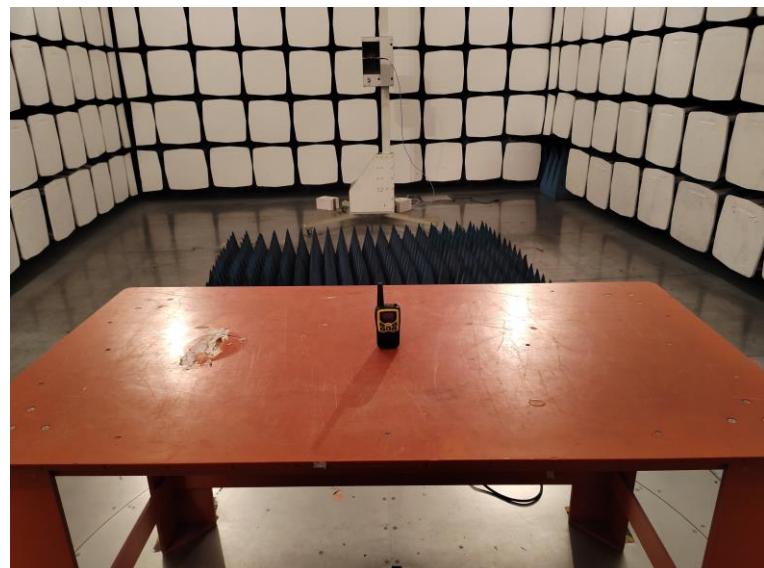
4.4.1. LIMITS

Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

4.4.2. TEST CONFIGURATION

4.4.3. TEST PROCEDURE

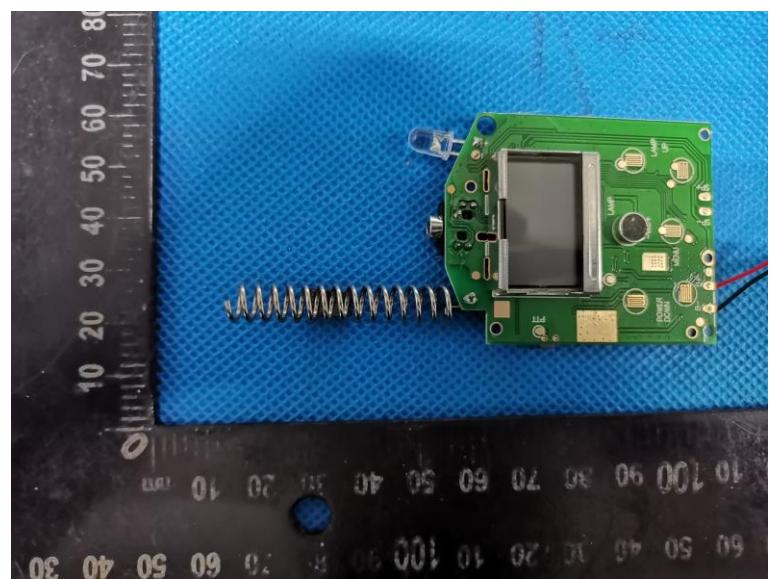
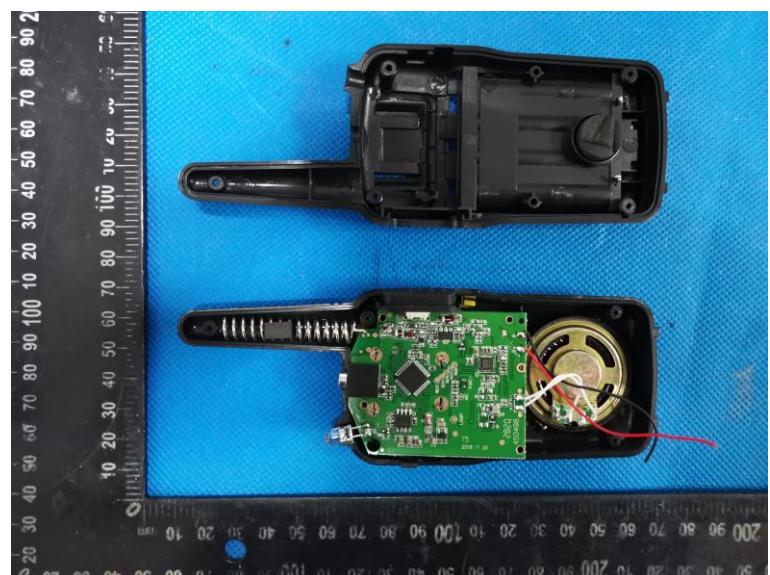
Please review the FCC Part 15.121 b section requirements to meet the testing process

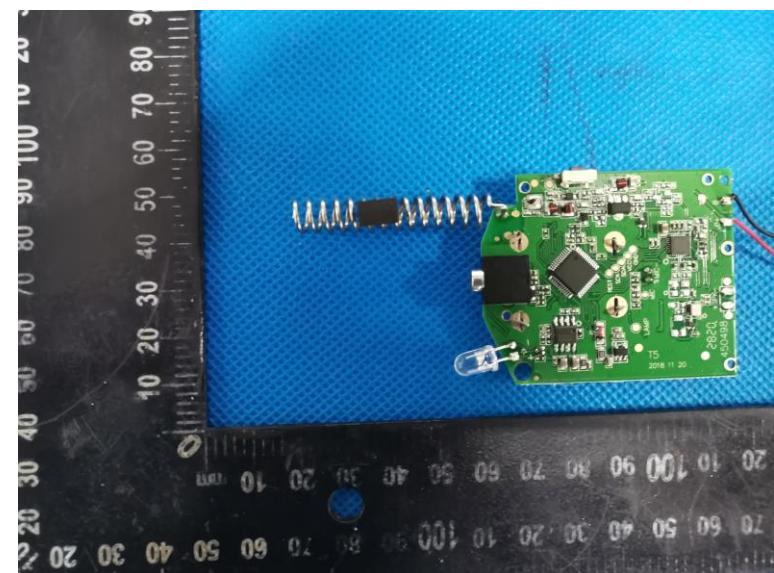

4.4.4. CLIMATIC CONDITIONS

- ambient temperature : 25 °C
- relative humidity: 52%
- atmospheric pressure: 960 mbar

4.4.5. TEST RESULTS

Modulation	Channel	Measurement Result (dB)	Limit(dB)	Result
FM	CH4	45	>38	Pass
	CH11	46	>38	Pass
	CH19	43	>38	Pass



5. The Test Photos of the EUT



6. External and Internal Photos of the EUT

.....End of Report.....