

FCC IC Test Report

Report No: FCS202007069

Issued for

Applicant:	CRYPTODATA TECH SRL
Address:	Bucuresti, Sectorul 1, Soldat Gheorghe Buciumat, nr. 1 4 Mansarda, Romania
Product Name:	Laptop
Brand Name:	CryptoData
Model Name:	WHIM Business
Series Model:	Whim Pro, Whim Book, N141
FCC ID:	2AWZ7-WHIM
IC:	26331-WHIM

Issued By: Flux Compliance Service Laboratory

Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong yeWest Road Hi-Tech Industrial, Song shan lake Dongguan

Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

TABLE OF CONTENTS

Effect Pag	e	3
1.	Summary of test results	5
1.1	Test Laboratory	6
1.2	Measurement Uncertainty	6
1.3	Test Environment Conditions	6
2.	General test information	7
2.1.	Description of EUT	7
2.2.	Accessories of EUT	8
2.3.	Assistant equipment used for test	8
2.4.	Block diagram of EUT configuration for test	9
2.5.	Test environment conditions	9
2.1	Equipments List	10
3.	POWER SPECTRAL DENSITY TEST	11
3.1.	Block diagram of test setup	11
3.2.	Applied procedures / limit	11
3.3.	Test Procedure	11
3.4.	Test Result	13
4.	26 dB & 99% Emission Bandwidth	24
4.1.	Block diagram of test setup	24
4.2.	Applied procedures / limit	24
4.3.	Test Procedure	24
4.4.	Test Result	25
5.	MAXIMUM CONDUCTED OUTPUT POWER	44
5.1.	Test Result	45
6.	Band Edges Measurement	47
6.1.	Test Result	49
7.	RADIATED EMISSION MEASUREMENT	51
7.1.	Block diagram of test setup	51
7.2.	Limit	53
7.3.	Test Procedure	54
7.4.	Test result(Below 30MHz)	56
8.	FREQUENCY STABILITY	62
9.	Power Line Conducted Emission	65
9.1 Block	diagram of test setup	65
9.2 Power	Line Conducted Emission Limits(Class B)	65
9.4 Test F	lesult	66

10.	Antenna Requirements	.69
10.1.	Limit	.69
10.2.	EUT ANTENNA	.69

Revision History

Rev.	Issue Date	EFFECT PAGE	Contents
01	07 July 2020	All	Initial Issue

16	ST RESULT CERTIFICATION
Applicant's Name:	CRYPTODATA TECH SRL
Address:	Bucuresti, Sectorul 1, Soldat Gheorghe Buciumat, nr. 14 Mansarda, Romania
Manufacture's Name:	Shenzhen KEP Technology Co., Ltd
Address:	4th Floor, Building B20, Heng Feng Industrial Area, Xixiang Town, Bao'an District, Shenzhen, Guangdong, China 518126
Product Description	
Product Name:	Laptop
Brand Name	CryptoData
Model Name	WHIM Business
Series Model	Whim Pro, Whim Book, N141
Test Standards:	FCC Part 15E 15.407
Test Procedure:	ANSI C63.10-2013 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 . RSS-247 Issue 2: February 2017, RSS-Gen Issue 5: March 2019
equipment under test (EUT) is in applicable only to the tested san This report shall not be reprodu	s been tested FCS, the test results show that the compliance with the FCC requirements. And it is uple identified in the report. ced except in full, without the written approval of FCS, this evised by FCS, personal only, and shall be noted in the
Date of Test	
Date (s) of performance of tests	30 June 2020 ~ 07 July 2020
Date of Issue:	07 July 2020
Test Result:	Pass
Prepared By	: Chris when

Approved By (Brown Lu)

(Chris Chen)

1. SUMMARY OF TEST RESULTS

The EUT have been tested according to the applicable standards as referenced below.						
FCC Part15 (15.407) , Subpart E						
Description of Test Item	Results					
AC Power Line Conducted Emissions	FCC §15.207/ RSS-Gen RSS-Gen clause 8.8	PASS				
Spurious Radiated Emissions	FCC §15.209(a), 15.407(b) RSS-Gen 8.9 8.10	PASS				
26 dB and 99% Emission Bandwidth	FCC §15.407(a) RSS-Gen clause 6.7 & RSS-247 6.2.1.2&6.2.4.2	PASS				
Maximum Conducted Output Power	FCC §407(a)(1) RSS-Gen clause 6.12 &RSS-247 6.2.1.1& 6.2.4.1	PASS				
Band Edges	FCC §2.1051, §15.407(b) RSS-Gen 8.9 8.10	PASS				
Power Spectral Density	FCC §15.407(a)(1) RSS-247 6.2.1.1& 6.2.4.1 & ANSIC63.10: Clause 12.5	PASS				
Spurious Emissions at Antenna Terminals	FCC §2.1051, §15.407(b) RSS-247 6.2.1.2&6.2.4.2	PASS				
Frequency Stability	FCC §15.407(a)(6)	PASS				
Antenna Requirement	FCC §15.203 RSS-Gen clause 6.8	PASS				

1.1 Test Laboratory

Company Name:	Flux Compliance Service Laboratory
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong yeWest Road Hi-Tech Industrial, Song shan lake Dongguan
Telephone:	+86-769-27280901
Fax:	+86-769-27280901

FCC Test Firm Registration Number: 514908

Designation number: CN0127

A2LA accreditation number: 5545.01

1.2 Measurement Uncertainty

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k}=2$, providing a level of confidence of approximately $\mathbf{95}$ %.

Items	Uncertainty
RF output power, conducted	±0.71dB
Unwanted Emissions, conducted	±2.988 dB
Conducted Emission (9KHz-150KHz)	±4.13 dB
Conducted Emission (150KHz-30MHz)	±4.74 dB
All emissions,radiated(<1G) 30MHz-1000MHz	±5.2 dB
All emissions,radiated(>1G) 1000MHz -3000MHz	±4.66 dB
All emissions,radiated(<1G) 3000MHz -6000MHz	±5.31 dB

1.3 Test Environment Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature rang:	20-26°C
Humidity range:	40-65%
Pressure range:	86-106Kpa

2. GENERAL TEST INFORMATION

2.1. DESCRIPTION OF EUT

EUT* Name	:	Laptop
Model Number	:	WHIM Business,Whim Pro, Whim Book, N141
EUT function description	:	Laptop with WiFi & BT function.
Power supply	:	Adapter:WA-65B19R INPUT: 100-240V~ 50/60Hz 1.5A OUTPUT: DC 19V 3.43A
Operation frequency	:	WiFi: 802.11a/802.11n(HT20) /ac(VHT20): 5180MHz~5240MHz; 802.11n(HT40)/ac(VHT40): 5190MHz~5230MHz; 802.11ac(VHT80): 5210MHz
Modulation	:	OFDM with OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM for 802.11a/n/ac;
Data Rate	:	802.11 a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20):MCS0-MCS7; 802.11n(HT40): MCS0-MCS7; 802.11ac(HT20/HT40/HT80):Up to 433Mbps
Antenna Type	:	FPCB Antenna, Antenna A only WIFI, Antenna B WIFI&BT maximum PK gain: Antenna A :1.66dBi(Main) Antenna B : 0.98dBi(Aux)
Battery	:	DC 7.6V 6000mAh Li Battery
Hardware version number		KEP-N141GKR4 MB V11 PCBA SKU1
Software versionnumber		win10_pro_64b_1909_18363.836
Date of Receipt	:	2020/06/30
Sample Type	:	N/A
Connecting I/O Port(s)		Please refer to the User's Manual
Note: For a more detailed feature	s c	description, please refer to the manufacturer's specifications or the

User's Manual.

Channel List							
			802.11a/n	/ac(20MHz)	1		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	40	5200	44	5220	48	5240
	802.11n/ac(40MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230				
802.11 ac(80MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210						

2.2. ACCESSORIES OF EUT

Description of Accessories	Shielded Type	Ferrite Core	Length
Adapter	Asian Power Devices Inc.	WA-65B19R	/

2.3. ASSISTANT EQUIPMENT USED FOR TEST

Description of Assistant equipment	Manufacturer	Model number or Type	EMC Compliance	SN
1	1	1	1	/

2.4. BLOCK DIAGRAM OF EUT CONFIGURATION FOR TEST

EUT	

2.5. TEST ENVIRONMENT CONDITIONS

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Link Mode
Mode 2	802.11a / n 20/ac20 CH36/ CH44/ CH48
Mode 3	802.11n40/ac40 CH38/ CH46

For Radiated Emission					
Final Test Mode	Description				
Mode 1	Link Mode				
Mode 2	802.11a / n 20/ac20 CH36/ CH44/ CH48				
Mode 3	802.11n40/ac40 CH38/ CH46				
Mode 4	802.11ac80 CH42				

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported
- (3) The EUT was used fully-charged battery and programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.
- (4) The EUT does not support MIMO mode.

2.1 Equipments List

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2020.05.31	2021.05.30
Signal Analyzer	R&S	FSV40-N	FCS-E012	2020.06.05	2021.06.04
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2019.10.11	2020.10.10
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2019.10.26	2020.10.25
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2020.05.31	2021.05.30
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2020.05.31	2021.05.30
Pre-Amplifier(0.1M-3 GHz)	EMCI	EM330N	FCS-E004	2020.05.31	2021.05.30
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2019.10.03	2020.10.02
Temperature & Humidity	HTC-1	victor	FCS-E005	2020.05.31	2021.05.30

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2020.05.31	2021.05.30
LISN	R&S	ENV216	FCS-E007	2020.05.15	2021.05.14
LISN	ETS	3810/2NM	FCS-E009	2019.10.15	2020.10.14
Temperature & Humidity	HTC-1	victor	FCS-E008	2020.05.31	2021.05.30

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2019.10.02	2020.10.01

3. POWER SPECTRAL DENSITY TEST

3.1. BLOCK DIAGRAM OF TEST SETUP

Spectrum	Attenuator	EUT and Assistant System
Analyzer		Accident Cycloni

3.2. APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a)(3)

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi..

3.3. TEST PROCEDURE

(For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement

bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

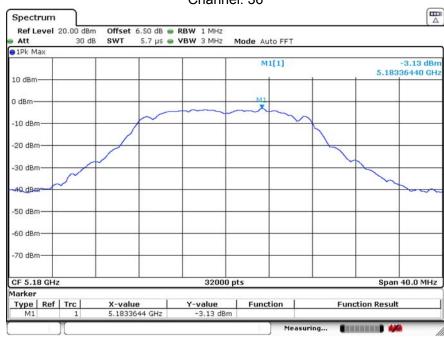
Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

3.4. TEST RESULT

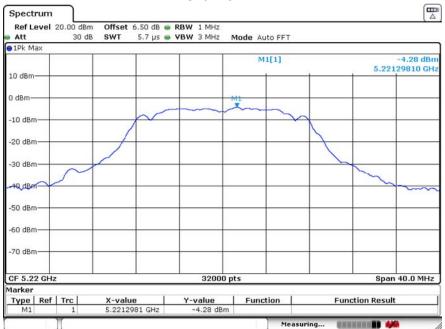
<u>0.7. 1 = 0 1</u>							
CH. No.	Frequency	Power Density ANT A (dBm/MHz)	Power Density ANT B (dBm/MHz)	total power density (dBm/MHz)	Limit (dBm/MHz)	Result	
	TX 802.11a Mode						
CH36	5180	-3.13	-3.15		11	Pass	
CH44	5220	-4.28	-4.30		11	Pass	
CH48	5240	-4.56	-4.59		11	Pass	
		Т	X 802.11n20 Mo	de			
CH36	5180	-4.07	-4.11		11	Pass	
CH44	5220	-4.39	-4.42		11	Pass	
CH48	5240	-4.05	-4.07		11	Pass	

	CH. No.	Frequency	Power Density ANT A (dBm/MHz)	Power Density ANT B (dBm/MHz)	total power density (dBm/MHz)	Limit (dBm/MHz)	Result	
	TX 802.11n40 Mode							
ſ	CH38	5190	-8.57	-8.60		11	Pass	
Ī	CH46	5230	-9.02	-9.04		11	Pass	

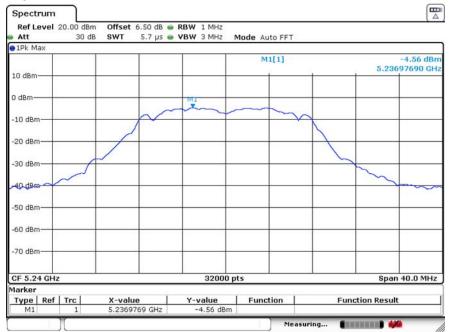
CH. No.	Frequency	Power Density ANT A (dBm/MHz)	Power Density ANT B (dBm/MHz)	total power density (dBm/MHz)	Limit (dBm/MHz)	Result	
	TX 802.11 ac(VHT20) Mode						
CH36	5180	-3.78	-3.81		11	Pass	
CH44	5220	-4.13	-4.15		11	Pass	
CH48	5240	-4.64	-4.67		11	Pass	

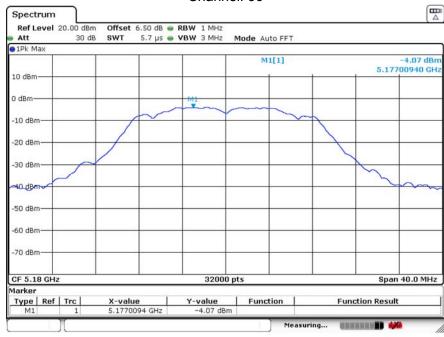

CH. No.	Frequency	Power Density ANT A (dBm/MHz)	Power Density ANT B (dBm/MHz)	total power density (dBm/MHz)	Limit (dBm/MHz)	Result	
	TX 802.11 ac(VHT40) Mode						
CH38	5190	-9.15	-9.16		11	Pass	
CH46	5230	-8.93	-8.95		11	Pass	
TX 802.11 ac(VHT80) Mode							
CH42	5210	-10.78	-10.80		11	Pass	

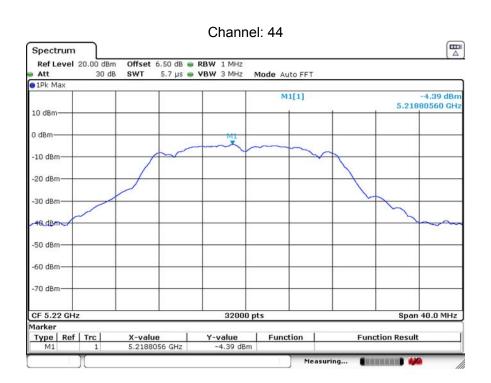
Note: The worst data is Antenna A, only shown Antenna A Plot.

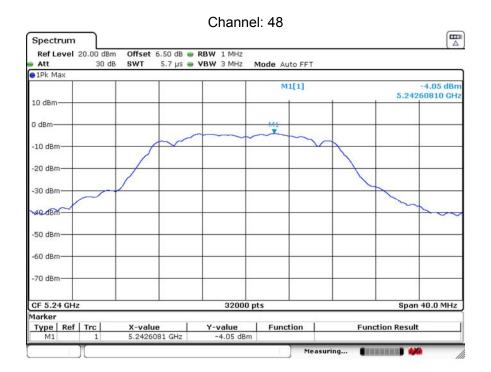


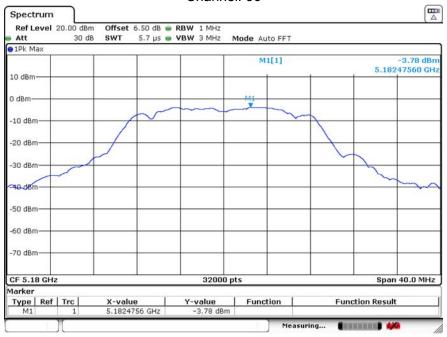
Test plots as followed: Antenna A

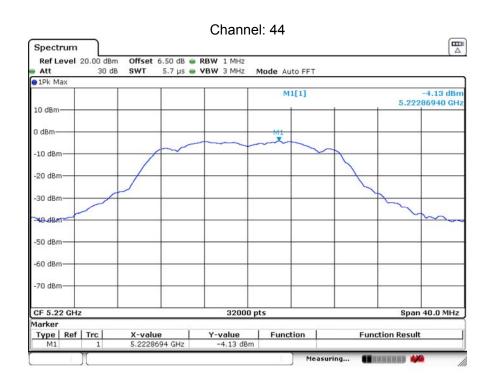


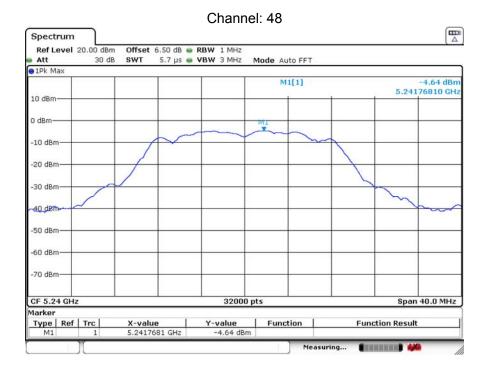


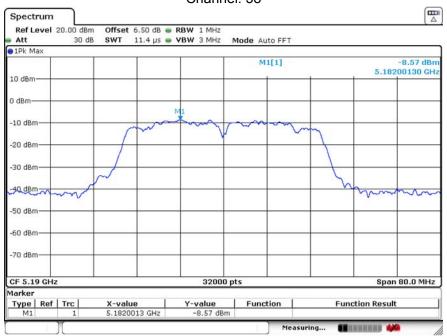


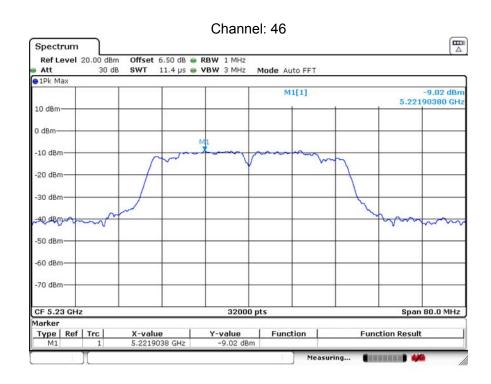


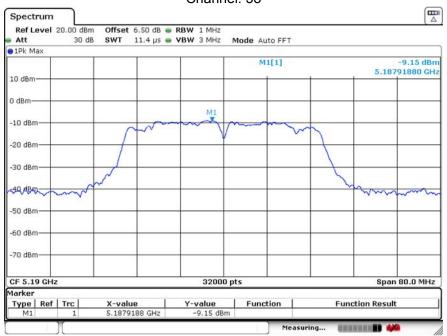


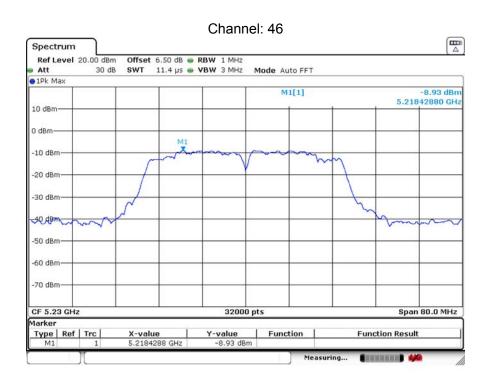


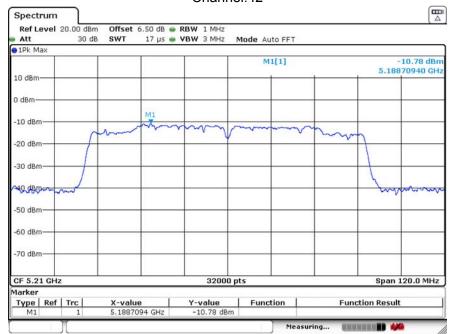


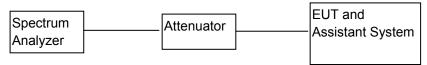











802.11ac80 Channel:42

4.26 dB & 99% Emission Bandwidth

4.1. BLOCK DIAGRAM OF TEST SETUP

4.2. APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

4.3. TEST PROCEDURE

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

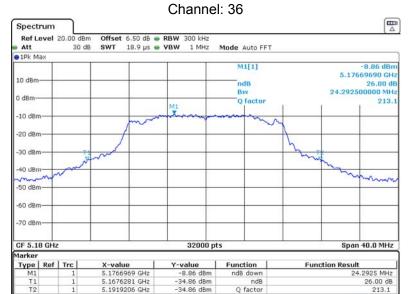
The following procedure shall be used for measuring (99 %) power bandwidth:

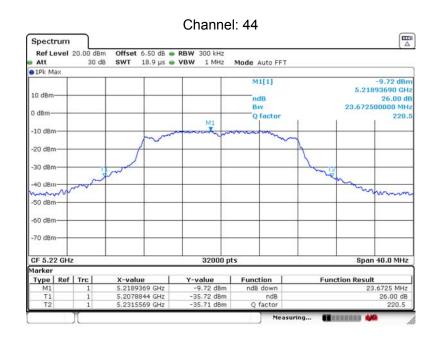
- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as

the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

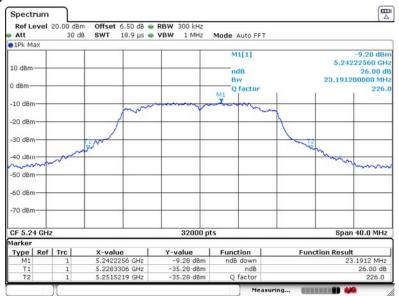
4.4. TEST RESULT

CH. No.	Frequency (MHz)	26dB Occupied Bandwidth (MHz)			99% Occupied Bandwidth (MHz)		
		802.11a	802.11n (HT20)	802.11ac (VHT20)	802.11a	802.11n (HT20)	802.11ac (VHT20)
36	5180.00	24.29	23.63	24.08	16.73	17.83	17.85
44	5220.00	23.67	24.83	25.00	16.72	17.83	17.86
48	5240.00	23.19	24.22	23.80	16.67	17.79	17.84

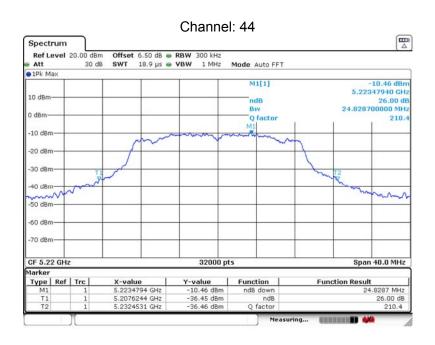

CH. No.	Frequency	26dB Occupied E	Bandwidth (MHz)	99% Occupied Bandwidth (MHz)		
	(MHz)	802.11n(HT40)	802.11ac(VHT40)	802.11n(HT40)	802.11ac(VHT40)	
38	5190.00	44.68	44.93	36.29	36.19	
46	5230.00	44.34	45.04	36.33	36.44	


CH. No.	Frequency (MHz)	26dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
	(IVITIZ)	802.11ac(VHT80)	802.11ac(VHT80)	
42	5210	80.82	75.41	

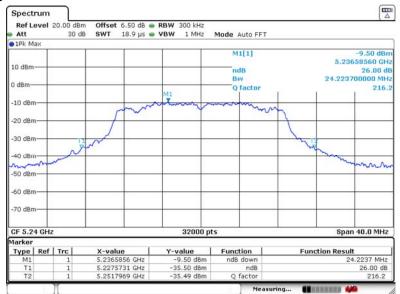
Note: The worst data is Antenna A, only shown Antenna A Plot.


Test plots as followed: Antenna A 26dB BW 802.11a

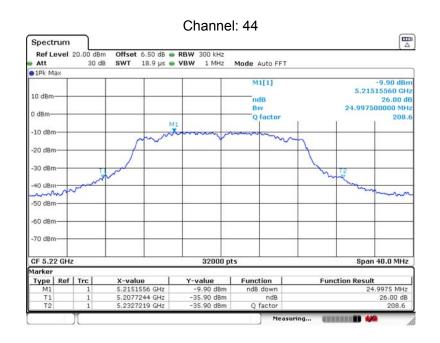
Channel: 48



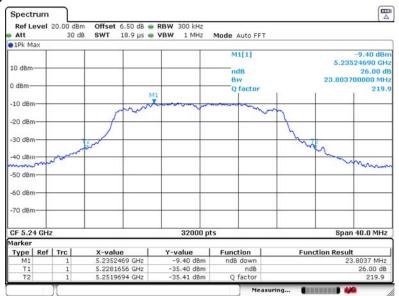
26dB BW 802.11n20



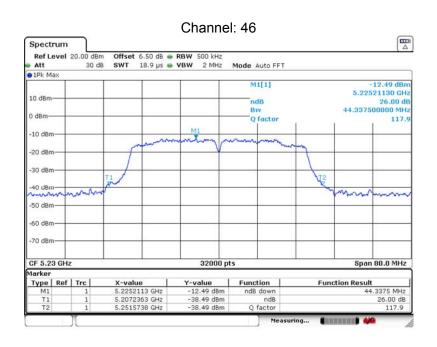
Channel: 48



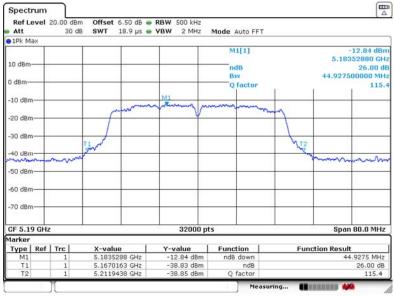
26dB BW 802.11ac20

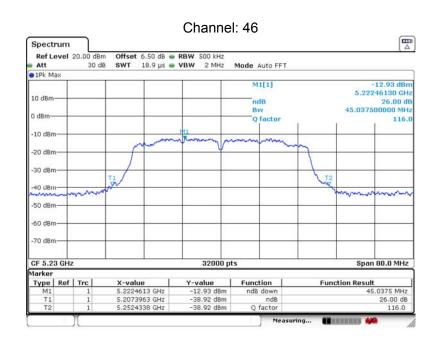


Channel: 48

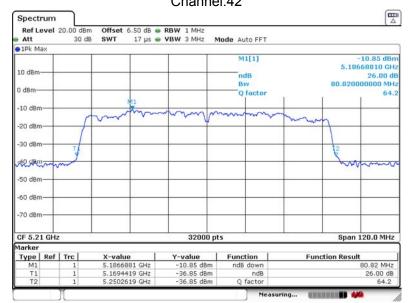


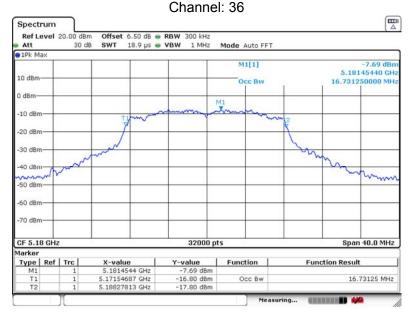
26dB BW 802.11n40

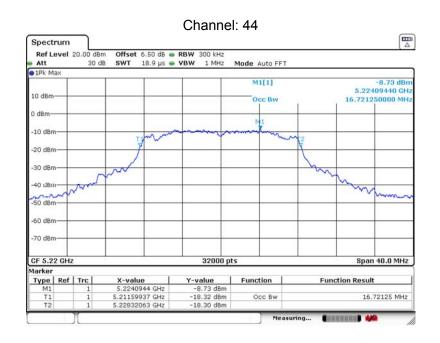


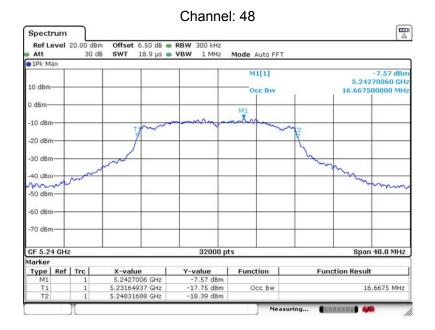

Tel: 769-27280901 Fax:769-27280901

26dB BW 802.11ac40

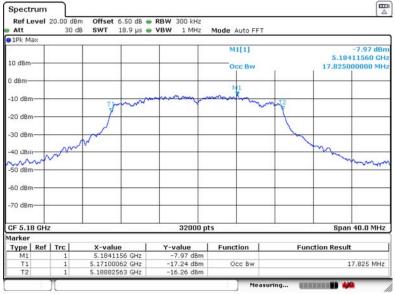


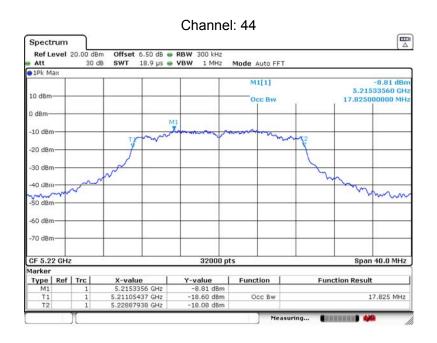


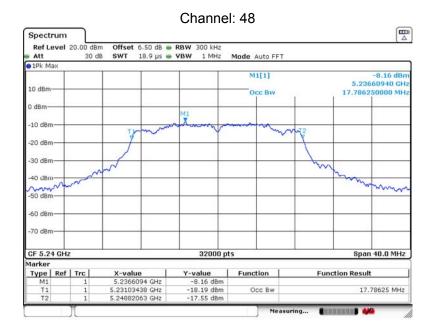

26dB BW 802.11ac80 Channel:42

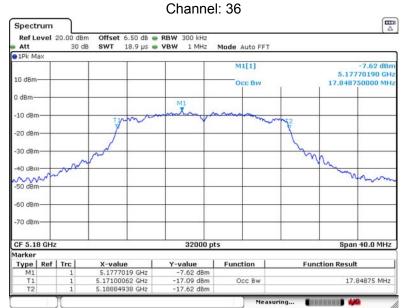


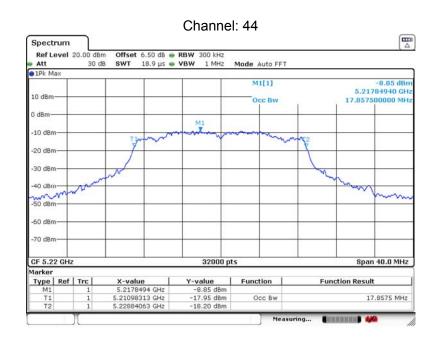
99% OBW 802.11a



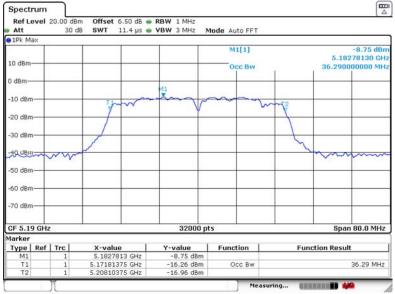


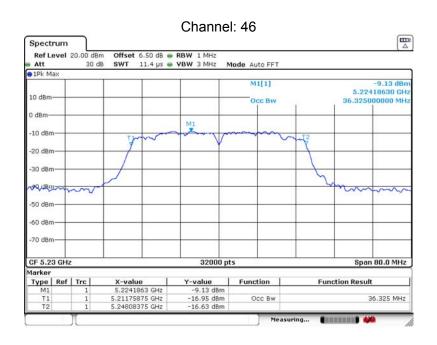

99% OBW 802.11n20



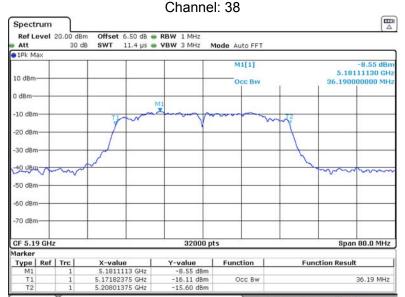


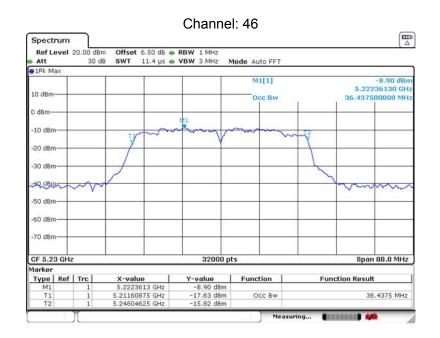
99% OBW 802.11ac20

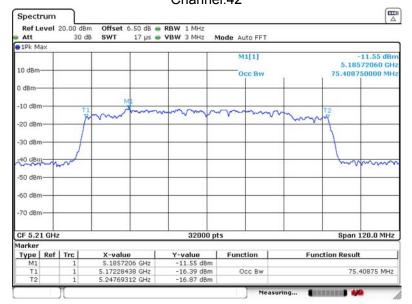




99% OBW 802.11n40






99% OBW 802.11ac40

99% OBW 802.11ac80 Channel:42

5. MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement:	FCC Part15 E Section 15.407				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01				
Limit:	For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.745-5.850 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 30dBm				
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane				
Test procedure:	Measurement using an RF average power meter				
·	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit				
	with a constant duty cycle.				
	 b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. 				
	 c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. 				
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).				
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.				
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				

5.1. TEST RESULT

Antenna A:

CH. Frequency		Output Power (dBm)				
No.	(MHz)	802.11a	802.11n (HT20)	802.11ac (VHT20)	Limit(dBm)	Result
36	5180.00	-2.72	-3.56	-3.45	24	Pass
44	5220.00	-3.92	-3.37	-3.33	24	Pass
48	5240.00	-3.56	-3.18	-3.18	24	Pass

CH.	Frequency	Output Power (dBm)		Limit(dDm)	Result
No.	(MHz)	802.11n(HT40)	802.11ac(VHT40)	Limit(dBm)	Result
38	5190.00	-5.62	-5.55	24	Pass
46	5230.00	-5.26	-5.20	24	Pass

CH.	Frequency	Output Power (dBm)	Limit(dBm)	Result
No.	(MHz)	802.11ac(VHT80)	Liffiil(ubifi)	Result
42	5210.00	-6.05	24	Pass

Antenna A Directional Gain=1.66 dBi

CH.	Frequency	EIRP (dBm)				
No.	(MHz)	802.11a	802.11n (HT20)	802.11ac (VHT20)	Limit(dBm)	Result
36	5180.00	-1.06	-1.9	-1.79	24	Pass
44	5220.00	-2.26	-1.71	-1.67	24	Pass
48	5240.00	-1.90	-1.52	-1.52	24	Pass

CH.	Frequency	EIRP (dBm)		Limit(dBm)	Result
No.	(MHz)	802.11n(HT40)	802.11ac(VHT40)	Liiiii(ubiii)	Result
38	5190.00	-3.96	-3.89	24	Pass
46	5230.00	-3.60	-3.54	24	Pass

CH.	Frequency	EIRP (dBm)	Limit(dBm)	Result
No.	(MHz)	802.11ac(VHT80)	Liitiit(dDitt)	Nesuit
42	5210.00	-4.39	24	Pass

Antenna B:

CH. Frequency		Output Power (dBm)					
No.	(MHz)	802.11a	802.11n (HT20)	802.11ac (VHT20)	Limit(dBm)	Result	
36	5180.00	-2.81	-3.66	-3.71	24	Pass	
44	5220.00	-3.74	-3.94	-4.00	24	Pass	
48	5240.00	-3.66	-3.83	-3.93	24	Pass	

CH.	Frequency	Output Power (dBm)		Limit(dBm)	Result
No.	(MHz)	802.11n(HT40)	802.11ac(VHT40)	Limit(abin)	Result
38	5190.00	-5.61	-5.61	24	Pass
46	5230.00	-5.28	-5.16	24	Pass

	CH.	Frequency	Output Power (dBm)	Limit(dBm)	Result
١	No.	(MHz)	802.11ac(VHT80)	Limit(ubin)	Result
4	42	5210.00	-6.03	24	Pass

Antenna B Directional Gain=0.99 dBi

CH. Frequency	Output Power (dBm)						
No.	(MHz)	802.11a	802.11n (HT20)	802.11ac (VHT20)	Limit(dBm)	Result	
36	5180.00	-1.82	-2.67	-2.72	24	Pass	
44	5220.00	-2.75	-2.95	-3.01	24	Pass	
48	5240.00	-2.67	-2.84	-2.94	24	Pass	

CH.	Frequency	Output Power (dBm)		Limit(dBm)	Result
No.	(MHz)	802.11n(HT40)	802.11ac(VHT40)	Liiiii(ubiii)	Result
38	5190.00	-4.62	-4.62	24	Pass
46	5230.00	-4.29	-4.17	24	Pass

CH.	Frequency	Output Power (dBm)	Limit(dBm)	Result
No.	(MHz)	802.11ac(VHT80)	Liiiii(ubiii)	Nesuit
42	5210.00	-5.04	24	Pass

6. Band Edges Measurement

Test Requirement:	FCC Part15 E Section 15.407 and 5.205							
Test Method:	ANSI C63.10:201	3						
Test site:	Measurement Dis	stance: 3m						
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 100KHz 1MHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value Average Value			
Limit: Test Procedure:	Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Va 88MHz-216MHz 43.5 Quasi-peak Va 216MHz-960MHz 46.0 Quasi-peak Va 960MHz-1GHz 54.0 Quasi-peak Va Above 1GHz 54.0 Average Value Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emission outside of the 5.15-5.35 GHz band shall not exceed an EIRP of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emission outside of the 5.15-5.35 GHz band shall not exceed an EIRP of dBm/MHz. Devices operating in the 5.25-5.35 GHz band: all emission outside of the 5.15-5.35 GHz band shall not exceed an EIRP of dBm/MHz. Devices operating in the 5.25-5.35 GHz band must meet applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-be emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band: all emission outside of the 5.47-5.725 GHz band shall not exceed an EIRP of dBm/MHz. a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antentower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength.							
	Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower that the limit specified, then testing could be stopped and the peak var of the EUT would be reported. Otherwise the emissions that did in have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a							

Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com

Test setup:	Above 1GHz
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table 1.5m A Im A Amplifier
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

According to KDB 789033 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

6.1. TEST RESULT

Peak value:

Test m	Test mode:		l1a	Test	channel:	Lowest	
Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	Antenna Pol.
5150	47.46	7.18	54.64	68.2	-13.56	PK	Н
5150	46.32	7.18	53.5	68.2	-14.7	PK	V
Test m	ode:	802.11a		Test channel:		Highest	
Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	Antenna Pol.
5350	43.52	7.2	50.72	68.2	-17.48	PK	Н
5350	51.14	7.2	58.34	68.2	-9.86	PK	V

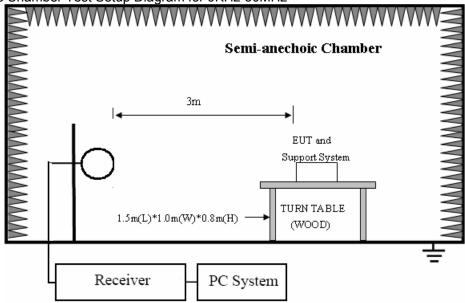
Peak value:

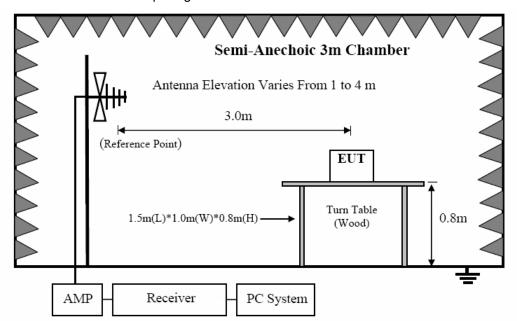
eak value.							
Test m	node:	802.11n(HT20) Test channel:		Lowest			
Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	Antenna Pol.
5150	48.36	7.18	55.54	68.2	-12.66	PK	Н
5150	54.75	7.18	61.93	68.2	-6.27	PK	V
Test m	node:	802.11n(HT20)		Test o	channel:	Highe	est
Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	Antenna Pol.
5350	45.33	7.2	52.53	68.2	-15.67	PK	Н
5350	50.25	7.2	57.45	68.2	-10.75	PK	V

Peak value:

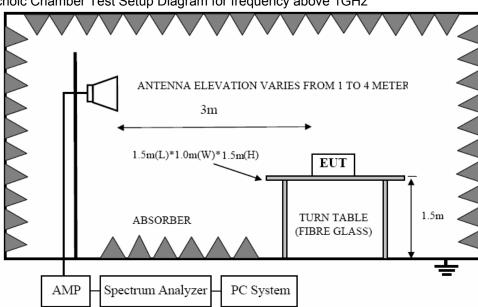
Test m	node:	802.11n	(HT40)	Test	channel:	Lowe	st
Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Pol.
5150	43.63	7.18	50.81	68.2	-17.39	PK	Н
5150	42.19	7.18	49.37	68.2	-18.83	PK	V
Test m	node:	802.11n	(HT40)	Test o	channel:	Highe	est
Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Pol.
5350	47.25	7.2	54.45	68.2	-13.75	PK	Н
5350	45.58	7.2	52.78	68.2	-15.42	PK	V

Peak value:


Peak value.							
Test n	node:	802.11ac(VHT80)	Test	channel:	Lowe	st
Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Pol.
5150	47.46	7.18	54.64	68.2	-13.56	PK	Н
5150	46.36	7.18	53.54	68.2	-14.66	PK	V
Test n	node:	802.11ac(VHT80)	Test	channel:	Highe	est
Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Pol.
5350	47.02	7.2	54.22	68.2	-13.98	PK	Н
5350	44.35	7.2	51.55	68.2	-16.65	PK	V


7. RADIATED EMISSION MEASUREMENT

7.1. Block diagram of test setup


In 3m Anechoic Chamber Test Setup Diagram for 9KHz-30MHz

In 3m Anechoic Chamber Test Setup Diagram for 30MHz-1GHz

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

7.2. Limit

9.3.1 FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

9.3.2. FCC 15.209 Limit.

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT	
MHz	Meters	μV/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(KHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(KHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/ι 54.0 dB(μV)/m	, ,

- Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.
 - (2) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula: Limit_{30m}(dBuV/m)= Limit_{30m}(dBuV/m) + 40Log(30m/3m)

9.3.3. Limit for this EUT

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 30dB below the fundamental emissions, or comply with 15.209 limits.

7.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and assistant system according clause 2.4 and 7.2
- (3) Test antenna was located 3m(except 18GHz-40GHz was 1m) from the EUT on an adjustable mast, and the antenna used as below

table.

Test frequency range	Test antenna used
9KHz-30MHz	Active Loop antenna
30MHz-1GHz	Trilog Broadband Antenna
1GHz-18GHz	Double Ridged Horn Antenna(1GHz-18GHz)
18GHz-40GHz	Horn Antenna(18GHz-40GHz)

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (4) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9KHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1m above ground.)
- (b) Change work frequency or channel of device if practicable.
- (c) Change modulation type of device if practicable.
- (d) new battery is used during testing

(e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18GHz to 25GHz, so below final test was performed with frequency range from 9KHz to 18GHz.

- (5) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (6) The emissions from 9KHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz, for emissions from 9KHz-90KHz,110KHz-490KHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (7) The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

(8) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure(according ANSI C63.10:2013 clause 4.2.3.2.3 procedure for average measure). Peak detector is used for Peak and AV measurement both.

7.4. Test result(Below 30MHz)

EUT:	Laptop	Model No.:	WHIM Business
Temperature:	24 ℃	Relative Humidity:	55%
Distance:	3m	Test Power:	120V 60Hz
Polarization:		Test Result:	Pass
Test Mode:	Keeping TX mode	Test By:	Smile

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

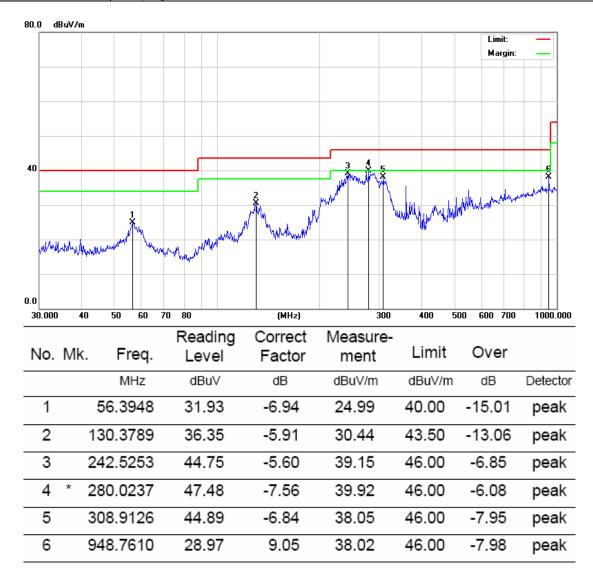
Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Note: The worst data is Antenna A, only shown Antenna A Plot.

TEST RESULTS (Between 30M – 1000 MHz)

EUT:	Laptop	Model No.:	WHIM Business
Temperature:	24	Relative Humidity:	55%
Distance:	3m	Test Power:	AC120V/60Hz
Polarization:	Vertical	Test Result:	Pass
Standard:	(RE)FCC PART 15	Test By:	Smile
Test Mode:	Keeping TX mode		



The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (3) Margin = Result Limit

EUT:	Laptop	Model No.:	WHIM Business
Temperature:	24	Relative Humidity:	55%
Distance:	3m	Test Power:	AC120V/60Hz
Polarization:	Horizontal	Test Result:	Pass
Standard:	(RE)FCC PART 15	Test By:	Smile
Test Mode:	Keeping TX mode		

The test result is calculated as the following:

- (4) Result = Reading + Correct Factor
- (5) Correct Factor = Antenna Factor + Cable Loss Amplifier Gain + Attenuator
- (6) Margin = Result Limit

TEST RESULTS (Above 1000 MHz)

EUT:	Laptop	Model No.:	WHIM Business
Temperature:	24 ℃	Relative Humidity:	55%
Distance:	3m	Test Power:	120V 60Hz
Polarization:		Test Result:	Pass
Test Mode:	TX-802.11a/n20/n40/ac20/ac40/ac/80	Test By:	Smile

Above 1GHz:

Mode
H 15540 35.99 16.45 52.44 74.00 -21.56 PEA
No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
V 10360 35.47 12.56 48.03 74.00 -25.97 PEA V 15540 36.19 16.45 52.64 74.00 -21.36 PEA 802.11a-5220 MHz H 10440 35.43 12.64 48.07 74.00 -25.93 PEA V 10440 35.90 16.53 52.43 74.00 -21.57 PEA V 10440 37.10 12.64 49.74 74.00 -24.26 PEA V 15660 35.86 16.53 52.39 74.00 -21.61 PEA H 10480 33.59 12.68 46.27 74.00 -27.73 PEA H 15720 35.00 16.54 51.54 74.00 -22.46 PEA V 10480 36.45 12.68 49.13 74.00 -24.87 PEA V 10480 36.45 12.68 49.13 74.00 -24.87 PEA
H 10440 35.43 12.64 48.07 74.00 -25.93 PEA
H 15660 35.90 16.53 52.43 74.00 -21.57 PEA
H 15660 35.90 16.53 52.43 74.00 -21.57 PEA
Note Polar (H/V) Note Polar (H/V) (MHz) Note Polar (H/V) (MHz) (MHz) Note Polar (H/V) (MHz)
V 10440 37.10 12.64 49.74 74.00 -24.26 PEA V 15660 35.86 16.53 52.39 74.00 -21.61 PEA
H 10480 33.59 12.68 46.27 74.00 -27.73 PEA
H 15720 35.00 16.54 51.54 74.00 -22.46 PEA
H 15720 35.00 16.54 51.54 74.00 -22.46 PEA
Node
V 10480 36.45 12.68 49.13 74.00 -24.87 PEA V 15720 34.33 16.54 50.87 74.00 -23.13 PEA Mode
Mode Polar (H/V) Frequency (MHz) Reading (dBμV) Factor (dBμV) Result (dBμV) Limit (dBμV/m) Margin (dBμV/m) Detector (dBμV/m)
Mode (H/V) (MHz) (dBμV) (dBμV) (dBμV/m) (dB) (PK/AV
H 10360 33.32 12.56 45.88 74.00 -28.12 PEA
802.11n H 15540 35.24 16.45 51.69 74.00 -22.31 PEA
HT20-5180MHz V 10360 35.90 12.56 48.46 74.00 -25.54 PEA
V 15540 35.91 16.45 52.36 74.00 -21.64 PEA
H 10440 35.22 12.64 47.86 74.00 -26.14 PEA
H 10440 35.22 12.64 47.86 74.00 -26.14 PEA 802.11n H 15660 33.60 16.53 50.13 74.00 -23.87 PEA
00.22 12.01 11.00 20.11 12.0
802.11n H 15660 33.60 16.53 50.13 74.00 -23.87 PEA
802.11n H 15660 33.60 16.53 50.13 74.00 -23.87 PEA HT20-5220MHz V 10440 35.97 12.64 48.61 74.00 -25.39 PEA
802.11n H 15660 33.60 16.53 50.13 74.00 -23.87 PEA V 10440 35.97 12.64 48.61 74.00 -25.39 PEA V 15660 35.72 16.53 52.25 74.00 -21.75 PEA
802.11n H 15660 33.60 16.53 50.13 74.00 -23.87 PEA V 10440 35.97 12.64 48.61 74.00 -25.39 PEA V 15660 35.72 16.53 52.25 74.00 -21.75 PEA

	V	15720	33.99	16.54	50.53	74.00	-23.47	PEAK
Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
	Н	10380	35.41	12.58	47.99	74.00	-26.01	PEAK
802.11n	H	15570	33.65	16.48	50.13	74.00	-23.87	PEAK
HT40-5190MHz	V	10380	36.48	12.58	49.06	74.00	-24.94	PEAK
	V	15570	33.34	16.48	49.82	74.00	-24.18	PEAK
	ı	-			ı		i	
	Н	10460	37.15	12.66	49.81	74.00	-24.19	PEAK
802.11n	Н	15690	34.66	16.53	51.19	74.00	-22.81	PEAK
HT40-5230MHz	V	10460	35.40	12.66	48.06	74.00	-25.94	PEAK
	V	15690	33.59	16.53	50.12	74.00	-23.88	PEAK
Mode	Polar	Frequency	Reading	Factor	Result	Limit	Margin	Detector
	(H/V) H	(MHz) 10360	(dBµV)	(dB)	(dBµV)	(dBµV/m)	(dB)	(PK/AV)
000.44	H	15540	34.09	12.56	46.65	74.00	-27.35	PEAK
802.11ac HT20-5180MHz	V	10360	34.31	16.45	50.76	74.00	-23.24	PEAK
	V	15540	33.31	12.56	45.87	74.00	-28.13	PEAK
	V	15540	34.34	16.45	50.79	74.00	-23.21	PEAK
	Н	10440	34.04	12.64	46.68	74.00	-27.32	PEAK
802.11ac	Н	15660	31.54	16.53	48.07	74.00	-25.93	PEAK
HT20-5220MHz	V	10440	33.21	12.64	45.85	74.00	-28.15	PEAK
	V	15660	31.06	16.53	47.59	74.00	-26.41	PEAK
	Н	10480	34.10	12.68	46.78	74.00	-27.22	PEAK
802.11ac	Н	15720	32.70	16.54	49.24	74.00	-24.76	PEAK
HT20-5240MHz	V	10480	32.55	12.68	45.23	74.00	-28.77	PEAK
	V	15720	34.03	16.54	50.57	74.00	-23.43	PEAK
Т	1	_ 1						
Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
	H	10380	32.84	12.58	45.42	74.00	-28.58	PEAK
802.11ac	H	15570	34.64	16.48	51.12	74.00	-22.88	PEAK
HT40-5190MHz	V	10380	35.13	12.58	47.71	74.00	-26.29	PEAK
	V	15570	32.70	16.48	49.18	74.00	-24.82	PEAK
1		-						
802.11ac	Н	10460	34.68	12.66	47.34	74.00	-26.66	PEAK
HT40-5230MHz	н	15690		i l			i l	

	V	10460	33.87	12.66	46.53	74.00	-27.47	PEAK
	V	15690	32.75	16.53	49.28	74.00	-24.72	PEAK
Mode	Polar (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV/m)	Margin (dB)	Detector (PK/AV)
	Н	10420	32.79	12.62	45.41	74.00	-28.59	PEAK
802.11ac	Н	15630	33.17	16.52	49.69	74.00	-24.31	PEAK
HT80-5210MHz	V	10420	33.54	12.62	46.16	74.00	-27.84	PEAK
	V	15630	31.55	16.52	48.07	74.00	-25.93	PEAK

The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level very low which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

Hence there no other emissions have been reported.

8. FREQUENCY STABILITY

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2014; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

			Frequency stability	versus Temn	
			Power Supply:		
	Operating	0 minute	2 minute	5 minute	10 minute
Temp.	Frequency	Measured	Measured	Measured	Measured
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5180	5180.0768	5180.1575	5180.7272	5180.1587
-30	5200	5199.8483	5200.8066	5199.9792	5199.3914
-30	5220	5220.0996	5220.2916	5220.6476	5220.4354
	5240	5239.9857	5240.6455	5240.2121	5239.7094
	5180	5179.7998	5180.4610	5180.7079	5180.2387
-20	5200	5199.6113	5200.4471	5200.3023	5199.7127
-20	5220	5219.3260	5220.5834	5220.1242	5219.6955
	5240	5239.1472	5240.1485	5240.3614	5239.0560
	5180	5178.9284	5180.3999	5180.0833	5178.7144
40	5200	5199.9244	5200.6555	5200.7669	5198.8720
-10	5220	5219.3994	5220.8225	5220.1201	5219.5844
	5240	5239.4026	5240.5330	5240.8870	5239.3386
	5180	5180.4718	5180.7600	5180.4496	5179.3295
0	5200	5199.4126	5200.7405	5200.5069	5199.8162
0	5220	5219.2713	5219.7723	5220.1685	5220.0323
	5240	5239.6555	5240.8615	5240.2258	5239.4423
	5180	5179.8765	5180.2522	5180.1498	5179.9424
10	5200	5199.7764	5200.1856	5200.4094	5199.6231
10	5220	5219.1608	5220.1911	5220.3709	5219.9688
	5240	5239.8102	5240.3641	5240.6457	5239.6286
	5180	5179.9381	5180.1661	5180.2850	5179.4251
20	5200	5199.7046	5200.3935	5200.8174	5199.3711
20	5220	5219.3509	5220.9109	5220.4676	5219.5035
	5240	5239.2423	5240.7689	5240.2008	5239.5924
	5180	5179.6930	5180.0951	5180.0724	5179.7799
30	5200	5199.3115	5200.1919	5200.4674	5199.6010
30	5220	5219.3932	5220.4776	5220.9559	5219.5190
	5240	5239.5160	5240.2274	5240.3301	5239.9719
	5180	5179.6959	5180.8535	5180.2855	5180.1952
40	5200	5199.1924	5200.4999	5200.7955	5199.7556
40	5220	5219.4804	5220.6530	5220.8310	5219.9185
	5240	5239.1295	5240.9833	5240.9381	5240.0857
	5180	5179.3294	5180.8584	5180.4182	5179.3860
50	5200	5199.4006	5200.9164	5200.3681	5199.2636
50	5220	5219.6891	5220.9101	5220.4892	5219.2989
	5240	5239.3615	5240.1878	5240.0569	5239.2262

	Frequency stability versus Voltage						
			Temperature: 25°C				
Power	Operating	0 minute	2 minute	5 minute	10 minute		
Supply	Frequency	Measured	Measured	Measured	Measured		
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
	5180	5180.0289	5180.1297	5180.3942	5180.3264		
6.0	5200	5200.0576	5199.9288	5199.6672	5199.9628		
6.9 5220	5220.1585	5220.6731	5219.8848	5220.1270			
	5240	5240.9439	5240.8619	5239.9706	5239.4340		
	5180	5181.2093	5180.0896	5179.1654	5179.1249		
7.0	5200	5200.1292	5200.5180	5199.9557	5199.2257		
7.6	5220	5220.2773	5220.2947	5219.8907	5219.5153		
	5240	5239.7530	5240.7048	5239.0745	5239.6018		
	5180	5180.0139	5180.4563	5179.3073	5179.2530		
0.4	5200	5200.2673	5200.3796	5199.0055	5199.1763		
8.4	5220	5219.8959	5220.7292	5219.1521	5219.0118		
	5240	5240.7119	5240.5690	5239.4222	5239.2227		

9. POWER LINE CONDUCTED EMISSION

9.1 Block diagram of test setup

9.2 Power Line Conducted Emission Limits(Class B)

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

9.3 TEST PROCEDURE

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

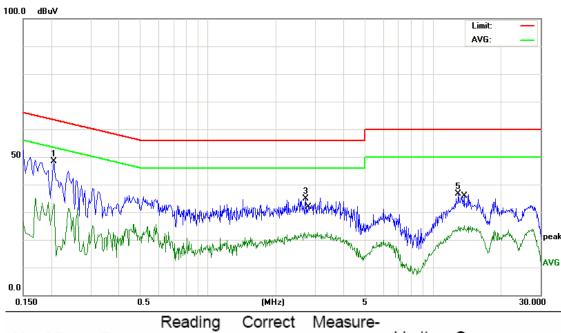
A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

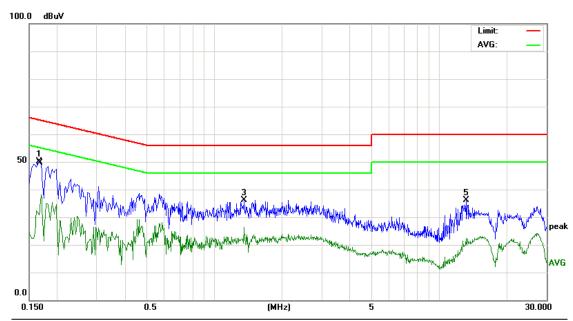
9.4 Test Result


PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.

Note2: "----" means peak detection; "----" mans average detection

EUT:	Laptop	Model No.:	WHIM Business
Temperature:	23℃	Relative Humidity:	52%
Probe:	N	Test Power:	AC 120V/60Hz
Test Time:	2020-07-01	Test Result:	Pass
Standard:	(CE)FCC PART 15 class B_QI	P	
Test Mode:	TX		
Note:			


No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∀	dB	dBu∀	dBu∨	dB	Detector
1 *	0.2060	37.37	11.09	48.46	63.36	-14.90	peak
2	0.2060	22.07	11.09	33.16	53.36	-20.20	AVG
3	2.7100	24.96	9.98	34.94	56.00	-21.06	peak
4	2.7820	12.68	9.99	22.67	46.00	-23.33	AVG
5	12.9300	35.48	1.23	36.71	60.00	-23.29	peak
6	13.6980	23.96	1.24	25.20	50.00	-24.80	AVG

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = (LISN, ISN, PLC or Current Probe) Factor + Cable Loss +Attenuator
- (3) Margin = Result Limit

EUT:	Laptop	Model No.:	WHIM Business		
Temperature:	23℃	Relative Humidity:	52%		
Probe:	L1	Test Power:	AC 120V/60Hz		
Test Time:	2020-07-01	Test Result:	Pass		
Standard:	(CE)FCC PART 15 class B_QP				
Test Mode:	TX				
Note:					

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector
1 *	0.1660	38.57	11.61	50.18	65.15	-14.97	peak
2	0.1700	26.67	11.55	38.22	54.96	-16.74	AVG
3	1.3540	26.23	9.92	36.15	56.00	-19.85	peak
4	1.3540	16.37	9.92	26.29	46.00	-19.71	AVG
5	13.1900	34.78	1.24	36.02	60.00	-23.98	peak
6	13.1900	21.19	1.24	22.43	50.00	-27.57	AVG

The test result is calculated as the following:

- (1) Result = Reading + Correct Factor
- (2) Correct Factor = (LISN, ISN, PLC or Current Probe) Factor + Cable Loss +Attenuator
- (3) Margin = Result Limit

10. ANTENNA REQUIREMENTS

10.1. Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2. EUT ANTENNA

The antennas used for this product are built-in undetachable FPCB antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 1.66 dBi. and the antenna connector is designed with permanent attachment and no consideration of replacement. Therefore the EUT is considered sufficient to comply with the provision.